リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ライブイメージングを基盤とした細胞膜接着因子の新規解析法の開発と受精因子群の解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ライブイメージングを基盤とした細胞膜接着因子の新規解析法の開発と受精因子群の解析

中島, 耕大 名古屋大学

2022.08.09

概要

雌雄配偶子の接着・融合は、受精の中心的な過程であるが、配偶子がどのような機序で接着・ 融合を遂げるのか未だ不明な点が多い。いくつかの種で接着因子や融合因子といった受精因子 群は同定されはじめているが、それらのパートナー分子の存在や、どのような分子間相互作用 を経て細胞膜の接着や融合が起こるのかは、ほとんど明らかとなっていない。そこでライブイ メージングを基盤とした接着因子を解析する実験系 (Live Imaging-based Adhesion Molecule assay; LIAM assay)を開発した。まず、Valansi ら (2017)が確立した、動物培養細胞への融合因子導入に よる細胞融合系に着目し、ライブイメージングによって、細胞融合を可視化した。そして、融 合因子の代わりに、細胞間接着を調べるために、コントロールとして E-cadherin を導入したとこ ろ、接触面で分子の集積が見られた。次に、配偶子間接着因子ペアの IZUMO1・JUNO を導入し たところ、接触面で一時的な分子の集積が検出された。また、集積した IZUMO1 及び JUNO は、 隣接した細胞へと移行した。集積と移行は、IZUMO1 と JUNO の相互作用に重要なアミノ酸に 依存することがわかった。さらに、LIAM assay を用いて、マウス、ヒト、ハムスター、ブタの IZUMO1・JUNO の種特異性を調べた。IZUMO1・JUNO の集積及び移行は、同種の組み合わせ で観察され、異種でも特定の組み合わせで観察された。このことから、IZUMO1・JUNO は、主 観でも互換性がある場合があることが示唆された。本研究の「装置を細胞内で組み上げる構成 的なアプローチ」は、あらゆる生物の受精因子の解析に応用可能であり、動植物を広く扱った 研究を展開することが可能となるため、真核生物の雌雄の配偶子が受精においてどのような分 子間の時空間的相互作用により接着・融合するのか解明が進むことが期待される。

この論文で使われている画像

参考文献

Avella, M.A., Baibakov, B., and Dean, J. (2014). A single domain of the ZP2 zona pellucida protein mediates gamete recognition in mice and humans. J. Cell Biol. 205: 801–809.

Avinoam, O., Fridman, K., Valansi, C., Abutbul, I., Zeev-Ben-Mordehai, T., Maurer, U.E., Sapir, A., Danino, D., Grünewald, K., White, J.M., and Podbilewicz, B. (2011). Conserved eukaryotic fusogens can fuse viral envelopes to cells. Science 332: 589–592.

Aydin, H., Sultana, A., Li, S., Thavalingam, A., and Lee, J.E. (2016). Molecular architecture of the human sperm IZUMO1 and egg JUNO fertilization complex. Nature 534: 562–565.

Barbaux, S., Ialy-Radio, C., Chalbi, M., Dybal, E., Homps-Legrand, M., Do Cruzeiro, M., Vaiman, D., Wolf, J.P., and Ziyyat, A. (2020). Sperm SPACA6 protein is required for mammalian Sperm-Egg Adhesion/Fusion. Sci. Rep. 10: 1–15.

Barraud-Lange, V., Boissonnas, C.C., Serres, C., Auer, J., Schmitt, A., Lefèvre, B., Wolf, J.P., and Ziyyat, A. (2012). Membrane transfer from oocyte to sperm occurs in two CD9- independent ways that do not supply the fertilising ability of Cd9-deleted oocytes. Reproduction 144: 53–66.

Bettadapur, A., Miller, H.W., and Ralston, K.S. (2020). Biting Off What Can Be Chewed: Trogocytosis in Health, Infection, and Disease. Infect. Immun. 88: e00930-19.

Bianchi, E., Doe, B., Goulding, D., and Wright, G.J. (2014). Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature 508: 483–487.

Bianchi, E. and Wright, G.J. (2015). Cross-species fertilization: The hamster egg receptor, Juno, binds the human sperm ligand, Izumo1. Philos. Trans. R. Soc. B Biol. Sci. 370: 1–4.

Bleckmann, A., Alter, S., and Dresselhaus, T. (2014). The beginning of a seed: regulatory mechanisms of double fertilization. Front. Plant Sci. 5: 452.

