リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Formation of subcellular compartments by condensation-prone protein OsJAZ2 in Oryza sativa and Nicotiana benthamiana leaf cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Formation of subcellular compartments by condensation-prone protein OsJAZ2 in Oryza sativa and Nicotiana benthamiana leaf cells

Koja, Yoshito Joshima, Yu Yoritaka, Yusuke Arakawa, Takuya Go, Haruka Hakamata, Nagisa Kaseda, Hinako Hattori, Tsukaho Takeda, Shin 名古屋大学

2023.02

概要

Eukaryotic cells contain membrane-less organelles consisting of proteins and other biomolecules,
which are also called biomolecular condensates, coacervates, bodies, granules, paraspeckles, or
droplets (Courchaine et al. 2016; Banani et al. 2017; Shin and Brangwynne 2017). Membrane-less
organelles form various compartments, including nucleoli, stress granules, and processing bodies,
which allow specific molecule enrichment, efficient biochemical reaction, biomolecule storage,
inhibitory substance compartmentation, and protein turnover regulation (Courchaine et al. 2016;
Banani et al. 2017; Shin and Brangwynne 2017; Franzmann et al. 2018; Pancsa et al. 2019). These
compartments are often formed by liquid–liquid phase separation, depending on the concentration, pH,
and temperature. Moreover, some condensates formed by liquid–liquid phase separation can also adopt
solid or gel-like states (Kroschwald et al. 2015; Lin et al. 2015; Banani et al. 2017; Shin and
Brangwynne 2017; Woodruff et al. 2017, 2018; Alberti et al. 2019; Bose et al. 2022). Membrane-less
organelles will be potentially useful in bioengineering and synthetic biology because they will create
platforms to modify cell function by providing an orthogonal reaction system or native protein
sequestration (Reinkemeier et al. 2019; Garabedian et al. 2021; Hastings and Boeynaems 2021).
Proteins that play an important role in liquid–liquid phase separation often contain
intrinsically disordered regions (IDRs), low-complexity domains (LCDs), or prion-like domains
(PrLDs) (Kato et al. 2012; Hennig et al. 2015; Lin et al. 2015; Molliex et al. 2015; Patel et al. 2015;
Courchaine et al. 2016; Hughes et al. 2018). Multivalent, weak non-covalent interactions between
intrinsically disordered proteins (IDPs), protein–protein interactions between folded domains, and, in
some cases, with other biomolecules such as nucleic acids, create a driving force for biological phase
separation, condensing the proteins (Banani et al. 2017; Gomes and Shorter 2019; Alberti et al. 2019). ...

この論文で使われている画像

参考文献

Cai Y, Jia T, Lam SK et al (2011) Multiple cytosolic and transmembrane determinants are required for

the trafficking of SCAMP1 via an ER–Golgi–TGN–PM pathway. Plant J65:882-896. doi: 10.1111/j.1365313X.2010.04469.x

Cai Y, Zhuang X, Wang J et al (2012) Vacuolar degradation of two integral plasma membrane proteins,

AtLRR84A and OsSCAMP1, is cargo ubiquitination-independent and prevacuolar compartment-mediated in plant

cells. Traffic 13:1023-1040. https://doi.org/10.1111/j.1600-0854.2012.01360.x

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る