リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Space-time-domain observation of high-speed optical beam scanning in a thermo-optic Si photonic crystal slow-light beam scanner」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Space-time-domain observation of high-speed optical beam scanning in a thermo-optic Si photonic crystal slow-light beam scanner

Gondo Jun Ito Hiroyuki Tamanuki Takemasa Baba Toshihiko 50202271 横浜国立大学

2021.08.01

概要

We developed a thermo-optically controlled nonmechanical optical beam scanner using a Si photonic crystal slow-light waveguide with a diffraction grating to achieve on-chip light detection and ranging (LIDAR). This Letter applies pre-emphasis signals to the thermo-optic control, and the cutoff frequency increases to 500 kHz. Observing the beam scanning in the space-time domain showed that the turn-on and turn-off times of the scanner for a rectangular drive voltage were 10 µs and reduced to 2.7 µs when the pre-emphasis signals were optimized. This new, to the best of our knowledge, result enables a frame rate of 29 fps for 12,800 resolution points in LIDAR.

この論文で使われている画像

参考文献

1. C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D.

Vermeulen, and M. R. Watts, IEEE J. Sel. Top. Quantum Electron. 25,

7700108 (2019).

2. T. Kim, P. Bhargava, C. V. Poulton, J. Notaros, A. Yaacobi, E. Timurdogan,

C. Baiocco, N. Fahrenkopf, S. Kruger, T. Ngai, Y. Timalsina, M. R. Watts,

and V. Stojanovic, IEEE J. Solid-State Circuits 54, 3061 (2019).

3. J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T.

Bovington, L. A. Coldren, and J. E. Bowers, Opt. Express 23, 5861

(2015).

4. D. Inoue, T. Ichikawa, A. Kawasaki and T. Yamashita, Opt. Express 27,

2499 (2019).

5. C. Rogers, A. Y. Piggott, D. J. Thomson, R. F. Wiser, I. E. Opris, S. A.

Fortune, A. J. Compston, A. Gondarenko, F. Meng, X. Chen, G. T. Reed,

and R. Nicolaescu, Nature 590, 256 (2021).

6. H. Ito, Y. Kusunoki, J. Maeda, D. Akiyama, N. Kodama, H. Abe, R. Tetsuya,

and T. Baba, Optica 7, 47 (2020).

7. T. Tamanuki, H. Ito and T. Baba, J. Lightwave Technol. 39., 904 (2021).

8. W. Ronny Huang, J. Montoya, J. E. Kansky, S. M. Redmond, G. W. Turner,

and A. Sanches- Rubio, Opt. Express 20, 17313 (2012).

9. G. Kang, S. H. Kim, J. B. You, D. S. Lee, H. Yoon, Y.G. Ha, J. H. Kim, D. E.

Yoo, D. W. Lee, C. H. Youn, K. Yu, and H. H. Park, IEEE Photonics

Technology Letters 31, 1685 (2019).

10. Y. Hirano, Y. Miyamoto, M. Miura, Y. Motoyama, K. Machida, T.

Yamada, A. Otomo, and H. Kikuchi, IEEE Photonics J. 12, 6600807

(2020).

11. Y. Maegami, M. Okano, G. Cong, K. Suzuki, M. Ohno, T. Narushima, N.

Yokohama, M. Seki, M. Ohtsuka, S. Namiki, and K. Yamada, Opt. Exp.

45, 2095 (2020).

Fig. 5. Space-time domain observation of beam scanning for optimized

pre-emphasis signal. (a)‒(d) are the same as those in Fig. 4. Flat lines at

>4 μs can be estimated from flat top waveforms in the top and bottom

panels of (b).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る