Bökel, C., Dass, S., Wilsch-Bräuninger, M., and Roth, S. (2006). Drosophila Cornichon acts as cargo receptor for ER export of the TGFα-like growth factor Gurken. Development 133: 459–470.

Christian, E.A., Kahle, K.M., Mattia, K., Puffer, B.A., Pfaff, J.M., Miller, A., Paes, C., Davidson, E., and Doranz, B.J. (2013). Atomic-level functional model of dengue virus Envelope protein infectivity. Proc. Natl. Acad. Sci. U. S. A. 110: 18662–18667.

Cole, E.S., Cassidy-Hanley, D., Fricke Pinello, J., Zeng, H., Hsueh, M., Kolbin, D., Ozzello, C., Giddings, T., Winey, M., and Clark, T.G. (2014). Function of the male-gamete- specific fusion protein HAP2 in a seven-sexed ciliate. Curr. Biol. 24: 2168–2173.

Fédry, J. et al. (2017). The Ancient Gamete Fusogen HAP2 Is a Eukaryotic Class II Fusion Protein. Cell 168: 904–915.

Fogel, A.I., Akins, M.R., Krupp, A.J., Stagi, M., Stein, V., and Biederer, T. (2007). SynCAMs organize synapses through heterophilic adhesion. J. Neurosci. 27: 12516–12530.

Fujihara, Y., Herberg, S., Blaha, A., Panser, K., Kobayashi, K., Larasati, T., Novatchkova, M., Theussl, H.C., Olszanska, O., Ikawa, M., and Pauli, A. (2021). The conserved fertility factor SPACA4/Bouncer has divergent modes of action in vertebrate fertilization. Proc. Natl. Acad. Sci. U. S. A. 118.

Fujihara, Y., Lu, Y., Noda, T., Oji, A., Larasati, T., Kojima-Kita, K., Yu, Z., Matzuk, R.M., Matzuk, M.M., and Ikawa, M. (2020). Spermatozoa lacking Fertilization Influencing Membrane Protein (FIMP) fail to fuse with oocytes in mice. Proc. Natl. Acad. Sci. U. S. A. 117: 9393–9400.

Herberg, S., Gert, K.R., Schleiffer, A., and Pauli, A. (2018). The Ly6/uPAR protein Bouncer is necessary and sufficient for species-specific fertilization. Science 361: 1029–1033.

Inoue, N., Hagihara, Y., and Wada, I. (2021). Evolutionarily conserved sperm factors, dcst1 and dcst2, are required for gamete fusion. Elife 10: 1–12.

Inoue, N., Hagihara, Y., Wright, D., Suzuki, T., and Wada, I. (2015). Oocyte-triggered dimerization of sperm IZUMO1 promotes sperm-egg fusion in mice. Nat. Commun. 6: 1– 12.

Inoue, N., Ikawa, M., Isotani, A., and Okabe, M. (2005). The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434: 234–238.

Jin, H., Carlile, C., Nolan, S., and Grote, E. (2004). Prm1 prevents contact-dependent lysis of yeast mating pairs. Eukaryot. Cell 3: 1664–1673.

Katsamba, P., Carroll, K., Ahlsen, G., Bahna, F., Vendome, J., Posy, S., Rajebhosale, M., Price, S., Jessell, T.M., Ben-Shaul, A., Shapiro, L., and Honig, B.H. (2009). Linking molecular affinity and cellular specificity in cadherin-mediated adhesion. Proc. Natl. Acad. Sci. U. S. A. 106: 11594–11599.

Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., and Sternberg, M.J. (2016). The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10: 845–858.

Klein, D.E., Choi, J.L., and Harrison, S.C. (2013). Structure of a Dengue Virus Envelope Protein Late-Stage Fusion. 87: 2287–2293.

Krogh, A., Larsson, B., Von Heijne, G., and Sonnhammer, E.L.L. (2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305: 567–580.

Lamas-Toranzo, I., Hamze, J.G., Bianchi, E., Fernández-Fuertes, B., Pérez-Cerezales, S., Laguna-Barraza, R., Fernández-González, R., Lonergan, P., Gutiérrez-Adán, A., Wright, G.J., Jiménez-Movilla, M., and Bermejo-álvarez, P. (2020). TMEM95 is a sperm membrane protein essential for mammalian fertilization. Elife 9: 1–18.

