リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Bridging electrocatalyst and cocatalyst studies for solar hydrogen production via water splitting」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Bridging electrocatalyst and cocatalyst studies for solar hydrogen production via water splitting

Saruyama, Masaki Pelicano, Christian Mark Teranishi, Toshiharu 京都大学 DOI:10.1039/D1SC06015E

2022.02.08

概要

Solar-driven water-splitting has been considered as a promising technology for large-scale generation of sustainable energy for succeeding generations. Recent intensive efforts have led to the discovery of advanced multi-element-compound water-splitting electrocatalysts with very small overpotentials in anticipation of their application to solar cell-assisted water electrolysis. Although photocatalytic and photoelectrochemical water-splitting systems are more attractive approaches for scaling up without much technical complexity and high investment costs, improving their efficiencies remains a huge challenge. Hybridizing photocatalysts or photoelectrodes with cocatalysts has been an effective scheme to enhance their overall solar energy conversion efficiencies. However, direct integration of highly-active electrocatalysts as cocatalysts introduces critical factors that require careful consideration. These additional requirements limit the design principle for cocatalysts compared with electrocatalysts, decelerating development of cocatalyst materials. This perspective first summarizes the recent advances in electrocatalyst materials and the effective strategies to assemble cocatalyst/photoactive semiconductor composites, and further discusses the core principles and tools that hold the key in designing advanced cocatalysts and generating a deeper understanding on how to further push the limits of water-splitting efficiency.

この論文で使われている画像

参考文献

1 T. M. L. Wigley, Clim. Chang., 2017, 147, 31–45.

2 S. C. Peter, ACS Energy Lett, 2018, 3, 1557–1561.

3 N. S´

anchez-Bastardo, R. Schl¨

ogl and H. Ruland, Ind. Eng.

Chem. Res., 2021, 60, 11855–11881.

4 Y. Nonobe, IEEJ Trans. Electr. Electron. Eng., 2017, 12, 5–9.

5 U. P. M. Ashik, W. M. A. Wan Daud and H. F. Abbas, Renew.

Sustain. Energy Rev., 2015, 44, 221–256.

6 S. Dutta, Energy Fuels, 2021, 35, 11613–11639.

7 M. R. Shaner, H. A. Atwater, N. S. Lewis and

E. W. McFarland, Energy Environ. Sci., 2016, 9, 2354–2371.

8 J. Jia, L. C. Seitz, J. D. Benck, Y. Huo, Y. Chen, J. W. D. Ng,

T. Bilir, J. S. Harris and T. F. Jaramillo, Nat. Commun.,

2016, 7, 1–6.

9 S. Wang, A. Lu and C.-J. Zhong, Nano Convergence, 2021, 8,

1–23.

10 Q. Wang and K. Domen, Chem. Rev., 2019, 120, 919–985.

11 D. Kang, T. W. Kim, S. R. Kubota, A. C. Cardiel, H. G. Cha

and K.-S. Choi, Chem. Rev., 2015, 115, 12839–12887.

12 T. Hisatomi and K. Domen, Nat. Catal., 2019, 2, 387–399.

13 H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara,

M. Yamaguchi, Y. Kuromiya, H. Tokudome, S. Akiyama,

T. Watanabe, R. Narushima, S. Okunaka, N. Shibata,

T. Takata, T. Hisatomi and K. Domen, Nature, 2021, 598,

304–307.

14 C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang and J. Tang,

Chem. Soc. Rev., 2017, 46, 4645–4660.

15 H. Wu, H. L. Tan, C. Y. Toe, J. Scott, L. Wang, R. Amal and

Y. H. Ng, Adv. Mater., 2020, 32, 1–21.

16 T. Higashi, H. Nishiyama, Y. Suzuki, Y. Sasaki, T. Hisatomi,

M. Katayama, T. Minegishi, K. Seki, T. Yamada and

K. Domen, Angew. Chem., Int. Ed., 2019, 58, 2300–2304.

17 J. Yang, D. Wang, H. Han and C. Li, Acc. Chem. Res., 2013,

46, 1900–1909.

