リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「多元符号と信号点シェイピングに基づく通信路容量に近接する符号化変調方式の設計」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

多元符号と信号点シェイピングに基づく通信路容量に近接する符号化変調方式の設計

Matsumine Toshiki 横浜国立大学 DOI:info:doi/10.18880/00013296

2020.06.15

概要

Design of coding and modulation plays a fundamental role in the communication systems for achieving high spectral efficiencies. In this dissertation, we propose several approaches for coded modulation design based on non-binary coding and constellation shaping.

Chapter 2 presents a novel design approach of non-binary turbo codes based on a new ex- trinsic information transfer (EXIT) chart analysis that does not require a priori knowledge on multi-dimensional message distribution. Simulation results demonstrate that our non-binary turbo codes achieve performance comparable to non-binary low-density parity check (LDPC) codes even with less decoding complexity.

Chapter 3 is devoted to the decoding problem of general Construction D lattices and a prac- tical design of low-dimensional lattices based on binary BCH codes. From simulation and union bound analysis, we demonstrate that the BCH code lattices outperform other lattice codes con- structed from capacity-approaching codes with reasonable decoding complexity in low dimen- sion regime.

Chapter 4 presents a new bandwidth-efficient multiple parallel concatenation scheme based on the three trellis coded modulation (TCM), where constituent TCM encoders are designed with the aid of three-dimensional symbol-based EXIT chart analysis. Simulation results demonstrate that the proposed scheme significantly reduce the error floor, without noticeable performance degradation in the waterfall region.

Chapter 5 proposes a new coded modulation scheme based on serial concatenation of recur- sive convolutional lattice codes for achieving higher spectral efficiency even with less decoding complexity than their parallel concatenation counterpart. We also introduce a novel amplitude limiter for improving peak power efficiency of the proposed system.

Chapter 6 provides a new shaping approach based on short-dimensional lattice shaping com- bined with non-binary turbo TCM (TTCM) scheme. Using the well-known E8 lattices with low-complexity decoding algorithm as an example, we demonstrate that the proposed scheme efficiently achieves a shaping gain of about 0.5 dB in terms of the gap from the finite block length bound over the conventional TTCM without shaping.

Chapter 7 is focused on a novel constellation shaping based on polar-coded modulation, where bit indices for constellation shaping are newly introduced to a polar encoder input. Perfor- mance results demonstrate that the proposed shaping method achieves shaping gain greater than 0.6 dB without affecting the decoding complexity.

In Chapter 8, a new joint coding and shaping approach for short linear block codes is pro- posed, where two generator matrices for coding and shaping are constructed from the same gen- erator matrix for efficient decoding. We design a shaping matrix such that an expected average signal power is directly minimized under the assumption of efficient shaping implementation. We demonstrate from simulation results that the proposed shaping effectively achieves a moderate shaping gain even for short block length with low complexity.

参考文献

[1] V. Raghavan and J. Li, “Evolution of physical-layer communications research in the post-5G era,” IEEE Access, vol. 7, pp. 10 392–10 401, 2019.

[2] ITU-R, “[IMT-2020.TECH PERF REQ] - minimum requirements related to technical performance for imt2020 radio interface(s),” Report ITU-R M.2410-0, Nov. 2017.

[3] P. Yang, Y. Xiao, M. Xiao, and S. Li, “6G wireless communications: Vision and potential tech- niques,” IEEE Network, vol. 33, no. 4, pp. 70–75, 2019.

[4] M. Z. Chowdhury, M. Shahjalal, S. Ahmed, and Y. M. Jang, “6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions,” arXiv preprint arXiv:1909.11315, 2019.

[5] S. Dang, O. Amin, B. Shihada, and M.-S. Alouini, “From a human-centric perspective: What might 6G be?” arXiv preprint arXiv:1906.00741, 2019.

[6] C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, pp. 379–423 and 623–656, July and Oct. 1948.

[7] D. J. Costello and G. D. Forney, “Channel coding: The road to channel capacity,” Proceedings of the IEEE, vol. 95, no. 6, pp. 1150–1177, 2007.

[8] R. W. Lucky, “Coding is dead,” IEEE Spectrum, Lucky Strikes Again: (Feats and Foibles of Engi- neers), pp. 243–245, 1993.

[9] M. J. Golay, “Notes on digital coding,” Proc. IRE, vol. 37, p. 657, 1949.

[10] D. E. Muller, “Application of boolean algebra to switching circuit design and to error detection,” IRE Trans. Electric Computers, no. 3, pp. 6–12, 1954.

[11] I. S. Reed, “A class of multiple-error-correcting codes and the decoding scheme,” IRE Trans. In- form. Theory, vol. 4, pp. 39–44, 1954.

[12] S. Kudekar, S. Kumar, M. Mondelli, H. D. Pfister, E. S¸ as¸olu, and R. L. Urbanke, “Reed–muller codes achieve capacity on erasure channels,” IEEE Trans. Inf. Theory, vol. 63, no. 7, pp. 4298– 4316, 2017.

