リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Molecular mechanism of viral RNA recognition and MDA5 activation through LGP2」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Molecular mechanism of viral RNA recognition and MDA5 activation through LGP2

Duic, Ivana 京都大学 DOI:10.14989/doctor.k23336

2021.03.23

概要

RIG-I, MDA5 and LGP2 belong to a family of RNA helicases (collectively termed as RIG-I-Like Receptor, RLR) functioning as a critical sensor for invading and replicating viral RNA. Upon sensing viral double stranded (ds)RNA, RLR triggers antiviral responses and promotes later acquired immunity against viruses. The central helicase domain is conserved in RLR and exhibits ATPase activity upon RNA binding. Genetic deletion analyses revealed that RIG-I and MDA5 sense short (<1,000 bp) and long (>1,000 bp) viral dsRNA, respectively. RIG-I and MDA5 share a N- terminal domain (Caspase Activation and Recruitment Domain, CARD), acting as a molecular switch for signaling. Crystal structure and molecular biological analyses suggest that CARD is masked in inactive state but exposed upon dsRNA detection. Although LGP2 lacks CARD, knockout studies suggest that it participates in the positive regulation by RIG-I and MDA5.

The applicant aimed to delineate the mechanism underlying viral dsRNA sensing by MDA5 and its cooperation with LGP2. MDA5 bound long dsRNA by forming a fiber like polymer along the length of dsRNA by atomic force microscope observation as reported previously by electron microscopic observation. In the presence of LGP2, the fiber formation was highly accelerated. By using molecular tag for LGP2, the applicant revealed that single LGP2 molecule was incorporated in every 5-9 MDA5 molecules in the polymer. Interestingly, the fiber dissociated upon addition of ATP. To analyze fiber formation and its dissociation, the applicant fractionated MDA5 fiber by size exclusion chromatography and revealed that the fiber dissociation was enhanced in the presence of both LGP2 and ATP. Next, to analyze CARD exposure in the fiber and the dissociated MDA5, the samples were subjected to limited trypsin digestion followed by SDS-PAGE analysis. By analyzing the digestion products, it was revealed that CARD of MDA5 was exposed upon dsRNA binding and the exposure was notably enhanced in the presence of LGP2. Furthermore, the dissociated MDA5/LGP2 complex by ATP hydrolysis was isolated and analyzed for CARD exposure. The result strongly suggested that MDA5 kept exposed CARD after dissociation from dsRNA, however CARD of non-activated MDA5 was masked. In summary, LGP2 is MDA5 nucleator, resulting in rapid viral RNA recognition by fiber formation. LGP2 is incorporated into the MDA5-RNA fiber. LGP2 enhances MDA5 conformational changes, promoting the exposure of CARD and dissociation through ATP hydrolysis. The conformational changes are preserved after dissociation from dsRNA and mediate efficient signal transduction in the cytoplasm.

参考文献

1. Yoneyama,M., Kikuchi,M., Natsukawa,T., Shinobu,N., Imaizumi,T., Miyagishi,M., Taira,K., Akira,S. and Fujita,T. (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol., 5, 730–737.

2. Kawai,T. and Akira,S. (2009) The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol., 21, 317–337.

3. Onomoto,K., Onoguchi,K., Takahasi,K. and Fujita,T. (2010) Type I interferon production induced by RIG-I-like receptors. J. Interf. Cytokine Res., 30, 875– 881.

4. Kato,H., Takeuchi,O., Sato,S., Yoneyama,M., Yamamoto,M., Matsui,K., Uematsu,S., Jung,A., Kawai,T., Ishii,K.J., et al. (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature, 441, 101– 105.

5. Wies,E., Wang,M.K., Maharaj,N.P., Chen,K., Zhou,S., Finberg,R.W. and Gack,M.U. (2013) Dephosphorylation of the RNA Sensors RIG-I and MDA5 by the Phosphatase PP1 Is Essential for Innate Immune Signaling. Immunity, 38, 437–449.

