リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Photoinduced and Thermal Linkage Isomerizations of an Organometallic Ionic Liquid Containing a Half-Sandwich Ruthenium Thiocyanate Complex」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Photoinduced and Thermal Linkage Isomerizations of an Organometallic Ionic Liquid Containing a Half-Sandwich Ruthenium Thiocyanate Complex

Mochida, Tomoyuki Maekawa, Syou Sumitani, Ryo 神戸大学

2021.08.16

概要

Metal complexes with thiocyanate (SCN–) ligands typically exhibit S- or N-coordinated linkage isomers. In this study, to explore ionic liquids that exhibit stimuli-responsiveness based on linkage isomerization, we synthesized an ionic liquid containing a cationic half-sandwich thiocyanate complex, [Ru(C6H6)(NCS)L]Tf2N (L = N-hexyl-2-pyridinemethanimine, Tf2N = bis(trifluoromethanesulfonyl)amide anion). The as-synthesized ionic liquid was a 0.7:0.3 mixture of N- and S-coordinated isomers, presenting as an extremely viscous liquid exhibiting a glass transition at 0 °C. Isomerization from the N- to the S-coordinated isomer occurred upon UV photoirradiation or heating, although thermal isomerization was accompanied by significant decomposition. The N- and S-coordinated isomers were separated into brown and orange liquids, respectively, using gel permeation chromatography. Each isomer exhibited a small solvatochromic absorption shift in organic solvents, with different solvent dependences observed for the two isomers.

この論文で使われている画像

参考文献

(1) Kar, M.; Matuszek, K.; MacFarlane, D. R. Ionic Liquids, In Kirk–Othmer Encyclopedia of

Chemical

Technology;

John

Wiley

10.1002/0471238961.ionisedd.a01.pub2.

16

Sons,

Inc.,

2019,

DOI:

(2) Brooks, N. R.; Schaltin, S.; Van Hecke, K.; Van Meervelt, L.; Binnemans, K.; Fransaer, J.

Copper(I)-Containing Ionic Liquids for High-Rate Electrodeposition. Chem. - Eur. J. 2011, 17,

5054–5059.

(3) Branco, A.; Branco, L. C.; Pina, F. Electrochromic and Magnetic Ionic Liquids. Chem. Commun.

2011, 47, 2300−2302.

(4) Zhang, P.; Gong, Y.; Lv, Y.; Guo, Y.; Wang, Y.; Wang, C.; Li, H. Ionic Liquids with Metal

Chelate Anions. Chem. Commun. 2012, 48, 2334−2336.

(5) Osborne, S. J.; Wellens, S.; Ward, C.; Felton, S.; Bowman, R. M.; Binnemans, K.; SwadźbaKwaśny, M.; Gunaratne, H. Q. N.; Nockemann, P. Thermochromism and Switchable

Paramagnetism of Cobalt(II) in Thiocyanate Ionic Liquids. Dalton Trans. 2015, 44, 11286–11289.

(6) Billeci, F.; Gunaratne, H. Q. N.; Licence, P.; Seddon, K. R.; Plechkova, N. V.; D’Anna, F. Ionic

Liquids–Cobalt(II) Thermochromic Complexes: How the Structure Tunability Affects “SelfContained” Systems. ACS Sustainable Chem. Eng. 2021, 9, 4064–4075.

(7) Ma, L.; Haynes, C. J. E.; Grommet, A. B.; Walczak, A.; Parkins, C. C.; Doherty, C. M.; Longley,

L.; Tron, A.; Stefankiewicz, A. R.; Bennett, T. D.; Nitschke, J. R. Coordination Cages as

Permanently Porous Ionic Liquids. Nat. Chem. 2020, 12, 270–275.

(8) Inagaki, T.; Mochida, T.; Takahashi, M.; Kanadani, C.; Saito, T.; Kuwahara, D. Ionic Liquids

of Cationic Sandwich Complexes. Chem. - Eur. J. 2012, 18, 6795−6804.

(9) Inagaki, T.; Abe, K.; Takahashi, K.; Mochida, T. Organometallic Ionic Liquids from HalfSandwich Ru(II) Complexes with Various Chelating Ligands. Inorg. Chim. Acta 2015, 438, 112–

117.