[13] E. Prange, Cyclic Error-Correcting codes in two symbols. Air force Cambridge research center, 1957.

[14] A. Hocquenghem, “Codes correcteurs d’erreurs,” in Chiffres, pp. 147–156, 1959.

[15] R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error correcting binary group codes,” Infor- mation and control, vol. 3, no. 1, pp. 68–79, 1960.

[16] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Journal of the society for industrial and applied mathematics, vol. 8, no. 2, pp. 300–304, 1960.

[17] R. Singleton, “Maximum distance q-nary codes,” IEEE Trans. Inf. Theory, vol. 10, no. 2, pp. 116– 118, 1964.

[18] D. Gorenstein and N. Zierler, “A class of error correcting codes in pm symbols,” Journal of the Society of Industrial and Applied Mathematics, vol. 9, pp. 207–214, 1961.

[19] W. Peterson, “Encoding and error-correction procedures for the Bose-Chaudhuri codes,” IRE Trans- actions on Information Theory, vol. 6, no. 4, pp. 459–470, 1960.

[20] E. Berlekamp, Algebraic coding theory. World Scientific, 1968.

[21] ——, “On decoding binary Bose-Chadhuri-Hocquenghem codes,” IEEE Trans. Inf. Theory, vol. 11, no. 4, pp. 577–579, 1965.

[22] J. Massey, “Shift-register synthesis and BCH decoding,” IEEE Trans. Inf. Theory, vol. 15, no. 1, pp. 122–127, 1969.

[23] G. D. Forney, “On decoding BCH codes,” IEEE Trans. Inf. Theory, vol. 11, no. 4, pp. 549–557, 1965.

[24] ——, “Generalized minimum distance decoding,” IEEE Trans. Inf. Theory, vol. IT-12, no. 1, pp. 125–131, Jan. 1966.

[25] ——, “Burst-correcting codes for the classic bursty channel,” IEEE Transactions on Communica- tion Technology, vol. 19, no. 5, pp. 772–781, 1971.

[26] V. D. Goppa, “Codes associated with divisors,” Problemy Peredachi Informatsii, vol. 13, no. 1, pp. 33–39, 1977.

[27] M. A. Tsfasman, S. Vla˘dutx, and T. Zink, “Modular curves, shimura curves, and goppa codes, better than varshamov-gilbert bound,” Mathematische Nachrichten, vol. 109, no. 1, pp. 21–28, 1982.

[28] I. Blake, C. Heegard, T. Hoholdt, and V. Wei, “Algebraic-geometry codes,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2596–2618, 1998.

[29] P. Elias, “Coding for noisy channels,” IRE Conv. Rec., vol. pt. 4, pp. 37–46, 1955.

[30] J. M. Wozencraft and B. Reiffen, Sequential Decoding. MIT Press, 1961.

[31] R. Fano, “A heuristic discussion of probabilistic decoding,” IEEE Trans. Inf. Theory, vol. 9, no. 2, pp. 64–74, 1963.

[32] A. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decoding algo- rithm,” IEEE Trans. Inf. Theory, vol. 13, no. 2, pp. 260–269, 1967.

[33] G. D. Forney, “The viterbi algorithm: A personal history,” arXiv preprint cs/0504020, 2005.

[34] J. A. Heller, “Short constraint length convolutional codes,” Jet Prop. Lab., Space Prog. Summary, vol. III, no. 37-54, pp. 171–177, 1968.

[35] J. Heller and I. Jacobs, “Viterbi decoding for satellite and space communication,” IEEE Transac- tions on Communication Technology, vol. 19, no. 5, pp. 835–848, 1971.

[36] G. D. Forney, Concatenated Codes. MIT Press, 1966.

[37] E. Paaske, “Improved decoding for a concatenated coding system recommended by CCSDS,” IEEE Trans. Commun., vol. 38, no. 8, pp. 1138–1144, 1990.

[38] O. M. Collins and M. Hizlan, “Determinate state convolutional codes,” IEEE Trans. Commun., vol. 41, no. 12, pp. 1785–1794, 1993.

[39] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory, vol. IT-20, pp. 284–287, Mar. 1974.

[40] S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated codes,” IEEE Trans. Commun., vol. 49, no. 10, pp. 1727–1737, Oct. 2001.

[41] M. El-Hajjar and L. Hanzo, “Exit charts for system design and analysis,” IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 127–153, 2013.

[42] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-correcting coding and decoding: Turbo-codes,” in Proc. 1993 IEEE International Conference on Communications (ICC), pp. 1064–1070, May 1993.

[43] C. Douillard, M. Je´ze´quel, C. Berrou, D. Electronique, A. Picart, P. Didier, and A. Glavieux, “Iterative correction of intersymbol interference: Turbo-equalization,” European transactions on telecommunications, vol. 6, no. 5, pp. 507–511, 1995.

[44] X. Wang and H. V. Poor, “Iterative (turbo) soft interference cancellation and decoding for coded cdma,” IEEE Trans. Commun., vol. 47, no. 7, pp. 1046–1061, 1999.