6. Kumar,H., Kawai,T., Kato,H., Sato,S., Takahashi,K., Coban,C., Yamamoto,M., Uematsu,S., Ishii,K.J., Takeuchi,O., et al. (2006) Essential role of IPS-1 in innate immune responses against RNA viruses. J. Exp. Med., 203, 1795–1803.

7. Liu,S., Chen,J., Cai,X., Wu,J., Chen,X., Wu,Y.-T., Sun,L. and Chen,Z.J. (2013)

MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. Elife, 2, 1–24.

8. Ramos,H.J. and Gale,M. (2011) RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity. Curr. Opin. Virol., 1, 167–176.

9. Myong,S., Cui,S., Cornish,P. V, Kirchhofer,A., Gack,M.U., Jung,J.U., Hopfner,K.-P. and Ha,T. (2009) Cytosolic Viral Sensor RIG-I Is a 5’- Triphosphate–Dependent Translocase on Double-Stranded RNA. Science (80-. )., 323, 1070 LP – 1074.

10. Deddouche,S., Goubau,D., Rehwinkel,J., Chakravarty,P., Begum,S., Maillard,P. V., Borg,A., Matthews,N., Feng,Q., van Kuppeveld,F.J.M., et al. (2014) Identification of an LGP2-associated MDA5 agonist in picornavirus- infected cells. Elife, 2014, 1–20.

11. Parisien,J.-P., Bamming,D., Komuro,A., Ramachandran,A., Rodriguez,J.J., Barber,G., Wojahn,R.D. and Horvath,C.M. (2009) A Shared Interface Mediates Paramyxovirus Interference with Antiviral RNA Helicases MDA5 and LGP2. J. Virol., 83, 7252–7260.

12. Komuro,A. and Horvath,C.M. (2006) RNA- and Virus-Independent Inhibition of Antiviral Signaling by RNA Helicase LGP2. J. Virol., 80, 12332–12342.

13. Yoneyama,M., Kikuchi,M., Matsumoto,K., Imaizumi,T., Miyagishi,M., Taira,K., Foy,E., Loo,Y.-M., Gale,M., Akira,S., et al. (2005) Shared and Unique Functions of the DExD/H-Box Helicases RIG-I, MDA5, and LGP2 in Antiviral Innate Immunity. J. Immunol., 175, 2851–2858.

14. Bamming,D. and Horvath,C.M. (2009) Regulation of signal transduction by enzymatically inactive antiviral RNA helicase proteins MDA5, RIG-I, and LGP2.

J. Biol. Chem., 284, 9700–9712.

15. Satoh,T., Kato,H., Kumagai,Y., Yoneyama,M., Sato,S., Matsushita,K., Tsujimura,T., Fujita,T., Akira,S. and Takeuchi,O. (2010) LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc. Natl. Acad. Sci. U. S. A., 107, 1512–1517.

16. Bruns,A.M., Pollpeter,D., Hadizadeh,N., Myong,S., Marko,J.F. and Horvath,C.M. (2013) ATP hydrolysis enhances RNA recognition and antiviral signal transduction by the innate immune sensor, laboratory of genetics and physiology 2 (LGP2). J. Biol. Chem., 288, 938–946.

17. Pippig,D.A., Hellmuth,J.C., Cui,S., Kirchhofer,A., Lammens,K., Lammens,A., Schmidt,A., Rothenfusser,S. and Hopfner,K.-P. (2009) The regulatory domain of the RIG-I family ATPase LGP2 senses double-stranded RNA. Nucleic Acids Res., 37, 2014—2025.

18. Ramanathan,A., Devarkar,S.C., Jiang,F., Miller,M.T., Khan,A.G., Marcotrigiano,J. and Patel,S.S. (2016) The autoinhibitory CARD2-Hel2i Interface of RIG-I governs RNA selection. Nucleic Acids Res., 44, 896–909.

19. Luo,D., Ding,S.C., Vela,A., Kohlway,A., Lindenbach,B.D. and Pyle,A.M. (2011) Structural insights into RNA recognition by RIG-I. Cell, 147, 409–422.