Liu, Y., Tewari, R., Ning, J., Blagborough, A.M., Garbom, S., Pei, J., Grishin, N. V., Steele, R.E., Sinden, R.E., Snell, W.J., and Billker, O. (2008). The conserved plant sterility gene. Genes Dev. 22: 1051–1068.

Mayr E (1942) Systematics and the origin of species from the viewpoint of a

zoologist. Columbia Univ.Press, New York

Matsukawa, H., Akiyoshi-Nishimura, S., Zhang, Q., Luján, R., Yamaguchi, K., Goto, H., Yaguchi, K., Hashikawa, T., Sano, C., Shigemoto, R., Nakashiba, T., and Itohara, S. (2014). Netrin-G/NGL complexes encode functional synaptic diversification. J. Neurosci. 34: 15779–15792.

Misamore, M.J., Gupta, S., and Snell, W.J. (2003). The Chlamydomonas Fus1 protein is present on the mating type plus fusion organelle and required for a critical membrane adhesion event during fusion with minus gametes. Mol. Biol. Cell 14: 2530–2542.

Miyado, K., Yamada, G., Yamada, S., Hasuwa, H., Nakamura, Y., Ryu, F., Suzuki, K., Kosai, K., Inoue, K., Ogura, A., Okabe, M., and Mekada, E. (2000). Requirement of CD9 on the egg plasma membrane for fertilization. Science 287: 321–324.

Modis, Y., Ogata, S., Clements, D., and Harrison, S.C. (2004). Structure of the dengue virus envelope protein after membrane fusion. Nature 427: 313–319.

Mohler, W.A., Shemer, G., Del Campo, J.J., Valansi, C., Opoku-Serebuoh, E., Scranton, V., Assaf, N., White, J.G., and Podbilewicz, B. (2002). The type 1 membrane protein EFF-1 is essential for development cell fusion. Dev. Cell 2: 355–362.

Mori, T., Igawa, T., Tamiya, G., Miyagishima, S., and Berger, F. (2014). Gamete Attachment Requires GEX2 for Successful Fertilization in Arabidopsis. Curr. Biol. 24: 170–175.

Mori, T., Kuroiwa, H., Higashiyama, T., and Kuroiwa, T. (2006). GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nat. Cell Biol. 8: 64–71.

Nagafuchi, A., Shirayoshi, Y., Okazaki, K., Yasuda, K., and Takeichi, M. (1987). Transformation of cell adhesion properties by exogenously introduced E-cadherin cDNA. Nature 329: 341–343.

Nishihara, H., Hasegawa, M., and Okada, N. (2006). Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions. Proc. Natl. Acad. Sci. U. S. A. 103: 9929–9934.

Noda, T., Lu, Y., Fujihara, Y., Oura, S., Koyano, T., Kobayashi, S., Matzuk, M.M., and Ikawa, M. (2020). Sperm proteins SOF1, TMEM95, and SPACA6 are required for sperm- oocyte fusion in mice. Proc. Natl. Acad. Sci. U. S. A. 117.

Ohto, U., Ishida, H., Krayukhina, E., Uchiyama, S., Inoue, N., and Shimizu, T. (2016). Structure of IZUMO1-JUNO reveals sperm-oocyte recognition during mammalian fertilization. Nature 534: 566–9.

Overholtzer, M., Mailleux, A.A., Mouneimne, G., Normand, G., Schnitt, S.J., King, R.W., Cibas, E.S., and Brugge, J.S. (2007). A Nonapoptotic Cell Death Process, Entosis, that Occurs by Cell-in-Cell Invasion. Cell 131: 966–979.

Pérez-Vargas, J., Krey, T., Valansi, C., Avinoam, O., Haouz, A., Jamin, M., Raveh-Barak, H., Podbilewicz, B., and Rey, F.A. (2014). Structural basis of eukaryotic cell-cell fusion. Cell 157: 407–419.

Petersen, T.N., Brunak, S., von Heijne, G., and Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8: 785–786.

Pinello, J.F., Lai, A.L., Millet, J.K., Cassidy-Hanley, D., Freed, J.H., and Clark, T.G. (2017). Structure-Function Studies Link Class II Viral Fusogens with the Ancestral Gamete Fusion Protein HAP2. Curr. Biol. 27: 651–660.

Pinello, J.F., Liu, Y., and Snell, W.J. (2021). MAR1 links membrane adhesion to membrane merger during cell-cell fusion in Chlamydomonas. Dev. Cell 56: 2021.09.03.458930.