[45] S. Ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check codes for mod- ulation and detection,” IEEE Trans. Commun., vol. 52, no. 4, pp. 670–678, 2004.

[46] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Info. Theory,, vol. 8, no. 1, pp. 21–28, Jan. 1962.

[47] D. J. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Trans. Inf. The- ory, vol. 45, no. 2, pp. 399–431, Mar. 1999.

[48] M. Sipser and D. A. Spielman, “Expander codes,” IEEE Trans. Inf. Theory, vol. 42, no. 6, pp. 1710–1722, 1996.

[49] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inf. Theory, vol. 27, no. 5, pp. 533–547, 1981.

[50] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, “Improved low-density parity-check codes using irregular graphs,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 585–598, 2001.

[51] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 599–618, Feb. 2001.

[52] S.-Y. Chung, T. J. Richardson, and R. L. Urbanke, “Analysis of sum-product decoding of low- density parity-check codes using a Gaussian approximation,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 657–670, Feb. 2001.

[53] S.-Y. Chung, G. D. Forney, T. J. Richardson, R. Urbanke et al., “On the design of low-density parity-check codes within 0.0045 db of the shannon limit,” IEEE Commun. Lett., vol. 5, no. 2, pp. 58–60, 2001.

[54] E. Arıkan, “Channel polarization: A method for constructing capacity-achieving codes for sym- metric binary-input memoryless channels,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[55] E. Arikan and E. Telatar, “On the rate of channel polarization,” in Proc. 2009 IEEE International Symposium on Information Theory (ISIT), pp. 1493–1495, 2009.

[56] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge University Press, 2008.

[57] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf. Theory, vol. 61, no. 5, pp. 2213–2226, May 2015.

[58] G. Liva, L. Gaudio, T. Ninacs, and T. Jerkovits, “Code design for short blocks: A survey,” arXiv:1610.00873, Oct. 2016.

[59] J. Van Wonterghem, A. Alloumf, J. J. Boutros, and M. Moeneclaey, “Performance comparison of short-length error-correcting codes,” in Proc. 2016 Symposium on Communications and Vehicular Technologies (SCVT), pp. 1–6, 2016.

[60] M. Shirvanimoghaddam, M. S. Mohammadi, R. Abbas, A. Minja, C. Yue, B. Matuz, G. Han, Z. Lin, W. Liu, Y. Li et al., “Short block-length codes for ultra-reliable low latency communications,” IEEE Communications Magazine, vol. 57, no. 2, pp. 130–137, 2018.

[61] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inf. Theory, vol. 28, no. 1, pp. 55–67, Jan. 1982.

[62] L.-F. Wei, “Trellis-coded modulation with multidimensional constellations,” IEEE Trans. Inf. The- ory, vol. 33, no. 4, pp. 483–501, 1987.

[63] S. S. Pietrobon, R. H. Deng, A. Lafanechere, G. Ungerboeck, and D. J. Costello, “Trellis-coded multidimensional phase modulation,” IEEE Trans. Inf. Theory, vol. 36, no. 1, pp. 63–89, 1990.

[64] P. Robertson and T. Wo¨rz, “Bandwidth-efficient turbo trellis-coded modulation using punctured component codes,” IEEE J. Sel. Areas Commun., vol. 16, no. 2, pp. 206–218, Feb. 1998.

[65] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Parallel concatenated trellis coded modula- tion,” in Proc. 1996 IEEE International Conference on Communications (ICC), vol. 2, pp. 974–978, Jun. 1996.

[66] H. Imai and S. Hirakawa, “A new multilevel coding method using error-correcting codes,” IEEE Trans. Inf. Theory, vol. 23, no. 3, pp. 371–377, May 1977.

[67] U. Wachsmann, R. F. Fischer, and J. B. Huber, “Multilevel codes: theoretical concepts and practical design rules,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1361–1391, Jul. 1999.

[68] E. Zehavi, “8-PSK trellis codes for a Rayleigh channel,” IEEE Trans. Commun., vol. 40, no. 5, pp. 873–884, 1992.

[69] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modulation,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 927–946, May 1998.

[70] L. Szczecinski and A. Alvarado, Bit-Interleaved Coded Modulation: Fundamentals, Analysis and Design. John Wiley & Sons, 2015.

[71] X. Li and J. A. Ritcey, “Bit-interleaved coded modulation with iterative decoding,” IEEE Commun. Lett., vol. 1, no. 6, pp. 169–171, 1997.

[72] U. Erez and R. Zamir, “Achieving 1/2 log (1+SNR) on the AWGN channel with lattice encoding and decoding,” IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2293–2314, Oct. 2004.

[73] N. Di Pietro, J. J. Boutros, G. Ze´mor, and L. Brunel, “Integer low-density lattices based on con- struction A,” in Proc. 2012 IEEE Information Theory Workshop (ITW), pp. 422–426, 2012.

[74] N. Di Pietro, G. Ze´mor, and J. J. Boutros, “Lda lattices without dithering achieve capacity on the gaussian channel,” IEEE Trans. Inf. Theory, vol. 64, no. 3, pp. 1561–1594, 2017.