20. Kowalinski,E., Lunardi,T., McCarthy,A.A., Louber,J., Brunel,J., Grigorov,B., Gerlier,D. and Cusack,S. (2011) Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell, 147, 423–435.

21. Zhang,M., Wu,X., Lee,A.J., Jin,W., Chang,M., Wright,A., Imaizumi,T. and Sun,S.C. (2008) Regulation of IκB kinase-related kinases and antiviral responses by tumor suppressor CYLD. J. Biol. Chem., 283, 18621–18626.

22. Bruns,A.M. and Horvath,C.M. (2012) Activation of RIG-I-like receptor signal transduction. Crit. Rev. Biochem. Mol. Biol., 47, 194–206.

23. Peisley,A., Wu,B., Yao,H., Walz,T. and Hur,S. (2013) RIG-I Forms Signaling- Competent Filaments in an ATP-Dependent, Ubiquitin-Independent Manner. Mol. Cell, 51, 573–583.

24. Wu,B., Peisley,A., Richards,C., Yao,H., Zeng,X., Lin,C., Chu,F., Walz,T. and Hur,S. (2013) Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell, 152, 276–289.

25. Berke,I.C. and Modis,Y. (2012) MDA5 cooperatively forms dimers and ATP- sensitive filaments upon binding double-stranded RNA. EMBO J., 31, 1714– 1726.

26. Rothenfusser,S., Goutagny,N., DiPerna,G., Gong,M., Monks,B.G., Schoenemeyer,A., Yamamoto,M., Akira,S. and Fitzgerald,K.A. (2005) The RNA Helicase Lgp2 Inhibits TLR-Independent Sensing of Viral Replication by Retinoic Acid-Inducible Gene-I. J. Immunol., 175, 5260–5268.

27. Myong,S., Cui,S., Cornish,P. V, Kirchhofer,A., Gack,M.U., Jung,J.U., Hopfner,K.-P. and Ha,T. (2009) Cytosolic Viral Sensor RIG-I Is a 5’- Triphosphate–Dependent Translocase on Double-Stranded RNA. Science (80-. )., 323, 1070 LP – 1074.

28. Anchisi,S., Guerra,J. and Garcin,D. (2015) RIG-I atpase activity and discrimination of self-RNA versus non-self-RNA. MBio, 6, 1–12.

29. Louber,J., Brunel,J., Uchikawa,E., Cusack,S. and Gerlier,D. (2015) Kinetic discrimination of self/non-self RNA by the ATPase activity of RIG-I and MDA5. BMC Biol., 13, 11–14.

30. Rawling,D.C., Fitzgerald,M.E. and Pyle,A.M. (2015) Establishing the role of ATP for the function of the RIG-I innate immune sensor. Elife, 4, 1–21.

31. Lässig,C., Matheisl,S., Sparrer,K.M.J., Mann,C.C. d. O., Moldt,M., Patel,J.R., Goldeck,M., Hartmann,G., García-Sastre,A., Hornung,V., et al. (2015) ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA. Elife, 4, 1–20.

32. Fitzgerald,M.E., Rawling,D.C., Potapova,O., Ren,X., Kohlway,A. and Pyle,A.M. (2017) Selective RNA targeting and regulated signaling by RIG-I is controlled by coordination of RNA and ATP binding. Nucleic Acids Res., 45, 1442–1454.

33. Peisley,A., Lin,C., Wu,B., Orme-Johnson,M., Liu,M., Walz,T. and Hur,S. (2011) Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition. Proc. Natl. Acad. Sci. U. S. A., 108, 21010–21015.

34. Oda,H., Nakagawa,K., Abe,J., Awaya,T., Funabiki,M., Hijikata,A., Nishikomori,R., Funatsuka,M., Ohshima,Y., Sugawara,Y., et al. (2014) Aicardi- goutières syndrome is caused by IFIH1 mutations. Am. J. Hum. Genet., 95, 121–125.

