リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Thermal properties and crystal structures of ruthenium-containing photoreactive ionic liquids with short substituents」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Thermal properties and crystal structures of ruthenium-containing photoreactive ionic liquids with short substituents

Sumitani, Ryo Funasako, Yusuke Mochida, Tomoyuki 神戸大学

2020.11.15

概要

To understand the structural features and intermolecular interactions of photoreactive organometallic ionic liquids (ILs), ILs containing cationic Ru sandwich complexes [Ru(C5H5){C6H3(OC3H6CN)3}]X (1a: X = (FSO2)2N−, 1b: X = (CF3SO2)2N−) were synthesized. Thereafter, their thermal properties and crystal structures were investigated. The melting points of these ILs were determined to be 87 and 79 °C, respectively. In the former crystal, the cation and anion were alternately arranged and the crystal undergoes a phase transition with ordering of the anion at −155 °C. In the latter crystal, the cations formed columnar arrangements through π–π interactions, with the anions located between the columns. In this crystal, the anions were extensively disordered even at −173 °C. The supercooled liquid of 1a exhibited a photochemical transformation into an amorphous coordination polymer, similar to the IL with longer substituents, though the reaction rate was considerably lower.

この論文で使われている画像

参考文献

[1] M. Kar, K. Matuszek, D. R. MacFarlane, Ionic Liquids. Kirk–Othmer Encyclopedia of

Chemical

Technology;

John

Wiley

Sons,

Inc.

(2019),

https://doi.org/10.1002/0471238961.ionisedd.a01.pub2

[2] a) N. R. Brooks, S. Schaltin, K. Van Hecke, L. Van Meervelt, K. Binnemans, J. Fransaer,

Copper(I)‐Containing Ionic Liquids for High‐Rate Electrodeposition, Chem. Eur. J. 17 (2011)

5054–5059, https://doi.org/10.1002/chem.201003209.

b) A. Branco, L. C. Branco, F. Pina, Electrochromic and magnetic ionic liquids, Chem.

Commun. 47 (2011) 2300−2302, https://doi.org/10.1039/C0CC03892J.

c) J. Klingele, Low-melting complexes with cationic side chains – Phosphonium-, ammoniumand imidazolium-tagged coordination compounds, Coord. Chem Rev, 292 (2015), 15–29,

https://doi.org/10.1016/j.ccr.2015.02.006.

d) L. Ma, C. J. E. Haynes, A. B. Grommet, A. Walczak, C. C. Parkins, C. M. Doherty, L.

Longley, A. Tron, A. R. Stefankiewicz, T. D. Bennett, J. R. Nitschke, Coordination cages as

permanently

porous

ionic

liquids,

Nat.

Chem.

12

(2020)

270–275,

https://doi.org/10.1038/s41557-020-0419-2.

[3] a) T. Inagaki, T. Mochida, M. Takahashi, C. Kanadani, T. Saito, D. Kuwahara, Ionic Liquids

of

Cationic

Sandwich

Complexes,

Chem.

https://doi.org/10.1002/chem.201200151.

13

Eur.

J.

18

(2012),

6795–6804,

b) Y. Funasako, T. Mochida, T. Inagaki, T. Sakurai, H. Ohta, K. Furukawa, T. Nakamura,

Magnetic memory based on magnetic alignment of a paramagnetic ionic liquid near room

temperature, Chem. Commun. 47 (2011), 4475–4477, https://doi.org/10.1039/C0CC05820C.

[4] a) Y. Funasako, T. Mochida, K. Takahashi, T. Sakurai, H. Ohta, Vapochromic Ionic Liquids

from Metal–Chelate Complexes Exhibiting Reversible Changes in Color, Thermal, and

Magnetic

Properties,

Chem.

Eur.

J.

18

(2012)

11929–11936,

https://doi.org/10.1002/chem.201201778.

b) M. Okuhata, Y. Funasako, K. Takahashi, T. Mochida, A spin-crossover ionic liquid from the

cationic iron(iii) Schiff base complex, Chem. Commun. 49 (2013) 7662–7664,

https://doi.org/10.1039/C3CC44199G.

[5] a) T. Tominaga, T. Ueda, T. Mochida, Effect of substituents and anions on the phase

behavior of Ru(ii) sandwich complexes: exploring the boundaries between ionic liquids and

ionic

plastic

crystals,

Phys.

Chem.

Chem.

Phys.