[75] E. S. Barnes and N. J. A. Sloane, “New lattice packings of spheres,” Canadian Journal of Mathe- matics, vol. XXXV, no. 1, pp. 117–130, 1983.

[76] A. Sakzad, M. Sadeghi, and D. Panario, “Turbo lattices: Construction and error decoding performance,” CoRR, vol. abs/1108.1873, 2011. [Online]. Available: http://arxiv.org/abs/1108. 1873

[77] A. Vem, Y.-C. Huang, K. R. Narayanan, and H. D. Pfister, “Multilevel lattices based on spatially- coupled LDPC codes with applications,” in Proc. 2014 IEEE International Symposium on Informa- tion Theory (ISIT), Jun. 2014.

[78] Y. Yan and C. Ling, “A construction of lattices from polar codes,” in Proceedings of the IEEE Information Theory Workshop, pp. 124–128, Lausanne, Switzerland, 2012.

[79] Y. Yan, L. Liu, C. Ling, and X. Wu, “Construction of capacity-achieving lattice codes: Polar lattices,” ArXiv e-prints, vol. abs/1411.0187, November 2014. [Online]. Available: http://arxiv.org/abs/1411.0187

[80] N. Sommer, M. Feder, and O. Shalvi, “Low-density lattice codes,” IEEE Trans. Inf. Theory, vol. 54, no. 4, pp. 1561–1585, Apr. 2008.

[81] O. Shalvi, N. Sommer, and M. Feder, “Signal codes: convolutional lattice codes,” IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 5203–5226, Aug. 2011.

[82] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups. Springer Science & Business Media, 2013, vol. 290.

[83] G. D. Forney, R. Gallager, G. Lang, F. Longstaff, and S. Qureshi, “Efficient modulation for band- limited channels,” IEEE J. Sel. Areas Commun., vol. 2, no. 5, pp. 632–647, Sep. 1984.

[84] F. R. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian channels,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 913–929, May 1993.

[85] G. D. Forney and G. Ungerboeck, “Modulation and coding for linear Gaussian channels,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2384–2415, Oct. 1998.

[86] G. D. Forney and L.-F. Wei, “Multidimensional constellations. I. Introduction, figures of merit, and generalized cross constellations,” IEEE J. Sel. Areas Commun., vol. 7, no. 6, pp. 877–892, Aug. 1989.

[87] G. D. Forney, “Multidimensional constellations. ii. voronoi constellations,” IEEE J. Sel. Areas Commun., vol. 7, no. 6, pp. 941–958, Aug. 1989.

[88] ——, “Trellis shaping,” IEEE Trans. Inf. Theory, vol. 38, no. 2, pp. 281–300, Mar. 1992.

[89] A. K. Khandani and P. Kabal, “Shaping multidimensional signal spaces. I. optimum shaping, shell mapping,” IEEE Trans. Inf. Theory, vol. 39, no. 6, pp. 1799–1808, Nov. 1993.

[90] F.-W. Sun and H. C. van Tilborg, “Approaching capacity by equiprobable signaling on the Gaussian channel,” IEEE Trans. Inf. Theory, vol. 39, no. 5, pp. 1714–1716, 1993.

[91] C. Fragouli, R. D. Wesel, D. Sommer, and G. Fettweis, “Turbo codes with non-uniform constella- tions,” in Proc. 2001 IEEE International Conference on Communications (ICC), vol. 1, pp. 70–73, 2001.

[92] N. Sommer, M. Feder, and O. Shalvi, “Shaping methods for low-density lattice codes,” in Proc. 2009 IEEE Information Theory Workshop (ITW), pp. 238–242, 2009.

[93] N. S. Ferdinand, B. M. Kurkoski, M. Nokleby, and B. Aazhang, “Low-dimensional shaping for high-dimensional lattice codes,” IEEE Trans. Wireless Commun., vol. 15, no. 11, pp. 7405–7418, Nov. 2016.

[94] F. Zhou and B. M. Kurkoski, “Shaping LDLC lattices using convolutional code lattices,” IEEE Commun. Lett., vol. 21, no. 4, pp. 730–733, Apr. 2017.

[95] P. Mitran and H. Ochiai, “Parallel concatenated convolutional lattice codes with constrained states,” IEEE Trans. Commun., vol. 63, no. 4, pp. 1081–1090, May 2015.

[96] S. Le Goff, A. Glavieux, and C. Berrou, “Turbo-codes and high spectral efficiency modulation,” in Proc. 1994 IEEE International Conference on Communications (ICC), pp. 645–649, May 1994.

[97] D. Raphaeli and A. Gurevitz, “Constellation shaping for pragmatic turbo-coded modulation with high spectral efficiency,” IEEE Trans. Commun., vol. 52, no. 3, pp. 341–345, 2004.

[98] A. R. Calderbank and L. H. Ozarow, “Nonequiprobable signaling on the Gaussian channel,” IEEE Trans. Inf. Theory, vol. 36, no. 4, pp. 726–740, Jul. 1990.

