リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Comparative evaluation of the extraction and analysis of urinary phospholipids and lysophospholipids using MALDI-TOF/MS」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Comparative evaluation of the extraction and analysis of urinary phospholipids and lysophospholipids using MALDI-TOF/MS

Li, Xin 京都大学 DOI:10.14989/doctor.k23410

2021.07.26

概要

1. Background
 Urine is a unique, easily accessible, and noninvasive sample widely used for clinical diagnostics, especially in urology.
 Lipids, particularly phospholipids (PLs) and lysophospholipids (LPLs), are attracting increasing scientific interest for their potentials as disease biomarkers. Due to their low concentrations in urine, efficient extraction and sensitive detection are required for analyzing urinary PLs and LPLs.
 Matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) has been used for lipid analysis. However, the poor quantification ability limits its application in clinical biomarker screenings.

2. Objectives
 To improve the clinical usage of MALDI-TOF/MS, especially for detection of urinary PLs and LPLs, three main strategies include selecting a proper matrix, optimizing lipid extraction protocol, and improving quantitative measurement were performed.

3. Methods & Results
3.1. MALDI matrix
 Two most commonly used matrices for the MALDI lipid analysis, 9- aminoacridine (9-AA) and 2,5-dihydroxybenzoic acid (DHB), were compared for analyzing PLs and LPLs. Results showed that 9-AA was superior to DHB. Meanwhile, 5mM of 9-AA dissolved in a mixture of isopropanol and acetonitrile (60:40, v/v) could lower the matrix background while remaining sensitive detection of urinary PLs and LPLs.

3.2. Urinary lipids extraction
 Six lipid extraction protocols, including Folch method, Bligh and Dyer (B&D) method, acidified B&D method, methyl-tert-butyl ether method, butanol/methanol method, and hexane/isopropanol method were compared. The acidified B&D method showed the highest recovery rates in 9 of the 12 subcategories of urinary PLs and LPLs and the second-best in the other three remaining subcategories. Meanwhile, anti-oxidative additives such as Irgafos® 168 could be released from the disposable polypropylene (PP) plastic tubes by organic solutions and dramatically impact the detection of urinary PLs and LPLs by MALDI. Thus, glass vials that are resistant to organic solutions were used in this study.

3.3. Quantification of urinary PLs and LPLs
 Before the MALDI analysis, a drop of dissolved matrix and analyte was applied onto a target plate where the solvent was left to evaporate. This “drop-dry” method introduced a heterogeneous distribution of matrix and analyte on the target plate which caused a poor reproducibility among different analyses. To overcome this problem, a specially designed target plate which could limit the migration of the matrix and analyte molecules was used to form precise and concentrated distribution of the sample. Meanwhile, an ionization standard (including two commercially available PL standards with known concentrations) was spiked into the matrix and analyte solution to improve the well-to-well and day-to-day reproducibility. By the combination of these two methods, a reliable quantification of urinary PLs and LPLs was achieved.

3.4. Screening for PLs and LPLs in human urine samples
 Using this analytical system, a total of 40 PLs and LPLs were detected in the urine samples from individuals.

4. Conclusion
 A high-throughput screening system of the urinary PLs and LPLs was established. It offers a quick, qualitative, and quantitative detection of urinary PLs and LPLs, which has a promising clinical application prospect. The changed compositions of urinary PLs and LPLs might be used as non-invasive biomarkers for various human diseases like urologic tumors

この論文で使われている画像

参考文献

Angelini, R., Vitale, R., Patil, V.A., Cocco, T., Ludwig, B., Greenberg, M.L., Corcelli, A., 2012. Lipidomics of intact mitochondria by MALDI-TOF/MS. J. Lipid Res. 53, 1417–1425. https://doi.org/10.1194/jlr.D026203.

Barber, M.N., Risis, S., Yang, C., Meikle, P.J., Staples, M., Febbraio, M.A., Bruce, C.R., 2012. Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 dia- betes. PLoS One 7, e41456. https://doi.org/10.1371/journal.pone.0041456.