35. Miner,J.J. and Diamond,M.S. (2014) MDA5 and autoimmune disease. Nat. Genet., 46, 418–419.

36. Jang,M.A., Kim,E.K., Now,H., Nguyen,N.T.H., Kim,W.J., Yoo,J.Y., Lee,J.,

Jeong,Y.M., Kim,C.H., Kim,O.H., et al. (2015) Mutations in DDX58, which encodes RIG-I, Cause atypical singleton-merten syndrome. Am. J. Hum. Genet., 96, 266–274.

37. Suthar,M.S., Ramos,H.J., Brassil,M.M., Netland,J., Chappell,C.P., Blahnik,G., McMillan,A., Diamond,M.S., Clark,E.A., Bevan,M.J., et al. (2012) The RIG-I-like Receptor LGP2 Controls CD8+ T Cell Survival and Fitness. Immunity, 37, 235– 248.

38. Widau,R.C., Parekh,A.D., Ranck,M.C., Golden,D.W., Kumar,K.A., Sood,R.F., Pitroda,S.P., Liao,Z., Huang,X., Darga,T.E., et al. (2014) RIG-I-like receptor LGP2 protects tumor cells from ionizing radiation. Proc. Natl. Acad. Sci. U. S. A., 111, 3–10.

39. Takahashi,T., Nakano,Y., Onomoto,K., Yoneyama,M. and Ui-Tei,K. (2020) LGP2 virus sensor enhances apoptosis by upregulating apoptosis regulatory genes through TRBP-bound miRNAs during viral infection. Nucleic Acids Res., 48, 1494–1507.

40. Baechler,E.C., Batliwalla,F.M., Karypis,G., Gaffney,P.M., Ortmann,W.A., Espe,K.J., Shark,K.B., Grande,W.J., Hughes,K.M., Kapur,V., et al. (2003) Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl. Acad. Sci. U. S. A., 100, 2610–2615.

41. Banchereau,R., Hong,S., Cantarel,B., Baldwin,N., Baisch,J., Edens,M., Cepika,A.M., Acs,P., Turner,J., Anguiano,E., et al. (2016) Erratum: Personalized immunomonitoring uncovers molecular networks that stratify lupus patients ((Cell (2016) 165 (551-565)). Cell, 165, 1548–1550.

42. Van Baarsen,L.G.M., Bos,W.H., Rustenburg,F., Van Der Pouw Kraan,T.C.T.M., Wolbink,G.J.J., Dijkmans,B.A.C., Van Schaardenburg,D. and Verweij,C.L. (2010) Gene expression profiling in autoantibody-positive patients with arthralgia predicts development of arthritis. Arthritis Rheum., 62, 694–704.

43. Tan,F.K., Zhou,X., Mayes,M.D., Gourh,P., Guo,X., Marcum,C., Jin,L. and Arnett,F.C. (2006) Signatures of differentially regulated interferon gene expression and vasculotrophism in the peripheral blood cells of systemic sclerosis patients. Rheumatology, 45, 694–702.

44. Nestle,F.O., Conrad,C., Tun-Kyi,A., Homey,B., Gombert,M., Boyman,O., Burg,G., Liu,Y.J. and Gilliet,M. (2005) Plasmacytoid predendritic cells initiate psoriasis through interferon-α production. J. Exp. Med., 202, 135–143.

45. Rabinovitch,A. and Suarez-Pinzon,W.L. (2003) Role of Cytokines in the Pathogenesis of Autoimmune Diabetes Mellitus. Rev. Endocr. Metab. Disord., 4, 291–299.

46. Ruiz-Riol,M., Barnils,M. del P.A., Colobran Oriol,R., Pla,A.S., Borràs Serres,F.- E., Lucas-Martin,A., Martínez Cáceres,E.M. and Pujol-Borrell,R. (2011) Analysis of the cumulative changes in Graves’ disease thyroid glands points to IFN signature, plasmacytoid DCs and alternatively activated macrophages as chronicity determining factors. J. Autoimmun., 36, 189—200.