[99] A. K. Khandani and W. Tong, “Application of shaping technique with turbo coset codes,” IEEE Trans. Veh. Technol., vol. 56, no. 6, pp. 3770–3779, Nov. 2007.

[100] S. Y. Le Goff, B. K. Khoo, C. C. Tsimenidis, and B. S. Sharif, “Constellation shaping for bandwidth-efficient turbo-coded modulation with iterative receiver,” IEEE Trans. Wireless Com- mun., vol. 6, no. 6, Jun. 2007.

[101] M. C. Valenti and X. Xiang, “Constellation shaping for bit-interleaved LDPC coded APSK,” IEEE Trans. Commun., vol. 60, no. 10, pp. 2960–2970, Oct. 2012.

[102] Y.-C. Tsai, H.-H. Chung, and M.-C. Lin, “Scrambling-based shaping for turbo coded modulation,” IEEE Trans. Commun., vol. 58, no. 11, pp. 3148–3153, Nov. 2010.

[103] E. Agrell and A. Alvarado, “Signal shaping for BICM at low SNR,” IEEE Trans. Inf. Theory, vol. 59, no. 4, pp. 2396–2410, 2013.

[104] G. Bo¨cherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity- check coded modulation,” IEEE Trans. Commun., vol. 63, no. 12, pp. 4651–4665, Dec. 2015.

[105] F. Steiner and G. Bo¨cherer, “Comparison of geometric and probabilistic shaping with application to ATSC 3.0,” in 11th International ITG Conference on Systems, Communications and Coding (SCC), pp. 1–6, 2017.

[106] G. D. Forney, M. D. Trott, and S.-Y. Chung, “Sphere-bound-achieving coset codes and multilevel coset codes,” IEEE Trans. Inf. Theory, vol. 46, no. 3, pp. 820–850, May 2000.

[107] T. Matsumine and H. Ochiai, “A new turbo coded modulation approach exploiting non-binary field,” in Proc. 2018 IEEE Radio and Wireless Symposium (RWS), pp. 72–75, Jan. 2018.

[108] ——, “A design of non-binary turbo codes over finite fields based on gaussian approximation and union bounds,” in Proc. 2018 IEEE Vehicular Technology Conference (VTC-Spring), Jun. 2018.

[109] ——, “Capacity-approaching non-binary turbo codes: A hybrid design based on exit charts and union bounds,” IEEE Access, vol. 6, pp. 70 952–70 963, 2018.

[110] D. J. MacKay and R. M. Neal, “Near shannon limit performance of low density parity check codes,” Electronics letters, vol. 32, no. 18, pp. 1645–1646, Aug. 1996.

[111] H. C. Davey and D. J. MacKay, “Low density parity check codes over GF(q),” IEEE Commun. Lett., vol. 2, no. 6, pp. 165–167, Jun. 1998.

[112] J. Berkmann, “Symbol-by-symbol map decoding of nonbinary codes,” Proc. ITG-Fachtagung Codierung fu¨r Quelle, Kanal und Ubertragung, 1998.

[113] D. J. MacKay and M. C. Davey, “Evaluation of Gallager codes for short block length and high rate applications,” in Proc. IMA Workshop Codes, Syst, Graphical Models, 1999.

[114] H. Song and J. Cruz, “Reduced-complexity decoding of Q-ary LDPC codes for magnetic record- ing,” IEEE Trans. Magn., vol. 39, no. 2, pp. 1081–1087, Mar. 2003.

[115] S. Benedetto and G. Montorsi, “Unveiling turbo codes: Some results on parallel concatenated coding schemes,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp. 409–428, Mar. 1996.

[116] M. Luby, M. Mitzenmacher, A. Shokrollah, and D. Spielman, “Analysis of low density codes and improved designs using irregular graphs,” in Proc. the 30th Annual ACM Symp. Theory of Comput- ing (STOC), pp. 249–258, 1998.

[117] H. El Gamal and A. R. Hammons, “Analyzing the turbo decoder using the Gaussian approxima- tion,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 671–686, Feb. 2001.

[118] G. Li, I. J. Fair, and W. A. Krzymien, “Density evolution for nonbinary LDPC codes under Gaussian approximation,” IEEE Trans. Inf. Theory, vol. 55, no. 3, pp. 997–1015, Mar. 2009.

[119] D. Divsalar, S. Dolinar, and F. Pollara, “Iterative turbo decoder analysis based on density evolution,” IEEE J. Sel. Areas Commun., vol. 19, no. 5, pp. 891–907, May 2001.

[120] A. Bennatan and D. Burshtein, “Design and analysis of nonbinary LDPC codes for arbitrary discrete-memoryless channels,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 549–583, Jan. 2006.

[121] J. Kliewer, S. X. Ng, and L. Hanzo, “Efficient computation of EXIT functions for nonbinary itera- tive decoding,” IEEE Trans. Commun., vol. 54, no. 12, pp. 2133–2136, Dec. 2006.