Bi, H., Krausz, K.W., Manna, S.K., Li, F., Johnson, C.H., Gonzalez, F.J., 2013.Optimization of harvesting, extraction, and analytical protocols for UPLC-ESI-MS- based metabolomic analysis of adherent mammalian cancer cells. Anal. Bioanal. Chem. 405, 5279–5289. https://doi.org/10.1007/s00216-013-6927-9.

Bligh, E.G., Dyer, W.J., 1959. A rapid method of total lipid extraction and purification.Can. J. Biochem. Physiol. 37, 911–917. https://doi.org/10.1139/o59-099.

Bresler, K., Pyttel, S., Paasch, U., Schiller, J., 2011. Parameters affecting the accuracy of the MALDI-TOF MS determination of the phosphatidylcholine/lysopho- sphatidylcholine (PC/LPC) ratio as potential marker of spermatozoa quality. Chem. Phys. Lipids 164, 696–702. https://doi.org/10.1016/j.chemphyslip.2011.07.006.

Byeon, S.K., Lee, J.Y., Moon, M.H., 2012. Optimized extraction of phospholipids and lysophospholipids for nanoflow liquid chromatography-electrospray ionization- tandem mass spectrometry. Analyst 137, 451–458. https://doi.org/10.1039/ c1an15920h.

Campa, C.C., Hirsch, E., 2017. Rab11 and phosphoinositides: a synergy of signal trans- ducers in the control of vesicular trafficking. Adv. Biol. Regul. 63, 132–139. https:// doi.org/10.1016/j.jbior.2016.09.002.

Chagovets, V., Lísa, M., Holčapek, M., 2015. Effects of fatty acyl chain length, double- bond number and matrix on phosphatidylcholine responses in matrix-assisted laser desorption/ionization on an Orbitrap mass spectrometer. Rapid Commun. Mass Spectrom. 29, 2374–2384. https://doi.org/10.1002/rcm.7404.

Cheng, H., Sun, G., Yang, K., Gross, R.W., Han, X., 2010. Selective desorption/ionization of sulfatides by MALDI-MS facilitated using 9-aminoacridine as matrix. J. Lipid Res. 51, 1599–1609. https://doi.org/10.1194/jlr.D004077.

Cruz, M., Wang, M., Frisch-Daiello, J., Han, X., 2016. Improved butanol–methanol (BUME) method by replacing acetic acid for lipid extraction of biological samples. Lipids 51, 887–896. https://doi.org/10.1007/s11745-016-4164-7.

Duncan, M.W., Roder, H., Hunsucker, S.W., 2008. Quantitative matrix-assisted laser desorption/ionization mass spectrometry. Brief. Funct. Genomic. Proteomic. 7, 355–370. https://doi.org/10.1093/bfgp/eln041.

Edidin, M., 1997. Lipid microdomains in cell surface membranes. Curr. Opin. Struct. Biol.7, 528–532. https://doi.org/10.1016/S0959-440X(97)80117-0.

Folch, J., Lees, M., Sloane Stanley, G.H., 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509.

Fuchs, B., Bischoff, A., Süss, R., Teuber, K., Schürenberg, M., Suckau, D., Schiller, J., 2009. Phosphatidylcholines and -ethanolamines can be easily mistaken in phospho- lipid mixtures: a negative ion MALDI-TOF MS study with 9-aminoacridine as matrix and egg yolk as selected example. Anal. Bioanal. Chem. 395, 2479–2487. https://doi. org/10.1007/s00216-009-3032-1.

Fuchs, B., Süß, R., Schiller, J., 2010. An update of MALDI-TOF mass spectrometry in lipid research. Prog. Lipid Res. 49, 450–475. https://doi.org/10.1016/j.plipres.2010.07. 001.

