リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Impaired CD4⁺ T cell response in older adults is associated with reduced immunogenicity and reactogenicity of mRNA COVID-19 vaccination」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Impaired CD4⁺ T cell response in older adults is associated with reduced immunogenicity and reactogenicity of mRNA COVID-19 vaccination

Jo, Norihide Hidaka, Yu Kikuchi, Osamu Fukahori, Masaru Sawada, Takeshi Aoki, Masahiko Yamamoto, Masaki Nagao, Miki Morita, Satoshi Nakajima, Takako E. Muto, Manabu Hamazaki, Yoko 京都大学 DOI:10.1038/s43587-022-00343-4

2023.01

概要

Whether age-associated defects in T cells impact the immunogenicity and reactogenicity of mRNA vaccines remains unclear. Using a vaccinated cohort (n = 216), we demonstrated that older adults (aged ≥65 years) had fewer vaccine-induced spike-specific CD4⁺ T cells including CXCR3⁺ circulating follicular helper T cells and the TH1 subset of helper T cells after the first dose, which correlated with their lower peak IgG levels and fewer systemic adverse effects after the second dose, compared with younger adults. Moreover, spike-specific TH1 cells in older adults expressed higher levels of programmed cell death protein 1, a negative regulator of T cell activation, which was associated with low spike-specific CD8⁺ T cell responses. Thus, an inefficient CD4⁺ T cell response after the first dose may reduce the production of helper T cytokines, even after the second dose, thereby lowering humoral and cellular immunity and reducing systemic reactogenicity. Therefore, enhancing CD4⁺ T cell response following the first dose is key to improving vaccine efficacy in older adults.

この論文で使われている画像

参考文献

1. Onder, G., Rezza, G. & Brusaferro, S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 323, 1775–1776 (2020).

2. Richardson, S. et al. Presenting characteristics, comorbidities and outcomes among 5700 patients hospitalized With COVID-19 in the New York City area. JAMA 323, 2052–2059 (2020).

3. Williamson, E. J. et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 584, 430–436 (2020).

4. Moss, P. The T cell immune response against SARS-CoV-2. Nat. Immunol. 23, 186–193 (2022).

5. Minato, N., Hattori, M. & Hamazaki, Y. Physiology and pathology of T cell aging. Int. Immunol. 32, 223–231 (2020).

6. Mittelbrunn, M. & Kroemer, G. Hallmarks of T cell aging. Nat. Immunol. 22, 687–698 (2021).

7. Kumar, B. V., Connors, T. J. & Farber, D. L. Human T cell development, localization and function throughout life. Immunity 48, 202–213 (2018).

8. Nikolich-Zugich, J. The twilight of immunity: emerging concepts in aging of the immune system. Nat. Immunol. 19, 10–19 (2018).

9. Goronzy, J. J. & Weyand, C. M. Mechanisms underlying T cell ageing. Nat. Rev. Immunol. 19, 573–583 (2019).

10. Zhang, H., Weyand, C. M. & Goronzy, J. J. Hallmarks of the aging T cell system. FEBS J. 288, 7123–7142 (2021).

11. Goronzy, J. J. & Weyand, C. M. Understanding immunosenescence to improve responses to vaccines. Nat. Immunol. 14, 428–436 (2013).

12. Goronzy, J. J., Li, G., Yang, Z. & Weyand, C. M. The Janus head of T cell aging—kautoimmunity and immunodeficiency. Front. Immunol. 4, 131 (2013).

13. Jeferson, T. et al. Eficacy and efectiveness of influenza vaccines in elderly people: a systematic review. Lancet 366, 1165–1174 (2005).

14. Nichol, K. L., Nordin, J. D., Nelson, D. B., Mullooly, J. P. & Hak, E. Efectiveness of influenza vaccine in the community-dwelling elderly. N. Engl. J. Med. 357, 1373–1381 (2007).

15. Polack, F. P. et al. Safety and eficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

16. Collier, D. A. et al. Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature 596, 417–422 (2021).

17. Andrews, N. et al. Duration of protection against mild and severe disease by COVID-19 vaccines. N. Engl. J. Med. 386, 340–350 (2022).

18. Levin, E. G. et al. Waning immune humoral response to BNT162b2 COVID-19 vaccine over 6 months. N. Engl. J. Med. 385, e84 (2021).

19. Palacios-Pedrero, M. Á. et al. Signs of immunosenescence correlate with poor outcome of mRNA COVID-19 vaccination in older adults. Nat. Aging 2, 896–905 (2022).

20. Sahin, U. et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 586, 594–599 (2020).

21. Painter, M. M. et al. Rapid induction of antigen-specific CD4+ T cells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination. Immunity 54, 2133–2142 (2021).

22. Kim, M. S. et al. Comparative safety of mRNA COVID-19 vaccines to influenza vaccines: a pharmacovigilance analysis using WHO international database. J. Med. Virol. 94, 1085–1095 (2021).

23. Hwang, Y. H. et al. Can reactogenicity predict immunogenicity after COVID-19 vaccination? Korean J. Intern. Med. 36, 1486–1491 (2021).

24. Bauernfeind, S. et al. Association between reactogenicity and immunogenicity after vaccination with BNT162b2. Vaccines 9, 1089 (2021).

25. Held, J. et al. Reactogenicity correlates only weakly with humoral immunogenicity after COVID-19 vaccination with BNT162b2 mRNA (Comirnaty). Vaccines 9, 1063 (2021).

26. Takeuchi, M., Higa, Y., Esaki, A., Nabeshima, Y. & Nakazono, A. Does reactogenicity after a second injection of the BNT162b2 vaccine predict spike IgG antibody levels in healthy Japanese subjects? PLoS ONE 16, e0257668 (2021).