[122] S. X. Ng, O. R. Alamri, Y. Li, J. Kliewer, and L. Hanzo, “Near-capacity turbo trellis coded modu- lation design based on EXIT charts and union bounds,” IEEE Trans. Commun., vol. 56, no. 12, pp. 2030–2039, Dec. 2008.

[123] V. Savin, “Split-extended LDPC codes for coded cooperation,” in Proc. 2010 International Sympo- sium on Information Theory and its Applications (ISITA), pp. 151–156, 2010.

[124] B. M. Kurkoski, K. Yamaguchi, and K. Kobayashi, “Single-gaussian messages and noise thresholds for decoding low-density lattice codes,” in Proc. 2009 IEEE International Symposium on Informa- tion Theory (ISIT), pp. 734–738, 2009.

[125] M. Takai and K. Ishibashi, “Repeat-accumulate signal codes,” IEEE Trans. Commun., vol. 67, no. 4, pp. 2607–2619, 2019.

[126] A. C. Reid, T. A. Gulliver, and D. P. Taylor, “Rate-1/2 component codes for nonbinary turbo codes,” IEEE Trans. Commun., vol. 53, no. 9, pp. 1417–1422, Sep. 2005.

[127] J. Berkmann, “On turbo decoding of nonbinary codes,” IEEE Commun. Lett., vol. 2, no. 4, pp. 94–96, Apr. 1998.

[128] M. Ferrari and S. Bellini, “Rate variable, multi-binary turbo codes with controlled error-floor,” IEEE Trans. Commun., vol. 57, no. 5, 2009.

[129] C. Douillard and C. Berrou, “Turbo codes with rate-m/(m + 1) constituent convolutional codes,” IEEE Trans. Commun., vol. 53, no. 10, pp. 1630–1638, Oct. 2005.

[130] G. S. White, D. Costello et al., “Construction and performance of q-ary turbo codes for use with M - ary modulation techniques,” in Proc. 2000 IEEE International Symposium on Information Theory (ISIT), pp. 220–220, 2000.

[131] J. A. Briffa and H. G. Schaathun, “Non-binary turbo codes and applications,” in Proc. 2008 5th International Symposium on Turbo Codes and Related Topics (ISTC), pp. 294–298, 2008.

[132] H. Balta, C. Douillard, and R. Lucaciu, “Multi-non-binary turbo codes,” EURASIP J. Wireless Commun. Netw. https://doi.org/10.1186/1687-1499-2013-279, Dec. 2013.

[133] G. Liva, E. Paolini, B. Matuz, S. Scalise, and M. Chiani, “Short turbo codes over high order fields,” IEEE Trans. Commun., vol. 61, no. 6, pp. 2201–2211, Jun. 2013.

[134] F. Steiner, G. Bocherer, and G. Liva, “Protograph-based LDPC code design for bit-metric decod- ing,” in Proc. 2015 IEEE International Symposium on Information Theory (ISIT), Jun. 2015.

[135] F. Steiner, G. Liva, and G. Bcherer, “Ultra-sparse non-binary LDPC codes for probabilistic ampli- tude shaping,” arXiv:1708.05558, Aug. 2017.

[136] T. Prinz, P. Yuan, G. Bocherer, F. Steiner, O. Iscan, R. Bohnke, and W. Xu, “Polar coded proba- bilistic amplitude shaping for short packets,” in Proc. 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Jul. 2017.

[137] O. ˙Is¸can, R. Bo¨hnke, and W. Xu, “Shaped polar codes for higher order modulation,” IEEE Commun. Lett., vol. 22, no. 2, pp. 252–255, Feb. 2018.

[138] N. S. Loghin, J. Zo¨llner, B. Mouhouche, D. Ansorregui, J. Kim, and S.-I. Park, “Non-uniform constellations for ATSC 3.0,” IEEE Trans. Broadcast., vol. 62, no. 1, pp. 197–203, Mar. 2016.

[139] M. El-Hajjar and L. Hanzo, “EXIT charts for system design and analysis,” IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 127–153, 2014.

[140] J. Hou, P. H. Siegel, L. B. Milstein, and H. D. Pfister, “Capacity-approaching bandwidth-efficient coded modulation schemes based on low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 49, no. 9, pp. 2141–2155, 2003.

[141] S. Benedetto, R. Garello, and G. Montorsi, “A search for good convolutional codes to be used in the construction of turbo codes,” IEEE Trans. Commun., vol. 46, no. 9, pp. 1101–1105, Sep. 1998.

[142] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Regular and irregular progressive edge-growth Tan- ner graphs,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 386–398, Jan. 2005.

[143] C. Poulliat, M. Fossorier, and D. Declercq, “Design of regular (2, dc)-LDPC codes over GF(q) using their binary images,” IEEE Trans. Commun., vol. 56, no. 10, pp. 1626–1635, Oct. 2008.

[144] R. G. Gallager, Information Theory and Reliable Communication. Wiley, 1968.