Gellermann, G.P., Appel, T.R., Davies, P., Diekmann, S., 2006. Paired helical filaments contain small amounts of cholesterol, phosphatidylcholine and sphingolipids. Biol. Chem. 387, 1267–1274. https://doi.org/10.1515/BC.2006.157.

Graessler, J., Mehnert, C.S., Schulte, K.M., Bergmann, S., Strauss, S., Bornstein, T.D., Licinio, J., Wong, M.L., Birkenfeld, A.L., Bornstein, S.R., 2018. Urinary Lipidomics: evidence for multiple sources and sexual dimorphism in healthy individuals.Pharmacogenomics J. 18, 331–339. https://doi.org/10.1038/tpj.2017.24.

Hara, A., Radin, N.S., 1978. Lipid extraction of tissues with a low toxicity solvent. Anal.Biochem. 90, 420–426. https://doi.org/10.1016/0003-2697(78)90046-5.

Jensen, S.K., 2008. Improved Bligh and Dyer extraction procedure. Lipid Technol. 20, 280–281. https://doi.org/10.1002/lite.200800074.

Kim, H., Ahn, E., Moon, M.H., 2008. Profiling of human urinary phospholipids by na- noflow liquid chromatography/tandem mass spectrometry. Analyst 133, 1656. https://doi.org/10.1039/b804715d.

Kim, H., Min, H.K., Kong, G., Moon, M.H., 2009. Quantitative analysis of phosphati- dylcholines and phosphatidylethanolamines in urine of patients with breast cancer by nanoflow liquid chromatography/tandem mass spectrometry. Anal. Bioanal. Chem. 393, 1649–1656. https://doi.org/10.1007/s00216-009-2621-3.

Kuchař, L., Asfaw, B., Poupětová, H., Honzíková, J., Tureček, F., Ledvinová, J., 2013. Direct tandem mass spectrometric profiling of sulfatides in dry urinary samples for screening of metachromatic leukodystrophy. Clin. Chim. Acta 425, 153–159. https:// doi.org/10.1016/j.cca.2013.06.027.

Leopold, J., Popkova, Y., Engel, K.M., Schiller, J., 2018. Recent developments of useful MALDI matrices for the mass spectrometric characterization of lipids. Biomolecules 8. https://doi.org/10.3390/biom8040173.

Löfgren, L., Ståhlman, M., Forsberg, G.-B., Saarinen, S., Nilsson, R., Hansson, G.I., 2012. The BUME method: a novel automated chloroform-free 96-well total lipid extraction method for blood plasma. J. Lipid Res. 53, 1690–1700. https://doi.org/10.1194/jlr. D023036.

Matyash, V., Liebisch, G., Kurzchalia, T.V., Shevchenko, A., Schwudke, D., 2008. Lipid extraction by methyl- tert -butyl ether for high-throughput lipidomics. J. Lipid Res. 49, 1137–1146. https://doi.org/10.1194/jlr.D700041-JLR200.

Min, H.K., Lim, S., Chung, B.C., Moon, M.H., 2011. Shotgun lipidomics for candidate biomarkers of urinary phospholipids in prostate cancer. Anal. Bioanal. Chem. 399, 823–830. https://doi.org/10.1007/s00216-010-4290-7.

Mulder, C., Wahlund, L.O., Teerlink, T., Blomberg, M., Veerhuis, R., Van Kamp, G.J., Scheltens, P., Scheffer, P.G., 2003. Decreased lysophosphatidylcholine /phosphati- dylcholine ratio in cerebrospinal fluid in Alzheimer’s disease. J. Neural Transm. 110, 949–955. https://doi.org/10.1007/s00702-003-0007-9.

Nagata, S., Suzuki, J., Segawa, K., Fujii, T., 2016. Exposure of phosphatidylserine on the cell surface. Cell Death Differ. 23, 952–961. https://doi.org/10.1038/cdd.2016.7.