18 K. Takanabe, ACS Catal., 2017, 7, 8006–8022.

19 X. Ning and G. Lu, Nanoscale, 2020, 12, 1213–1223.

20 J. Ran, J. Zhang, J. Yu, M. Jaroniec and S. Z. Qiao, Chem. Soc.

Rev., 2014, 43, 7787–7812.

21 W. Qiao, H. B. Tao, B. Liu and J. Chen, Small, 2019, 15,

1804391.

© 2022 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Chemical Science

22 Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff,

J. K. Nørskov and T. F. Jaramillo, Science, 2017, 355, 6321.

23 J. Zhu, L. Hu, P. Zhao, L. Y. S. Lee and K. Y. Wong, Chem.

Rev., 2020, 120, 851–918.

24 J. Song, C. Wei, Z.-F. Huang, C. Liu, L. Zeng, X. Wang and

Z. J. Xu, Chem. Soc. Rev., 2020, 49, 2196–2214.

25 J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin,

J. G. Chen, S. Pandelov and U. Stimming, J. Electrochem.

Soc., 2005, 152, J23.

26 T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen,

S. Horch and I. Chorkendorff, Science, 2007, 317, 100–102.

27 P. Liu, J. Zhu, J. Zhang, P. Xi, K. Tao, D. Gao and D. Xue, ACS

Energy Lett, 2017, 2, 745–752.

28 Y. Chen, K. Yang, B. Jiang, J. Li, M. Zeng and L. Fu, J. Mater.

Chem. A, 2017, 5, 8187–8208.

29 S. M. El-Refaei, P. A. Russo and N. Pinna, ACS Appl. Mater.

Interfaces, 2021, 13, 22077–22097.

30 Y. Jiang and Y. Lu, Nanoscale, 2020, 12, 9327–9351.

31 M. Kuang, W. Huang, C. Hegde, W. Fang, X. Tan, C. Liu,

J. Ma and Q. Yan, Mater. Horizons, 2020, 7, 32–53.

32 G. Fu and J.-M. Lee, J. Mater. Chem. A, 2019, 7, 9386–9405.

33 C. Tang, L. Gan, R. Zhang, W. Lu, X. Jiang, A. M. Asiri,

X. Sun, J. Wang and L. Chen, Nano Lett., 2016, 16, 6617–

6621.

34 I. H. Kwak, I. S. Kwon, T. T. Debela, H. G. Abbas, Y. C. Park,

J. Seo, J.-P. Ahn, J. H. Lee, J. Park and H. S. Kang, ACS Nano,

2020, 14, 11995–12005.

35 A. A. Rezaie, E. Lee, D. Luong, J. A. Yapo and B. P. T. Fokwa,

ACS Mater. Lett., 2021, 3, 313–319.

36 S. H. Park, T. H. Jo, M. H. Lee, K. Kawashima, C. B. Mullins,

H.-K. Lim and D. H. Youn, J. Mater. Chem. A, 2021, 9, 4945–

4951.

37 X. Zheng, Y. Chen, X. Bao, S. Mao, R. Fan and Y. Wang, ACS

Catal., 2020, 10, 11634–11642.

38 S. Zhao, J. Berry-Gair, W. Li, G. Guan, M. Yang, J. Li, F. Lai,

F. Cor`

a, K. Holt, D. J. L. Brett, G. He and I. P. Parkin, Adv.

Sci., 2020, 7, 1903674.

39 T. Naito, T. Shinagawa, T. Nishimoto and K. Takanabe,

Inorg. Chem. Front., 2021, 8, 2900–2917.