(10) Inagaki, T.; Mochida, T. Reactive Half-Metallocenium Ionic Liquids That Undergo

Solventless Ligand Exchange. Chem. - Eur. J. 2012, 18, 8070–8075.

17

(11) Funasako, Y.; Mochida, T.; Inagaki, T.; Sakurai, T.; Ohta, H.; Furukawa, K.; Nakamura, T.

Magnetic Memory Based on Magnetic Alignment of a Paramagnetic Ionic Liquid Near Room

Temperature. Chem. Commun. 2011, 47, 4475–4477.

(12) Funasako, Y.; Mori, S.; Mochida, T. Reversible Transformation between Ionic Liquids and

Coordination Polymers by Application of Light and Heat. Chem. Commun. 2016, 52, 6277−6279.

(13) Ueda, T.; Tominaga, T.; Mochida, T.; Takahashi, K.; Kimura, S. Photogeneration of

Microporous Amorphous Coordination Polymers from Organometallic Ionic Liquids. Chem. –Eur.

J. 2018, 24, 9490–9493.

(14) Sumitani, R.; Yoshikawa, H.; Mochida, T. Reversible Control of Ionic Conductivity and

Viscoelasticity of Organometallic Ionic Liquids by Application of Light and Heat. Chem. Commun.

2020, 56, 6189–6192.

(15) Burmeister, J. Ambidentate Ligands, the Schizophrenics of Coordination Chemistry. Coord.

Chem. Rev. 1990, 105, 77–133.

(16) Nazeeruddin, M. K.; Grätzel, M. Separation of Linkage Isomers of Trithiocyanato (4,4′,4″tricarboxy-2,2′,6,2″-terpyridine)ruthenium(II) by pH-titration Method and their Application in

Nanocrystalline TiO2-based Solar Cells. J. Photochem. Photobiol., A 2001, 145, 79–86.

(17) Kakoti, M.; Chaudhury, S.; Deb, A. K.; Goswami, S. Isomeric Dithiocyanate Complexes of

Ruthenium(II), Synthesis, Characterization of all Possible Bond Isomers of trans,cis-Ru(CNS)2L2

[L = 2-(arylazo)pyridine] and Studies of Isomerization. Polyhedron 1993, 12, 783–789.

(18) Brewster, T. P.; Ding, W.; Schley, N. D.; Hazari, N.; Batista, V. S.; Crabtree, R. H.

Thiocyanate Linkage Isomerism in a Ruthenium Polypyridyl Complex. Inorg. Chem. 2011, 50,

11938–11946.

(19) Saxena, P.; Thomas, J. M.; Sivasankar, C.; Thirupathi, N. Syntheses and Structural Aspects

18

of Six-membered Palladacyclic Complexes Derived from N,N′,N″-Triarylguanidines with N- or SThiocyanate Ligands. New J. Chem. 2019, 43, 2307–2327.

(20) Melpolder, J. B.; Burmeister, J. L. Solvent and Countercation Effects on Ambidentate Bonding

Patterns in Thiocyanato- and Selenocyanatopentacyanocobaltate(III) Complexes. Inorg. Chim.

Acta 1975, 15, 91–104.

(21) Kishi, S.; Kato, M. Thermal and Photo Control of the Linkage Isomerism of

Bis(thiocyanato)(2,2′-bipyridine)platinum(II), Inorg. Chem. 2003, 42, 8728–8734.

(22) Kobayashi, A.; Fukuzawa, Y.; Chang, H.-C.; Kato, M. Vapor-Controlled Linkage

Isomerization of a Vapochromic Bis(thiocyanato)platinum(II) Complex: New External Stimuli To

Control Isomerization Behavior. Inorg. Chem. 2012, 51, 7508–7519.

(23) Sheu, C.-F.; Shih, C.-H.; Sugimoto, K.; Cheng, B.-M.; Takata, M.; Wang, Y. A Long-lived

Photo-induced Metastable State of Linkage Isomerization Accompanied with a Spin Transition.

Chem. Commun. 2012, 48, 5715–5717.

(24)

Sloan,

T.

E.;

Wojcicki,

A.