Nishihara, M., Koga, Y., 1987. Extraction and composition of polar lipids from the ar- chaebacterium, Methanobacterium thermoautotrophicum: effective extraction of tetra- ether lipids by an acidified solvent. J. Biochem. 101, 997–1005. https://www.jstage.jst.go.jp/article/biochemistry1922/101/4/101_4_997/_pdf/-char/en.

Orešič, M., Hyötyläinen, T., Herukka, S.K., Sysi-Aho, M., Mattila, I., Seppänan-Laakso, T., Julkunen, V., Gopalacharyulu, P.V., Hallikainen, M., Koikkalainen, J., Kivipelto, M., Helisalmi, S., Lötjönen, J., Soininen, H., 2011. Metabolome in progression to Alzheimer’s disease. Transl. Psychiatry 13 (1), e57. https://doi.org/10.1038/tp.2011.55.

Pati, S., Nie, B., Arnold, R.D., Cummings, B.S., 2016. Extraction, chromatographic and mass spectrometric methods for lipid analysis. Biomed. Chromatogr. 30, 695–709. https://doi.org/10.1002/bmc.3683.

Pietruszko, R., Gray, G.M., 1962. The products of mild alkaline and mild acid hydrolysis of plasmalogens. Biochim. Biophys. Acta 56, 232–239. https://doi.org/10.1016/ 0006-3002(62)90560-7.

Pyttel, S., Zschörnig, K., Nimptsch, A., Paasch, U., Schiller, J., 2012. Enhanced lysopho- sphatidylcholine and sphingomyelin contents are characteristic of spermatozoa from obese men - A MALDI mass spectrometric study. Chem. Phys. Lipids 165, 861–865. https://doi.org/10.1016/j.chemphyslip.2012.11.001.

Reis, A., Rudnitskaya, A., Blackburn, G.J., Fauzi, N.M., Pitt, A.R., Spickett, C.M., 2013. A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL. J. Lipid Res. 54, 1812–1824. https://doi.org/10.1194/jlr.M034330.

Retra, K., Bleijerveld, O.B., Van Gestel, R.A., Tielens, A.G.M., Van Hellemond, J.J., Brouwers, J.F., 2008. A simple and universal method for the separation and identi- fication of phospholipid molecular species. Rapid Commun. Mass Spectrom. 22, 1853–1862. https://doi.org/10.1002/rcm.3562.

Rockwell, H.E., Gao, F., Chen, E.Y., McDaniel, J., Sarangarajan, R., Narain, N.R., Kiebish, M.A., 2016. Dynamic assessment of functional lipidomic analysis in human urine. Lipids. 51, 875–886. https://doi.org/10.1007/s11745-016-4142-0.

Röst, H.L., Sachsenberg, T., Aiche, S., Bielow, C., Weisser, H., Aicheler, F., Andreotti, S., Ehrlich, H.C., Gutenbrunner, P., Kenar, E., Liang, X., Nahnsen, S., Nilse, L., Pfeuffer, J., Rosenberger, G., Rurik, M., Schmitt, U., Veit, J., Walzer, M., Wojnar, D., Wolski, W.E., Schilling, O., Choudhary, J.S., Malmström, L., Aebersold, R., Reinert, K., Kohlbacher, O., 2016. OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat. Methods 13, 741–748. https://doi.org/10.1038/ nmeth.3959.

Schiller, J., Süß, R., Arnhold, J., Fuchs, B., Leßig, J., Müller, M., Petković, M., Spalteholz, H., Zschörnig, O., Arnold, K., 2004. Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. Prog. Lipid Res. 43, 449–488. https://doi.org/10.1016/j.plipres.2004.08.001.

Schiller, J., Suss, R., Fuchs, B., Muller, M., Zschornig, O., Arnold, K., 2007. MALDI-TOF MS in lipidomics. Front. Biosci. 12, 2568–2579. https://doi.org/10.2741/2255.