47. Casrouge,A., Zhang,S.-Y., Eidenschenk,C., Jouanguy,E., Puel,A., Yang,K., Alcais,A., Picard,C., Mahfoufi,N., Nicolas,N., et al. (2006) Herpes Simplex Virus Encephalitis in Human UNC-93B Deficiency. Science (80-. )., 314, 308 LP – 312.

48. Dupuis,S., Jouanguy,E., Al-Hajjar,S., Fieschi,C., Al-Mohsen,I.Z., Al-Jumaah,S., Yang,K., Chapgier,A., Eidenschenk,C., Eid,P., et al. (2003) Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat. Genet., 33, 388—391.

49. Minegishi,Y., Saito,M., Morio,T., Watanabe,K., Agematsu,K., Tsuchiya,S., Takada,H., Hara,T., Kawamura,N., Ariga,T., et al. (2006) Human Tyrosine Kinase 2 Deficiency Reveals Its Requisite Roles in Multiple Cytokine Signals Involved in Innate and Acquired Immunity. Immunity, 25, 745–755.

50. Jouanguy,E., Zhang,S.-Y., Chapgier,A., Sancho-Shimizu,V., Puel,A., Picard,C., Boisson-Dupuis,S., Abel,L. and Casanova,J.-L. (2007) Human primary immunodeficiencies of type I interferons. Biochimie, 89, 878—883.

51. Rice,G.I., Kasher,P.R., Forte,G.M.A., Mannion,N.M., Greenwood,S.M., Szynkiewicz,M., Dickerson,J.E., Bhaskar,S.S., Zampini,M., Briggs,T.A., et al. (2012) Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature. Nat. Genet., 44, 1243–1248.

52. Li,Y., Banerjee,S., Goldstein,S.A., Dong,B., Gaughan,C., Rath,S., Donovan,J., Korennykh,A., Silverman,R.H. and Weiss,S.R. (2017) Ribonuclease l mediates the cell-lethal phenotype of double-stranded RNA editing enzyme ADAR1 deficiency in a human cell line. Elife, 6, 1–18.

53. Malathi,K., Dong,B., Gale,M. and Silverman,R.H. (2007) Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature, 448, 816– 819.

54. Bonnevie-Nielsen,V., Field,L.L., Lu,S., Zheng,D.J., Li,M., Martensen,P.M., Nielsen,T.B., Beck-Nielsen,H., Lau,Y.L. and Pociot,F. (2005) Variation in antiviral 2′,5′-oligoadenylate synthetase (2′5′AS) enzyme activity is controlled by a single-nucleotide polymorphism at a splice-acceptor site in the OAS1 gene. Am. J. Hum. Genet., 76, 623–633.

55. Funabiki,M., Kato,H., Miyachi,Y., Toki,H., Motegi,H., Inoue,M., Minowa,O., Yoshida,A., Deguchi,K., Sato,H., et al. (2014) Autoimmune Disorders Associated with Gain of Function of the Intracellular Sensor MDA5. Immunity, 40, 199–212.

56. Gack,M.U., Kirchhofer,A., Shin,Y.C., Inn,K.S., Liang,C., Cui,S., Myong,S., Ha,T., Hopfner,K.P. and Jung,J.U. (2008) Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction. Proc. Natl. Acad. Sci. U. S. A., 105, 16743–16748.

57. Gack,M.U., Shin,Y.C., Joo,C.-H., Urano,T., Liang,C., Sun,L., Takeuchi,O., Akira,S., Chen,Z., Inoue,S., et al. (2007) TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature, 446, 916–920.

58. Jiang,X., Kinch,L.N., Brautigam,C.A., Chen,X., Du,F., Grishin,N. V. and Chen,Z.J. (2012) Ubiquitin-Induced Oligomerization of the RNA Sensors RIG-I and MDA5 Activates Antiviral Innate Immune Response. Immunity, 36, 959– 973.

59. Lang,X., Tang,T., Jin,T., Ding,C., Zhou,R. and Jiang,W. (2017) TRIM65- catalized ubiquitination is essential for MDA5-mediated antiviral innate immunity. J. Exp. Med., 214, 459–473.