19

(2017)

4352–4359,

https://doi.org/10.1039/C6CP08308K.

b) T. Ueda, T. Mochida, Thermal Properties and Crystal Structures of Ionic Liquids from

Ruthenium Sandwich Complexes with Trialkoxybenzene Ligands: Effects of Substituent

Positions

and

Alkyl

Chain

Lengths,

Organometallics

34

(2015)

1279–1286,

https://doi.org/10.1021/acs.organomet.5b00021.

c) R. Fan, R. Sumitani, T. Mochida, Synthesis and Reactivity of Cyclopentadienyl

Ruthenium(II) Complexes with Tris(alkylthio)benzenes: Transformation between Dinuclear

and

Sandwich-Type

Complexes,

ACS

Omega

(2020)

2034–2040,

https://doi.org/10.1021/acsomega.9b04272.

[6] Y. Funasako, S. Mori, T. Mochida, Reversible transformation between ionic liquids and

coordination polymers by application of light and heat, Chem. Commun. 52 (2016) 6277–6279,

https://doi.org/10.1039/C6CC02807A.

[7] a) T. Ueda, T. Tominaga, T. Mochida, K. Takahashi, S. Kimura, Photogeneration of

Microporous Amorphous Coordination Polymers from Organometallic Ionic Liquids, Chem.

Eur. J. 24 (2018) 9490–9493, https://doi.org/10.1002/chem.201801365. b) R. Sumitani, T.

Mochida, Metal-containing Poly(ionic liquid) Exhibiting Photogeneration of Coordination

Network: Reversible Control of Viscoelasticity and Ionic Conductivity, Macromolecules in

press (2020), https://doi.org/10.1021/acs.macromol.0c01141.

[8] R. Sumitani, H. Yoshikawa, T. Mochida, Reversible control of ionic conductivity and

viscoelasticity of organometallic ionic liquids by application of light and heat, Chem. Commun.

56 (2020) 6189–6192, https://doi.org/10.1039/D0CC02786C.

14

[9] a) P. M. Dean, J. M. Pringle, D. R. MacFarlane, Structural analysis of low melting organic

salts: perspectives on ionic liquids, Phys. Chem. Chem. Phys. 12 (2010) 9144–9153,

https://doi.org/10.1039/C003519J.

b) T. V. Hoogerstraete, N. R. Brooks, B. Norberg, J. Wouters, K. Van Hecke, L. Van Meervelt,

K. Binnemans, Crystal structures of low-melting ionic transition-metal complexes with Nalkylimidazole

ligands,

CrystEngComm

14

(2012)

4902–48911,

https://doi.org/10.1039/C2CE25470K.

c) G. Laus, G. Bentivoglio, V. Kahlenberg, K. Wurst, G. Nauer, H. Schottenberger, M. Tanaka,

H.-U. Siehl, Conformational Flexibility and Cation–Anion Interactions in 1-Butyl-2,3dimethylimidazolium

Salts,

Cryst.

Growth

Des.

12

(2012)

1838–1846,

https://doi.org/10.1021/cg201424m.

d) P. Zürner, H. Schmidt, S. Bette, J. Wagler, G. Frisch, Ionic liquid, glass or crystalline solid?

Structures and thermal behaviour of (C4mim)2CuCl3, Dalton Trans. 45 (2016) 3327–3333,

https://doi.org/10.1039/C5DT03772G.

e) R. Yunis, A. F. Hollenkamp, C. Forsyth, C. M. Doherty, D. Al-Masri, J. M. Pringle, Organic

salts utilising the hexamethylguanidinium cation: the influence of the anion on the structural,

physical and thermal properties, Phys. Chem. Chem. Phys. 21 (2019) 12288–12300,

https://doi.org/10.1039/C9CP01740B.

[10] a) W. A. Henderson, M. Herstedt, V. G. Young, S. Passerini, H. C. De Long, P. C. Trulove,

New Disordering Mode for TFSI- Anions: The Nonequilibrium, Plastic Crystalline Structure

of Et4NTFSI, Inorg. Chem. 45 (2006) 1412–1414, https://doi.org/10.1021/ic0513742.

b) K. Matsumoto, T. Oka, T. Nohira, R. Hagiwara, Polymorphism of Alkali

Bis(fluorosulfonyl)amides (M[N(SO2F)2], M = Na, K, and Cs), Inorg. Chem. 52 (2013) 568–

576, https://doi.org/10.1021/ic3010486.

c) I. A. Shkrob, T. W. Marin, Y. Zhu, D. P. Abraham, Why Bis(fluorosulfonyl)imide Is a

“Magic Anion” for Electrochemistry, J. Phys. Chem. C 118 (2014) 19661–19671,

https://doi.org/10.1021/jp506567p.

d) T. Mochida, Y. Funasako, T. Inagaki, M. Jiao Li, K. Asahara, D. Kuwahara, Crystal

Structures

and

Phase‐Transition

Dynamics

of

Cobaltocenium

Salts

with

Bis(perfluoroalkylsulfonyl)amide Anions: Remarkable Odd–Even Effect of the Fluorocarbon

Chains

in

the

Anion,

Chem.