40 H. Over, ACS Catal., 2021, 11, 8848–8871.

41 P. M. Bodhankar, P. B. Sarawade, G. Singh, A. Vinu and

D. S. Dhawale, J. Mater. Chem. A, 2021, 9, 3180–3208.

42 M. E. C. Pascuzzi, A. J. W. Man, A. Goryachev, J. P. Hofmann

and E. J. M. Hensen, Catal. Sci. Technol., 2020, 10, 5593–

5601.

43 I. C. Man, H.-Y. Su, F. Calle-Vallejo, H. A. Hansen,

J. I. Mart´ınez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo,

J. K. Nørskov and J. Rossmeisl, ChemCatChem, 2011, 3,

1159–1165.

44 B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich,

M. Garc´ıa-Melchor, L. Han, J. Xu, M. Liu, L. Zheng,

F. P. G. de Arquer, C. T. Dinh, F. Fan, M. Yuan,

E. Yassitepe, N. Chen, T. Regier, P. Liu, Y. Li, P. De Luna,

A. Janmohamed, H. L. Xin, H. Yang, A. Vojvodic and

E. H. Sargent, Science, 2016, 352, 333–337.

Chem. Sci., 2022, 13, 2824–2840 | 2837

Open Access Article. Published on 08 February 2022. Downloaded on 6/30/2022 3:26:55 AM.

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

Chemical Science

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

45 S. Kim, H. Mizuno, M. Saruyama, M. Sakamoto, M. Haruta,

H. Kurata, T. Yamada, K. Domen and T. Teranishi, Chem.

Sci., 2020, 11, 1523–1530.

46 S. Anantharaj, S. R. Ede, K. Sakthikumar, K. Karthick,

S. Mishra and S. Kundu, ACS Catal., 2016, 6, 8069–8097.

47 T. Zhang, Y. Zhu and J. Y. Lee, J. Mater. Chem. A, 2018, 6,

8147–8158.

48 X. Shang, J.-H. Tang, B. Dong and Y. Sun, Sustain. Energy

Fuels, 2020, 4, 3211–3228.

49 G. Zhang, Y. Li, X. Xiao, Y. Shan, Y. Bai, H.-G. Xue, H. Pang,

Z. Tian and Q. Xu, Nano Lett., 2021, 21, 3016–3025.

50 D. Guan, G. Ryu, Z. Hu, J. Zhou, C.-L. Dong, Y.-C. Huang,

K. Zhang, Y. Zhong, A. C. Komarek, M. Zhu, X. Wu,

C.-W. Pao, C.-K. Chang, H.-J. Lin, C.-T. Chen, W. Zhou

and Z. Shao, Nat. Commun., 2020, 11, 3376.

51 M. Cui, C. Yang, B. Li, Q. Dong, M. Wu, S. Hwang, H. Xie,

X. Wang, G. Wang and L. Hu, Adv. Energy Mater., 2021,

11, 2002887.

52 F. Dionigi and P. Strasser, Adv. Energy Mater., 2016, 6,

1600621.

53 D. Liu, H. Ai, J. Li, M. Fang, M. Chen, D. Liu, X. Du, P. Zhou,

F. Li, K. H. Lo, Y. Tang, S. Chen, L. Wang, G. Xing and

H. Pan, Adv. Energy Mater., 2020, 10, 2002464.

54 M. Y. Zu, C. Wang, L. Zhang, L. R. Zheng and H. G. Yang,

Mater. Horizons, 2019, 6, 115–121.

55 Y. Zhu, W. Zhou, Y. Zhong, Y. Bu, X. Chen, Q. Zhong, M. Liu

and Z. Shao, Adv. Energy Mater., 2017, 7, 1602122.

56 D. Wu, K. Kusada, S. Yoshioka, T. Yamamoto, T. Toriyama,

S. Matsumura, Y. Chen, O. Seo, J. Kim, C. Song, S. Hiroi,

O. Sakata, T. Ina, S. Kawaguchi, Y. Kubota, H. Kobayashi

and H. Kitagawa, Nat. Commun., 2021, 12, 1145.