Serna, J., García-Seisdedos, D., Alcázar, A., Lasunción, M.Á., Busto, R., Pastor, Ó., 2015. Quantitative lipidomic analysis of plasma and plasma lipoproteins using MALDI-TOF mass spectrometry. Chem. Phys. Lipids 189, 7–18. https://doi.org/10.1016/j. chemphyslip.2015.05.005.

Solouki, T., White, F.M., Marto, J.A., Guan, S., Marshall, A.G., 1995. Attomole biomo- lecule mass analysis by matrix-assisted laser desorption/ionization fourier transform ion cyclotron resonance. Anal. Chem. 67, 4139–4144. https://doi.org/10.1021/ ac00118a017.

Spacil, Z., Kumar, A.B., Liao, H.C., Auray-Blais, C., Stark, S., Suhr, T.R., Ronald Scott, C., Turecek, F., Gelb, M.H., 2016. Sulfatide analysis by mass spectrometry for screening of metachromatic leukodystrophy in dried blood and urine samples. Clin. Chem. 62, 279–286. https://doi.org/10.1373/clinchem.2015.245159.

Stübiger, G., Aldover-Macasaet, E., Bicker, W., Sobal, G., Willfort-Ehringer, A., Pock, K., Bochkov, V., Widhalm, K., Belgacem, O., 2012. Targeted profiling of atherogenic phospholipids in human plasma and lipoproteins of hyperlipidemic patients using MALDI-QIT-TOF-MS/MS. Atherosclerosis 224, 177–186. https://doi.org/10.1016/j. atherosclerosis.2012.06.010.

Sun, G., Yang, K., Zhao, Z., Guan, S., Han, X., Gross, R.W., 2008. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of cellular glycer- ophospholipids enabled by multiplexed solvent dependent analyte-matrix interac- tions. Anal. Chem. 80, 7576–7585. https://doi.org/10.1021/ac801200w.

Szájli, E., Fehér, T., Medzihradszky, K.F., 2008. Investigating the quantitative nature of MALDI-TOF MS. Mol. Cell Proteomics 7, 2410–2418. https://doi.org/10.1074/mcp. M800108-MCP200.

Vanni, S., 2017. Intracellular lipid droplets: from structure to function. Lipid Insights 10, 14–16. https://doi.org/10.1177/1178635317745518.

Wang, C., Wang, M., Han, X., 2015. Applications of mass spectrometry for cellular lipid analysis. Mol. Biosyst. 11, 698–713. https://doi.org/10.1039/c4mb00586d.

Wang, H., Wong, C.H., Chin, A., Taguchi, A., Taylor, A., Hanash, S., Sekiya, S., Takahashi, H., Murase, M., Kajihara, S., Iwamoto, S., Tanaka, K., 2011. Integrated mass spec- trometry-based analysis of plasma glycoproteins and their glycan modifications. Nat. Protoc. 6, 253–269. https://doi.org/10.1038/nprot.2010.176.

Wang, P., Giese, R.W., 2017. Recommendations for quantitative analysis of small mole- cules by matrix-assisted laser desorption ionization mass spectrometry. J. Chromatogr. A 1486, 35–41. https://doi.org/10.1016/j.chroma.2017.01.040.

Zhao, Z., Xiao, Y., Elson, P., Tan, H., Plummer, S.J., Berk, M., Aung, P.P., Lavery, I.C., Achkar, J.P., Li, L., Casey, G., Xu, Y., 2007. Plasma lysophosphatidylcholine levels: potential biomarkers for colorectal cancer. J. Clin. Oncol. 25, 2696–2701. https:// doi.org/10.1200/JCO.2006.08.5571.

Zhou, Y., Wong, C.O., Cho, K.J., Van Der Hoeven, D., Liang, H., Thakur, D.P., Luo, J.,Babic, M., Zinsmaier, K.E., Zhu, M.X., Hu, H., Venkatachalam, K., Hancock, J.F., 2015. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling. Science. 349, 873–876. https://doi.org/10.1126/science.aaa5619.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る