Linkage

Isomerism

in

Carbonyl--

cyclopentadienyl(thiocyanato)metal Complexes. Inorg. Chem. 1968, 7, 1268–1273.

(25) Wang, F.; Habtemariam, A.; van der Geer, E. P. L.; Deeth, R. J.; Gould, R.; Parsons, S.; Sadler,

P. J. J. Biol. Inorg. Chem. 2009, 14, 1065–1076.

(26) Vandenburgh, L.; Buck, M. R.; Freedman, D. A. Preparation, Separation, and Characterization

of Ruthenium(II) Thiocyanate Linkage Isomers. Inorg. Chem. 2008, 47, 9134–9136.

(27) Mikhailov, A. A.; Stolyarova, E. D.; Kostin, G.A. Photochemistry of Ruthenium Nitrosyl

Complexes in Solids and Solutions and its Potential Applications. J. Struct. Chem. 62, 497–516

(2021).

(28) Coppens, P.; Novozhilova, I; Kovalevsky, A. Photoinduced Linkage Isomers of Transition19

Metal Nitrosyl Compounds and Related Complexes. Chem. Rev. 2002, 102, 861–884.

(29) Kovalevsky, A. Y.; Bagley, K. A.; Cole, J. M.; Coppens, P. Light-induced Metastable Linkage

Isomers of Ruthenium Sulfur Dioxide Complexes. Inorg. Chem. 2003, 42, 140–147.

(30) Butcher, D. P.; Rachford, A. A.; Petersen, J. L.; Rack, J. J. Phototriggered S → O

Isomerization of a Ruthenium-Bound Chelating Sulfoxide. Inorg. Chem. 2006, 45, 9178–9180.

(31) Makino, T.; Kanakubo, M.; Masuda, Y.; Umecky, T.; Suzuki, A. CO2 Absorption Properties,

Densities, Viscosities, and Electrical Conductivities of Ethylimidazolium and 1-Ethyl-3methylimidazolium Ionic Liquids. Fluid Phase Equilib. 2014, 362, 300–306.

(32) Fulcher, G. S. Analysis of Recent Measurements of the Viscosity of Glasses. J. Am. Ceram.

Soc. 1925, 8, 339–355.

(33) Reichardt, C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev. 1994, 94, 2319–

2358.

(34) Li, M.-X.; Zhou, X.; Xia, B.-H.; Zhang, H.-X.; Pan, Q.-J.; Liu, T.; Fu, H.-G.; Sun, C.-C.

Theoretical Studies on Structures and Spectroscopic Properties of Photoelectrochemical Cell

Ruthenium Sensitizers, [Ru(Hmtcterpy)(NCS)3]n− (m = 0, 1, 2, and 3; n = 4, 3, 2, and 1). Inorg.

Chem. 2008, 47, 2312–2324.

(35) Fantacci, S.; De Angelis, F.; Selloni, A. Absorption Spectrum and Solvatochromism of the

[Ru(4,4′-COOH-2,2′-bpy)2(NCS)2] Molecular Dye by Time Dependent Density Functional Theory.

J. Am. Chem. Soc. 2003, 125, 4381–4387.

(36) Hu, Y.; Sanchez-Molina, I.; Haque, S. A.; Robertson, N. Ruthenium Dyes with Azo Ligands:

Light Harvesting, Excited-State Properties and Relevance to Dye-Sensitised Solar Cells. Eur. J.

Inorg. Chem. 2015, 5864–5873.

(37) Zhang, H.-X.; Ke, W.-S.; Zhu, C.-Y.; Wang, J.-Y.; Sasaki, Y.; Chen, Z.-N.; Lin, C.; Wang,

20

Z.; Liao, S.; Wu, W. Synthesis, Characterization and Properties of Oxo-bridged Diruthenium(III)

Complexes with Thiocyanato and Cyanato Ligands. Inorg. Chim. Acta 2018, 469, 469–477.

(38) Gutmann, V.; Resch, G.; Linert, W. Structural Variability in Solutions. Coord. Chem. Rev.

1982, 43, 133–164.

(39) Timpson, C. J.; Bignozzi, C. A.; Sullivan, B. P.; Kober, E. M.; Meyer, T. J. Influence of

Solvent on the Spectroscopic Properties of Cyano Complexes of Ruthenium(II). J. Phys. Chem.