57 J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu,

X. Zhuang and X. Feng, Angew. Chem., Int. Ed., 2016, 55,

6702–6707.

58 H. Xu, J. Wei, K. Zhang, Y. Shiraishi and Y. Du, ACS Appl.

Mater. Interfaces, 2018, 10, 29647–29655.

59 C. Zhu, Z. Yin, W. Lai, Y. Sun, L. Liu, X. Zhang, Y. Chen and

S. L. Chou, Adv. Energy Mater., 2018, 8, 1802327.

60 J. Jiang, Q. Liu, C. Zeng and L. Ai, J. Mater. Chem. A, 2017, 5,

16929–16935.

61 B. Xiong, L. Chen and J. Shi, ACS Catal., 2018, 8, 3688–3707.

62 C. C. L. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, J.

Am. Chem. Soc., 2013, 135, 16977–16987.

63 M. Wang, L. Zhang, Y. He and H. Zhu, J. Mater. Chem. A,

2021, 9, 5320–5363.

64 Y. Garsany, O. A. Baturina, K. E. Swider-Lyons and

S. S. Kocha, Anal. Chem., 2010, 82, 6321–6328.

65 N. K. Chaudhari, H. Jin, B. Kim and K. Lee, Nanoscale, 2017,

9, 12231–12247.

66 Y. Garsany, O. A. Baturina, K. E. Swider-Lyons and

S. S. Kocha, Anal. Chem., 2010, 82, 6321–6328.

67 C. Zhu, Q. Shi, S. Feng, D. Du and Y. Lin, ACS Energy Lett,

2018, 3, 1713–1721.

68 M. B. Stevens, L. J. Enman, A. S. Batchellor, M. R. Cosby,

A. E. Vise, C. D. M. Trang and S. W. Boettcher, Chem.

Mater., 2016, 29, 120–140.

69 S. Jin, ACS Energy Lett, 2017, 2, 1937–1938.

2838 | Chem. Sci., 2022, 13, 2824–2840

View Article Online

Perspective

70 W. Li, D. Xiong, X. Gao and L. Liu, Chem. Commun., 2019,

55, 8744–8763.

71 P. Chen, K. Xu, Z. Fang, Y. Tong, J. Wu, X. Lu, X. Peng,

H. Ding, C. Wu and Y. Xie, Angew. Chem., Int. Ed., 2015,

54, 14710–14714.

72 W. Cai, R. Chen, H. Yang, H. B. Tao, H.-Y. Wang, J. Gao,

W. Liu, S. Liu, S.-F. Hung and B. Liu, Nano Lett., 2020, 20,

4278–4285.

73 J. Xiao, J. J. M. Vequizo, T. Hisatomi, J. Rabeah,

M. Nakabayashi, Z. Wang, Q. Xiao, H. Li, Z. Pan,

M. Krause, N. Yin, G. Smith, N. Shibata, A. Br¨

uckner,

A. Yamakata, T. Takata and K. Domen, J. Am. Chem. Soc.,

2021, 143, 10059–10064.

74 S. Bai, W. Yin, L. Wang, Z. Li and Y. Xiong, RSC Adv., 2016,

6, 57446–57463.

75 Y. Hosogi, Y. Shimodaira, H. Kato, H. Kobayashi and

A. Kudo, Chem. Mater., 2008, 20, 1299–1307.

76 T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata,

V. Nandal, K. Seki, T. Hisatomi and K. Domen, Nature,

2020, 581, 411–414.

77 J. Zhao, B. Fu, X. Li, Z. Ge, B. Ma and Y. Chen, ACS Appl.

Energy Mater., 2020, 3, 10910–10919.

78 D. Ren, Z. Z. Liang, Y. H. Ng, P. Zhang, Q. Xiang and X. Li,

Chem. Eng. J., 2020, 390, 124496.