27. Coggins, S. A. et al. Adverse efects and antibody titers in response to the BNT162b2 mRNA COVID-19 vaccine in a prospective study of healthcare workers. Open Forum Infect. Dis. 9, ofab575 (2022).

28. Goel, R. R. et al. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science 374, abm0829 (2021).

29. Guerrera, G. et al. BNT162b2 vaccination induces durable SARS-CoV-2-specific T cells with a stem cell memory phenotype. Sci. Immunol. 6, eabl5344 (2021).

30. Mateus, J. et al. Low-dose mRNA-1273 COVID-19 vaccine generates durable memory enhanced by cross-reactive T cells. Science 374, eabj9853 (2021).

31. Mateus, J. et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science 370, 89–94 (2020).

32. Rydyznski Moderbacher, C. et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell 183, 996–1012 (2020).

33. Jo, N. et al. Aging and CMV infection afect pre-existing SARSCoV-2-reactive CD8+ T cells in unexposed individuals. Front. Aging 2, 2–16 (2021).

34. van den Berg, S. P. H., Warmink, K., Borghans, J. A. M., Knol, M. J. & van Baarle, D. Efect of latent cytomegalovirus infection on the antibody response to influenza vaccination: a systematic review and meta-analysis. Med. Microbiol. Immunol. 208, 305–321 (2019).

35. Fischinger, S., Boudreau, C. M., Butler, A. L., Streeck, H. & Alter, G. Sex diferences in vaccine-induced humoral immunity. Semin. Immunopathol. 41, 239–249 (2019).

36. Belkina, A. C. et al. Automated optimized parameters for t-distributed stochastic neighbor embedding improve visualization and analysis of large datasets. Nat. Commun. 10, 5415 (2019).

37. Ruggiero, A. et al. SARS-CoV-2 vaccination elicits unconventional IgM specific responses in naive and previously COVID-19-infected individuals. EBioMedicine 77, 103888 (2022).

38. Shapiro, J. R., Morgan, R., Leng, S. X. & Klein, S. L. Roadmap for sex-responsive influenza and COVID-19 vaccine research in older adults. Front. Aging 3, 836642 (2022).

39. Crotty, S. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29, 621–663 (2011).

40. Morita, R. et al. Human blood CXCR5+ CD4+ T cells are counterparts of T follicular cells and contain specific subsets that diferentially support antibody secretion. Immunity 34, 108–121 (2011).

41. Bentebibel, S. E. et al. Induction of ICOS+ CXCR3+ CXCR5+ TH cells correlates with antibody responses to influenza vaccination. Sci. Transl. Med. 5, 176ra132 (2013).

42. Bentebibel, S. E. et al. ICOS+ PD-1+ CXCR3+ T follicular helper cells contribute to the generation of high-avidity antibodies following influenza vaccination. Sci. Rep. 6, 26494 (2016).

43. Herve, C., Laupeze, B., Del Giudice, G., Didierlaurent, A. M. & Tavares Da Silva, F. The how’s and what’s of vaccine reactogenicity. NPJ Vaccines 4, 39 (2019).

44. Miller, C. H., Maher, S. G. & Young, H. A. Clinical use of interferongamma. Ann. N. Y. Acad. Sci. 1182, 69–79 (2009).

45. Chamoto, K., Al-Habsi, M. & Honjo, T. Role of PD-1 in immunity and diseases. in Yoshimura, A. (ed). Emerging Concepts Targeting Immune Checkpoints in Cancer and Autoimmunity 75–97 (Springer International Publishing: Cham, 2017).

46. Shrof, R. T. et al. Immune responses to two and three doses of the BNT162b2 mRNA vaccine in adults with solid tumors. Nat. Med. 27, 2002–2011 (2021).

47. Monin, L. et al. Safety and immunogenicity of one versus two doses of the COVID-19 vaccine BNT162b2 for patients with cancer: interim analysis of a prospective observational study. Lancet Oncol. 22, 765–778 (2021).

48. Lucas, C. et al. Delayed production of neutralizing antibodies correlates with fatal COVID-19. Nat. Med. 27, 1178–1186 (2021).

49. Li, G. et al. Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nat. Med. 18, 1518–1524 (2012).

50. Wong, C. & Goldstein, D. R. Impact of aging on antigen presentation cell function of dendritic cells. Curr. Opin. Immunol. 25, 535–541 (2013).

51. Kaech, S. M., Wherry, E. J. & Ahmed, R. Efector and memory T cell diferentiation: implications for vaccine development. Nat. Rev. Immunol. 2, 251–262 (2002).

52. Bowyer, G. et al. Reduced Ebola vaccine responses in CMV+ young adults is associated with expansion of CD57+ KLRG1+ T cells. J. Exp. Med. 217, e20200004 (2020).

53. Crooke, S. N., Ovsyannikova, I. G., Poland, G. A. & Kennedy, R. B. Immunosenescence and human vaccine immune responses. Immun. Ageing 16, 25 (2019).

54. Furman, D. et al. Cytomegalovirus infection enhances the immune response to influenza. Sci. Transl. Med. 7, 281ra243 (2015).

55. Ivashkiv, L. B. IFNgamma: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat. Rev. Immunol. 18, 545–558 (2018).

56. Arunachalam, P. S. et al. Systems vaccinology of the BNT162b2 mRNA vaccine in humans. Nature 596, 410–416 (2021).

57. Khoury, D. S. et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 27, 1205–1211 (2021).

58. Roederer, M., Nozzi, J. L. & Nason, M. C. SPICE: exploration and analysis of post-cytometric complex multivariate datasets. Cytometry A 79, 167–174 (2011).

59. Guilford, J. P. Fundamental statistics in psychology and education 2nd ed. (McGraw-Hill, 1950).

60. Sekine, T. et al. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell 183, 158–168 (2020).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る