1996, 100, 2915–2925.

(40) Bennett, M. A.; Smith, A. K. Arene Ruthenium(II) Complexes Formed by Dehydrogenation

of Cyclohexadienes with Ruthenium(III) Trichloride. J. Chem. Soc., Dalton Trans. 1974, 233–241.

(41) Srivastava, P. K.; Choudhary, V. N-(n-Alkyl)-2-pyridinemethanimine Mediated Atom

Transfer Radical Polymerization of Lauryl Methacrylate: Effect of Length of Alkyl Group. J. Appl.

Polym. Sci. 2012, 125, 31–37.

Table of Contents

An ionic liquid containing a cationic half-sandwich Ru thiocyanate complex was synthesized.

Isomerization from the N- to the S-coordinated isomer occurred upon UV photoirradiation or

heating.

21

Supporting Information

Photoinduced

and

Thermal

Linkage

Isomerizations

of

an

Organometallic Ionic Liquid Containing a Half-Sandwich Ruthenium

Thiocyanate Complex

Tomoyuki Mochida,*a,b Syou Maekawa,a and Ryo Sumitania

Department of Chemistry, Graduate School of Science, Kobe University, Rokkodai, Nada, Kobe,

Hyogo 657-8501, Japan. E-mail: tmochida@platinum.kobe-u.ac.jp

Research Center for Membrane and Film Technology, Kobe University, Rokkodai, Nada, Kobe,

Hyogo 657-8501, Japan

Contents

Figure S1. 1H NMR spectra of the compounds synthesized in this study.

Figure S2. IR spectra of the N-coordinated and S-coordinated isomers and [1]Tf2N.

Figure S3. DSC thermograms of [1]Tf2N and [1]PF6.

Figure S4. TG-DTA thermograms of [1]Tf2N and [1]PF6.

Figure S5. IR spectra of the N-coordinated isomer taken upon photoirradiation.

Figure S6. Optimized geometries of the N- and S-coordinated isomers obtained using DFT

calculations.

Figure S7. 1H NMR spectra of [1]Tf2N (N:S = 0.73:0.27, CDCl3 solution) measured before and

after heating.

Figure S8. UV-Vis spectra and photographs of the N-coordinated and S-coordinated isomers in

dichloromethane and methanol.

S1

[RuCl(C6H6)L]PF6

[1]PF6 (N:S = 0.73:0.27)

[1]Tf2N (N:S = 0.73:0.27)

S2

[1']Tf2N (after thermal isomerization, N:S = 0.35:0.65)

Figure S1. 1H NMR spectra of the compounds synthesized in this study (CDCl3).

Figure S2. IR spectra of (a) the N-coordinated and S-coordinated isomers and (b) [1]Tf2N and

[1']Tf2N (after thermal isomerization).

S3

Figure S3. DSC thermograms of [1]Tf2N (left) and [1]PF6 (right).

Figure S4. TG (—) and DTA (---) thermograms of (a) [1]Tf2N (10 and 3 °C min−1) and (b) [1]PF6

(10 °C min−1).

2102 cm–1

2110 cm–1

Figure S5. IR spectra of the N-coordinated isomer taken upon photoirradiation (KBr plate,

transmission spectra).

S4

N-coordinated isomer

S-coordinated isomer

Eel+ZPE, G0 (au)

−1197.5804, −1197.6220

−1197.5820, −1197.6236

HOMO, LUMO (eV)

−10.48, −4.14

−11.10, −4.20

Figure S6. Optimized geometries of the N- and S-coordinated isomers obtained using DFT

calculations. The total energy (Eelectronic+ZPE), Gibbs energy (G0), and energies of the

HOMO/LUMO levels of each isomer are shown below each structure.

Figure S7. 1H NMR spectra of [1]Tf2N (N:S = 0.73:0.27, CDCl3 solution) (a) Before heating, (b)

after 1 day and (c) after 6 days of heating at 50 °C.

S5

Figure S8. UV-Vis spectra and photographs of the N-coordinated (—) and S-coordinated (---)

isomers in (a) dichloromethane and (b) methanol (concentrations: 80 mol L−1).

S6

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る