79 X. Lu, J. Xie, S. Liu, A. Adamski, X. Chen and X. Li, ACS

Sustain. Chem. Eng., 2018, 6, 13140–13150.

80 L. Tian, S. Min, F. Wang and Z. Zhang, J. Phys. Chem. C,

2019, 123, 28640–28650.

81 D. Ren, Z. Z. Liang, Y. H. Ng, P. Zhang, Q. Xiang and X. Li,

Chem. Eng. J., 2020, 390, 124496.

82 J. Zhang, W. Yao, C. Huang, P. Shi and Q. Xu, J. Mater.

Chem. A, 2017, 5, 12513–12519.

83 Z. Qin, Y. Chen, Z. Huang, J. Su and L. Guo, J. Mater. Chem.

A, 2017, 5, 19025–19035.

84 C. Cheng, S. Zong, J. Shi, F. Xue, Y. Zhang, X. Guan,

B. Zheng, J. Deng and L. Guo, Appl. Catal. B Environ.,

2020, 265, 118620.

85 W. Zhong, W. Tu, S. Feng and A. Xu, J. Alloys Compd., 2019,

772, 669–674.

86 R. M. Irfan, M. H. Tahir, S. Iqbal, M. Nadeem, T. Bashir,

M. Maqsood, J. Zhao and L. Gao, J. Mater. Chem. C, 2021,

9, 3145–3154.

87 Z.-K. Shen, Y.-J. Yuan, P. Wang, W. Bai, L. Pei, S. Wu,

Z.-T. Yu and Z. Zou, ACS Appl. Mater. Interfaces, 2020, 12,

17343–17352.

88 H. Du, H.-L. Guo, Y.-N. Liu, X. Xie, K. Liang, X. Zhou,

X. Wang and A.-W. Xu, ACS Appl. Mater. Interfaces, 2016,

8, 4023–4030.

89 Y. Liu, B. Wang, Q. Zhang, S. Yang, Y. Li, J. Zuo, H. Wang

and F. Peng, Green Chem., 2020, 22, 238–247.

90 X. Sun and H. Du, ACS Sustain. Chem. Eng., 2019, 7, 16320–

16328.

91 K. Chang, Z. Mei, T. Wang, Q. Kang, S. Ouyang and J. Ye,

ACS Nano, 2014, 8, 7078–7087.

92 Y. Liu, B. Wang, Q. Zhang, S. Yang, Y. Li, J. Zuo, H. Wang

and F. Peng, Green Chem., 2020, 22, 238–247.

© 2022 The Author(s). Published by the Royal Society of Chemistry

Open Access Article. Published on 08 February 2022. Downloaded on 6/30/2022 3:26:55 AM.

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

Perspective

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

93 Y. Chao, J. Zheng, H. Zhang, Y. Ma, F. Li, Y. Tan and Z. Zhu,

Energy Technol., 2018, 6, 2132–2138.

94 B. Ma, Y. Liu, J. Li, K. Lin, W. Liu and H. Zhan, Int. J.

Hydrogen Energy, 2016, 41, 22009–22016.

95 X. Liang, J. Xie, J. Xiong, L. Gong and C. M. Li, Sustain.

Energy Fuels, 2018, 2, 2053–2059.

96 Y. Pihosh, V. Nandal, T. Minegishi, M. Katayama,

T. Yamada, K. Seki, M. Sugiyama and K. Domen, ACS

Energy Lett, 2020, 5, 2492–2497.

97 X. Zong, J. Han, G. Ma, H. Yan, G. Wu and C. Li, J. Phys.

Chem. C, 2011, 115, 12202–12208.

98 X. Zong, J. Han, G. Ma, H. Yan, G. Wu and C. Li, J. Phys.

Chem. C, 2011, 115, 12202–12208.

99 J. Chu, G. Sun, X. Han, X. Chen, J. Wang, W. Hu, I. Waluyo,

A. Hunt, Y. Du, B. Song and P. Xu, Nanoscale, 2019, 11,

15633–15640.