[145] T. Matsumine, B. M. Kurkoski, and H. Ochiai, “Construction d lattice decoding and its application to bch code lattices,” in Proc. 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–6, 2018.

[146] W. Kositwattanarerk and F. Oggier, “Connections between construction d and related constructions of lattices,” arXiv:1308.6175, Aug. 2013.

[147] M. P. C. Fossorier and S. Lin, “Soft-decision decoding of linear block codes based on ordered statistics,” IEEE Trans. Inf. Theory, vol. 41, no. 5, pp. 1379–1396, Sep. 1995.

[148] P. R. Branco da Silva and D. Silva, “Multilevel LDPC lattices with efficient encoding and decoding and a generalization of construction D’,” ArXiv e-prints, vol. abs/1712.08201, December 2017.

[149] A. Sakzad, M. Sadeghi, and D. Panario, “Construction of turbo lattices,” in Proceedings 48th An- nual Allerton Conference on Communication, Control, and Computing, pp. 14–21, Monticello, IL, USA, September 2010.

[150] R. H. Morelos-Zaragoza, The Art of Error Correcting Coding. John Wiley & Sons, 2006.

[151] A. Ingber, R. Zamir, and M. Feder, “Finite-dimensional infinite constellations.” IEEE Trans. Inf. Theory, vol. 59, no. 3, pp. 1630–1656, 2013.

[152] D. Agrawal and A. Vardy, “Generalized minimum distance decoding in Euclidean space: Perfor- mance analysis,” IEEE Trans. Inf. Theory, vol. 46, no. 1, pp. 60–83, 2000.

[153] O. F. Acikel and W. E. Ryan, “Punctured turbo-codes for BPSK/QPSK channels,” IEEE Trans. Commun., vol. 47, no. 9, pp. 1315–1323, Sep. 1999.

[154] T. Matsumine and H. Ochiai, “Triple parallel concatenated trellis coded modulation,” in Proc. 2017 IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1–5, 2017.

[155] C. Fragouli and R. D. Wesel, “Turbo-encoder design for symbol-interleaved parallel concatenated trellis-coded modulation,” IEEE Trans. Commun., vol. 49, no. 3, pp. 425–435, Mar. 2001.

[156] D. Divsalar and F. Pollara, “Multiple turbo codes for deep-space communications,” JPL TDA Progr. Rep., pp. 66–77, May 1995.

[157] M. Breiling, “A logarithmic upper bound on the minimum distance of turbo codes,” IEEE Trans. Inf. Theory, vol. 50, no. 8, pp. 1692–1710, Aug. 2004.

[158] N. Kahale and R. Urbanke, “On the minimum distance of parallel and serially concatenated codes,” in Proc. 1998 IEEE International Symposium on Information Theory (ISIT), p. 31, 1998.

[159] S. ten Brink, “Convergence of multidimensional iterative decoding schemes,” in Proc. 35th Asilo- mar Conf. Signals, Systems and Computers (ACSSC), vol. 1, pp. 270–274, 2001.

[160] K. S. Arkoudogiannis, C. E. Dimakis, and K. V. Koutsouvelis, “Turbo trellis-coded modulation: A weight spectrum view at the odd-even constraint,” in Proc. 9th International Symposium on Turbo Codes and Iterative Information Processing (ISTC), pp. 76–80, 2016.

[161] Y.-J. Wu and H. Ogiwara, “Symbol-interleaver design for turbo trellis-coded modulation,” IEEE Commun. Lett., vol. 8, no. 10, pp. 632–634, Oct. 2004.

[162] H. Chen and A. Haimovich, “EXIT charts for turbo trellis-coded modulation,” IEEE Commun. Lett., vol. 8, no. 11, pp. 668–670, Nov. 2004.

[163] C. He, M. Lentmaier, D. J. Costello, and K. S. Zigangirov, “Joint permutor analysis and design for multiple turbo codes,” IEEE Trans. Inf. Theory, vol. 52, no. 9, pp. 4068–4083, Sep. 2006.

[164] E. Boutillon and D. Gnaedig, “Maximum spread of D-dimensional multiple turbo codes,” IEEE Trans. Commun., vol. 53, no. 8, pp. 1237–1242, Aug. 2005.

[165] J. Han and O. Y. Takeshita, “On the decoding structure for multiple turbo codes,” in Proc. 2001 IEEE International Symposium on Information Theory (ISIT), p. 98, 2001.

[166] T. Matsumine and H. Ochiai, “A serial concatenation of binary-input nonbinary-output convolu- tional code and recursive convolutional lattice code,” IEEE Access, vol. 6, pp. 24 809–24 817, 2018.

[167] M. Nakamura and H. Torii, “Ternary phase shift keying and its performance,” in Proc. 2002 IEEE International International Symposium on Wireless Personal Multimedia Communications (WPMC), pp. 1284–1288, Oct. 2002.

[168] M. Tanahashi and H. Ochiai, “A multilevel coded modulation approach for hexagonal signal con- stellation,” IEEE Trans. Wireless Commun., vol. 8, no. 10, pp. 4993–4997, Oct. 2009.