60. Arimoto,K.I., Takahashi,H., Hishiki,T., Konishi,H., Fujita,T. and Shimotohno,K. (2007) Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc. Natl. Acad. Sci. U. S. A., 104, 7500–7505.

61. Onomoto,K., Jogi,M., Yoo,J.S., Narita,R., Morimoto,S., Takemura,A., Sambhara,S., Kawaguchi,A., Osari,S., Nagata,K., et al. (2012) Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PLoS One, 7.

62. Hajake,T., Matsuno,K., M. Kasumba,D., Oda,H., Kobayashi,M., Miyata,N., Shinji,M., Kogure,A., Kasajima,N., Okamatsu,M., et al. (2019) Broad and systemic immune-modulating capacity of plant-derived dsRNA. Int. Immunol., 10.1093/intimm/dxz054.

63. Childs,K.S., Randall,R.E. and Goodbourn,S. (2013) LGP2 Plays a Critical Role in Sensitizing mda-5 to Activation by Double-Stranded RNA. PLoS One, 8.

64. Berke,I.C., Yu,X., Modis,Y. and Egelman,E.H. (2012) MDA5 assembles into a polar helical filament on dsRNA. Proc. Natl. Acad. Sci. U. S. A., 109, 18437– 18441.

65. Bruns,A.M., Leser,G.P., Lamb,R.A. and Horvath,C.M. (2014) The Innate Immune Sensor LGP2 Activates Antiviral Signaling by Regulating MDA5-RNA Interaction and Filament Assembly. Mol. Cell, 55, 771–781.

66. Suzuki,Y., Gilmore,J.L., Yoshimura,S.H., Henderson,R.M., Lyubchenko,Y.L. and Takeyasu,K. (2011) Visual analysis of concerted cleavage by type IIF restriction enzyme SfiI in subsecond time region. Biophys. J., 101, 2992–2998.

67. Yokokawa,M., Wada,C., Ando,T., Sakai,N., Yagi,A., Yoshimura,S.H. and Takeyasu,K. (2006) Fast-scanning atomic force microscopy reveals the ATP/ADP-dependent conformational changes of GroEL. EMBO J., 25, 4567– 4576.

68. Yoshimura,S.H., Ohniwa,R.L., Sato,M.H., Matsunaga,F., Kobayashi,G., Uga,H., Wada,C. and Takeyasu,K. (2000) DNA phase transition promoted by replication initiator. Biochemistry, 39, 9139–9145.

69. Yu,Q., Qu,K. and Modis,Y. (2018) Cryo-EM Structures of MDA5-dsRNA Filaments at Different Stages of ATP Hydrolysis. Mol. Cell, 72, 999-1012.e6.

70. Shah,N., Beckham,S.A., Wilce,J.A. and Wilce,M.C.J. (2018) Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Nucleic Acids Res., 46, 3169–3186.

71. Berke,I.C., Li,Y. and Modis,Y. (2013) Structural basis of innate immune recognition of viral RNA. Cell. Microbiol., 15, 386–394.

72. Patel,J.R., Jain,A., Chou,Y.Y., Baum,A., Ha,T. and García-Sastre,A. (2013) ATPase-driven oligomerization of RIG-I on RNA allows optimal activation of type-I interferon. EMBO Rep., 14, 780–787.

73. Parisien,J., Lenoir,J.J., Mandhana,R., Rodriguez,K.R., Qian,K., Bruns,A.M. and Horvath,C.M. (2018) RNA sensor LGP 2 inhibits TRAF ubiquitin ligase to negatively regulate innate immune signaling . EMBO Rep., 19.

74. Hikima,J. ichi, Yi,M.K., Ohtani,M., Jung,C.Y., Kim,Y.K., Mun,J.Y., Kim,Y.R., Takeyama,H., Aoki,T. and Jung,T.S. (2012) LGP2 Expression is Enhanced by Interferon Regulatory Factor 3 in Olive Flounder, Paralichthys olivaceus. PLoS One, 7.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る