Podbilewicz, B. (2014). Virus and Cell Fusion Mechanisms. Annu. Rev. Cell Dev. Biol. 30: 111– 139.

Podbilewicz, B., Leikina, E., Sapir, A., Valansi, C., Suissa, M., Shemer, G., and Chernomordik, L. V. (2006). The C. elegans Developmental Fusogen EFF-1 Mediates Homotypic Fusion in Heterologous Cells and In Vivo. Dev. Cell 11: 471–481.

Poon, I.K.H., Lucas, C.D., Rossi, A.G., and Ravichandran, K.S. (2014). Apoptotic cell clearance: Basic biology and therapeutic potential. Nat. Rev. Immunol. 14: 166–180.

Quinn, M.E., Goh, Q., Kurosaka, M., Gamage, D.G., Petrany, M.J., Prasad, V., and Millay,

D.P. (2017). Myomerger induces fusion of non-fusogenic cells and is required for skeletal muscle development. Nat. Commun. 8: 1–9.

Rosas-Santiago, P., Lagunas-Gomez, D., Yáñez-Domínguez, C., Vera-Estrella, R., Zimmermannová, O., Sychrová, H., and Pantoja, O. (2017). Plant and yeast cornichon possess a conserved acidic motif required for correct targeting of plasma membrane cargos. Biochim. Biophys. Acta - Mol. Cell Res. 1864: 1809–1818.

Schowalter, R.M., Smith, S.E., and Dutch, R.E. (2006). Characterization of Human Metapneumovirus F Protein-Promoted Membrane Fusion: Critical Roles for Proteolytic Processing and Low pH. J. Virol. 80: 10931–10941.

Shilagardi, K., Li, S., Luo, F., Marikar, F., Duan, R., Jin, P., Kim, J.H., Murnen, K., and Chen, E.H. (2013). Actin-propelled invasive membrane protrusions promote fusogenic protein engagement during cell-cell fusion. Science 340: 359–363.

Steele, R.E. and Dana, C.E. (2009). Evolutionary history of the HAP2/GCS1 gene and sexual reproduction in metazoans. PLoS One 4: 1–5.

Tang, H., Chang, H., Dong, Y., Guo, L., Shi, X., Wu, Y., Huang, Y., and He, Y. (2018). Architecture of cell–cell adhesion mediated by sidekicks. Proc. Natl. Acad. Sci. U. S. A. 115: 9246–9251.

Valansi, C., Moi, D., Leikina, E., Matveev, E., Graña, M., Chernomordik, L. V., Romero, H., Aguilar, P.S., and Podbilewicz, B. (2017). Arabidopsis HAP2/GCS1 is a gamete fusion protein homologous to somatic and viral fusogens. J. Cell Biol. 216: 571–581.

Wang, Y., O’Malley, B.W., Tsai, S.Y., and O’Malley, B.W. (1994). A regulatory system for use in gene transfer. Proc. Natl. Acad. Sci. 91: 8180–8184.

Wudick, M.M., Portes, M.T., Michard, E., Rosas-Santiago, P., Lizzio, M.A., Nunes, C.O., Campos, C., Santa Cruz Damineli, D., Carvalho, J.C., Lima, P.T., Pantoja, O., and Feijó, J.A. (2018). CORNICHON sorting and regulation of GLR channels underlie pollen tube Ca2+ homeostasis. Science 360: 533–536.

Yanagimachi, R. (1984). Zona-free hamster eggs: Their use in assessing fertilizing capacity and examining chromosomes of human spermatozoa. Gamete Res. 10: 187–232.

Yanagimachi, R., Yanagimachi, H., and Rogers, J. (1976). The Use of Zona-Free Assessment Ova as a Test-System Spermatozoa. Biol. Reprod. 15: 471–476.

須崎⼤地 (2015) ライブセルイメージングと顕微細胞操作による被⼦植物の雌性配偶体発⽣の解析, 名古屋⼤学博⼠論⽂

筒井⼤貴 (2017) 少数細胞遺伝⼦発現解析とCRISPR/Cas9による⾼効率な遺伝⼦破壊系の開発を基盤とした植物⽣殖関連遺伝⼦の探索と解析, 名古屋⼤学博⼠論⽂

中島耕⼤ (2019) 培養細胞を⽤いたライブせるイメージングによる受精因⼦の解析, 名古屋⼤学修⼠論⽂

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る