[169] M. Abdelaziz and T. A. Gulliver, “Ternary convolutional codes for ternary phase shift keying,” IEEE Commun. Lett., vol. 20, no. 9, pp. 1709–1712, Aug. 2016.

[170] M. Bingeman and A. K. Khandani, “Symbol-based turbo codes,” IEEE Commun. Lett., vol. 3, no. 10, pp. 285–287, Oct. 1999.

[171] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial concatenation of interleaved codes: Performance analysis, design, and iterative decoding,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 909–926, May 1998.

[172] B. Scanavino, G. Montorsi, and S. Benedetto, “Convergence properties of iterative decoders work- ing at bit and symbol level,” in Proc. 2001 IEEE Global Communications Conference (GLOBE- COM), vol. 2, pp. 1037–1041, 2001.

[173] H. Ochiai, “Exact and approximate distributions of instantaneous power for pulse-shaped single- carrier signals,” IEEE Trans. Wireless Commun., vol. 10, no. 2, pp. 682–692, Feb. 2011.

[174] ——, “An analysis of band-limited communication systems from amplifier efficiency and distortion perspective,” IEEE Trans. Commun., vol. 61, no. 4, pp. 1460–1472, Apr. 2013.

[175] D. Divsalar and E. Pollara, “Turbo codes for PCS applications,” in Proc. 1995 IEEE International Conference on Communications (ICC), vol. 1, pp. 54–59, Jun. 1995.

[176] T. Matsumine, T. Koike-Akino, D. S. Millar, K. Kojima, and K. Parsons, “Short lattice-based shap- ing approach exploiting non-binary coded modulation,” in Proc. 45th European Conference on Optical Communication (ECOC), pp. 1–3, 2019.

[177] J. Conway and N. Sloane, “Fast quantizing and decoding and algorithms for lattice quantizers and codes,” IEEE Trans. Inf. Theory, vol. 28, no. 2, pp. 227–232, 1982.

[178] B. M. Kurkoski, “Encoding and indexing of lattice codes,” IEEE Trans. Inf. Theory, vol. 64, no. 9, pp. 6320–6332, 2018.

[179] J. Conway and N. Sloane, “Voronoi regions of lattices, second moments of polytopes, and quanti- zation,” IEEE Trans. Inf. Theory, vol. 28, no. 2, pp. 211–226, 1982.

[180] T. Matsumine, T. Koike-Akino, D. S. Millar, K. Kojima, and K. Parsons, “Polar-coded modula- tion for joint channel coding and probabilistic shaping,” in Proc. Optical Fiber Communication Conference (OFC), p. M4B.2, 2019.

[181] P. Trifonov and V. Miloslavskaya, “Polar subcodes,” IEEE J. Sel. Areas Commun., vol. 34, no. 2, pp. 254–266, 2016.

[182] P. Schulte and G. Bo¨cherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory, vol. 62, no. 1, pp. 430–434, 2016.

[183] T. Fehenberger, D. S. Millar, T. Koike-Akino, K. Kojima, and K. Parsons, “Multiset-partition dis- tribution matching,” IEEE Trans. Commun., vol. 67, no. 3, pp. 1885–1893, Nov. 2018.

[184] D. S. Millar, T. Fehenberger, T. Koike-Akino, K. Kojima, and K. Parsons, “Distribution matching for high spectral efficiency optical communication with multiset partitions,” J. Lightw. Technol., vol. 37, no. 2, pp. 517–523, Mar. 2019.

[185] A. Amari, S. Goossens, Y. C. Gultekin, O. Vassilieva, I. Kim, T. Ikeuchi, C. Okonkwo, F. M. Willems, and A. Alvarado, “Introducing enumerative sphere shaping for optical communication systems with short blocklengths,” arXiv preprint arXiv:1904.06601, 2019.

[186] P. Schulte and F. Steiner, “Divergence-optimal fixed-to-fixed length distribution matching with shell mapping,” IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 620–623, 2019.

[187] J. Honda and H. Yamamoto, “Polar coding without alphabet extension for asymmetric models,” IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 7829–7838, 2013.

[188] M. Mondelli, S. H. Hassani, and R. L. Urbanke, “How to achieve the capacity of asymmetric channels,” IEEE Trans. Inf. Theory, vol. 64, no. 5, pp. 3371–3393, 2018.

[189] Y. Polyanskiy, H. V. Poor, and S. Verdu´, “Channel coding rate in the finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2307–2359, May 2010.

[190] E. Agrell, J. Lassing, E. G. Strom, and T. Ottosson, “On the optimality of the binary reflected Gray code,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3170–3182, 2004.

[191] O. ˙Is¸can, R. Bo¨hnke, and W. Xu, “Probabilistically shaped multi-level coding with polar codes for fading channels,” in 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–5, 2018.

[192] Y. C. Gultekin, W. v. Houtum, A. Koppelaar, and F. M. Willems, “Partial enumerative sphere shap- ing,” arXiv preprint arXiv:1904.04528v2, 2019.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る