Eur.

J.

19

(2013)

6257–6264,

https://doi.org/10.1002/chem.201300186.

e) T. Mochida, Y. Funasako, M. Ishida, S. Saruta, T. Kosone, T. Kitazawa, Crystal Structures

and Phase Sequences of Metallocenium Salts with Fluorinated Anions: Effects of Molecular

15

Size and Symmetry on Phase Transitions to Ionic Plastic Crystals, Chem. Eur. J. 22 (2016)

15725–15732, https://doi.org/10.1002/chem.201603170.

[11] O. Yamamuro, Y. Minamimoto, Y. Inamura, S. Hayashi, H. Hamaguchi, Heat capacity

and glass transition of an ionic liquid 1-butyl-3-methylimidazolium chloride, Chem. Phys. Lett.

423 (2006) 371–375, https://doi.org/10.1016/j.cplett.2006.03.074.

[12] a) D. Zhao, Z. Fei, R. Scopelliti, P. J. Dyson, Synthesis and Characterization of Ionic

Liquids Incorporating the Nitrile Functionality, Inorg. Chem. 43 (2004) 2197–2205,

https://doi.org/10.1021/ic034801p.

b) Z. Fei, D. Zhao, D. Pieraccini, W. H. Ang, T. J. Geldbach, R. Scopelliti, C. Chiappe, P. J.

Dyson, Development of Nitrile-Functionalized Ionic Liquids for C−C Coupling Reactions: Implication of Carbene and Nanoparticle Catalysts, Organometallics 26 (2007) 1588–1598,

https://doi.org/10.1021/om060950e.

[13] J. Neumann, B. Golub, L.-M. Odebrecht, R. Ludwig, D. Paschek, Revisiting imidazolium

based ionic liquids: effect of the conformation bias of the [NTf2] anion studied by molecular

dynamics

simulations,

J.

Chem.

Phys.,

148

(2018)

193828–193829,

https://doi.org/10.1063/1.5013096.

[14] G. M. Sheldrick, A Short History of SHELX. Acta Crystallogr., Sect. A: Found.

Crystallogr. 64 (2008) 112–122, https://doi.org/10.1107/S0108767307043930.

16

Supporting Information

Thermal properties and crystal structures of ruthenium-containing

photoreactive ionic liquids with short substituents

Ryo Sumitani,a Yusuke Funasako,a† Tomoyuki Mochida*a,b

Department of Chemistry, Graduate School of Science, Kobe University, Rokkodai, Nada,

Kobe, Hyogo 657-8501, Japan

Center for Membrane Technology, Kobe University, Rokkodai, Nada, Kobe, Hyogo

657-8501, Japan

Fig. S1. DSC traces of 1a in the low temperature region recorded at a scan rate of 5 °C min–1,

where Tc indicates the phase transition peak.

Fig. S2. Molecular structures of cation B and anion B in 1a at −173 °C. The hydrogen atoms

were omitted for clarity.

Fig. S3. Molecular structures of cation B and anion B in 1b at −173 °C. The hydrogen atoms

were omitted for clarity. The part displayed in gray represents the disordered moieties.

Table S1.

Crystallographic parameters for 1a and 1b.

1a (−173 °C)

1a (0 °C)

1b (−173 °C)

Empirical formula

C23H26F2N4O7RuS2

C23H26F2N4O7RuS2

C25H26F6N4O7RuS2

Formula weight

673.67

673.67

773.69

Crystal system

Monoclinic

Monoclinic

Orthorhombic

Space group

P21/n

P21/n

Pca21

a (Å)

15.653(2)

7.9875(4)

19.279(4)

b (Å)

18.163(2)

18.2176(9)

7.0227(15)

c (Å)

20.218(3)

18.8031(9)

45.241(10)

 (°)

90

90

90

 (°)

112.705(2)

90.2270(10)

90

 (°)

90.

90

90

V (Å3)

5302.6(12)

2736.1(2)

6125(2)

dcalcd (mg m–3)

1.688

1.635

1.678

T (K)

100

273

100

 (mm–1)

0.814

0.789

0.734

F(000)

2736.0

1368.0

3120.0

Reflections collected

30745

15866

32824

Rint

0.0342

0.0249

0.0278

Goodness-of-fit

1.029

1.023

1.107

R1, wR2 [I > 2(I)]

0.0402, 0.0981

0.0368, 0.0956

0.0527, 0.1218

R1, wR2 (all data)

0.064, 0.1112

0.0488, 0.1037

0.0563, 0.1218

Sample size (m)

86 × 62 × 36

86 × 62 × 36

119 × 107 × 25

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る