100 K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue

and K. Domen, J. Phys. Chem. B, 2006, 110, 13753–13758.

101 E. Tsuji, R. Nanbu, Y. Degami, K. Hirao, T. Watanabe,

N. Matsumoto, S. Suganuma and N. Katada, Part. Part.

Syst. Charact., 2020, 37, 2000053.

102 Y. Negishi, Y. Matsuura, R. Tomizawa, W. Kurashige,

Y. Niihori, T. Takayama, A. Iwase and A. Kudo, J. Phys.

Chem. C, 2015, 119, 11224–11232.

103 L. Wei, Z. Liu, Z. Guo, M. Ruan, Y. Meng and W. Yan, ACS

Appl. Energy Mater., 2021, 4, 7233–7241.

104 Z. Qin, Y. Chen, X. Wang, X. Guo and L. Guo, ACS Appl.

Mater. Interfaces, 2016, 8, 1264–1272.

105 S. Meng, Y. Cui, H. Wang, X. Zheng, X. Fu and S. Chen,

Dalton Trans., 2018, 47, 12671–12683.

106 S. Guan, X. Fu, Y. Zhang and Z. Peng, Chem. Sci., 2018, 9,

1574–1585.

107 X. L. Yin, L. L. Li, W. J. Jiang, Y. Zhang, X. Zhang, L. J. Wan

and J. S. Hu, ACS Appl. Mater. Interfaces, 2016, 8, 15258–

15266.

108 X. Liu, Y. Zhao, X. Yang, Q. Liu, X. Yu, Y. Li, H. Tang and

T. Zhang, Appl. Catal. B Environ., 2020, 275, 119144.

109 J. Dong, Y. Shi, C. Huang, Q. Wu, T. Zeng and W. Yao, Appl.

Catal. B Environ., 2019, 243, 27–35.

110 X. Hong, X. Yu, L. Wang, Q. Liu, J. Sun and H. Tang, Inorg.

Chem., 2021, 60, 12506–12516.

111 Y. Zhao, Y. Lu, L. Chen, X. Wei, J. Zhu and Y. Zheng, ACS

Appl. Mater. Interfaces, 2020, 12, 46073–46083.

112 K. Wenderich and G. Mul, Chem. Rev., 2016, 116, 14587–

14619.

113 Z. Wang, Y. Inoue, T. Hisatomi, R. Ishikawa, Q. Wang,

T. Takata, S. Chen, N. Shibata, Y. Ikuhara and K. Domen,

Nat. Catal., 2018, 1, 756–763.

114 G. Ma, J. Liu, T. Hisatomi, T. Minegishi, Y. Moriya,

M. Iwase, H. Nishiyama, M. Katayama, T. Yamada and

K. Domen, Chem. Commun., 2015, 51, 4302–4305.

115 R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou,

H. Han and C. Li, Nat. Commun., 2013, 4, 1–7.

116 I. Vamvasakis, I. T. Papadas, T. Tzanoudakis, C. Drivas,

S. A. Choulis, S. Kennou and G. S. Armatas, ACS Catal.,

2018, 8, 8726–8738.

© 2022 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Chemical Science

117 W. Liu, X. Wang, H. Yu and J. Yu, ACS Sustain. Chem. Eng.,

2018, 6, 12436–12445.

118 Y. Dong, L. Kong, P. Jiang, G. Wang, N. Zhao, H. Zhang and

B. Tang, ACS Sustain. Chem. Eng., 2017, 5, 6845–6853.

119 X. Lu, C. Ying Toe, F. Ji, W. Chen, X. Wen, R. J. Wong,

J. Seidel, J. Scott, J. N. Hart and Y. H. Ng, ACS Appl. Mater.

Interfaces, 2020, 12, 8324–8332.

120 S. Min, Y. Lei, H. Sun, J. Hou, F. Wang, E. Cui, S. She, Z. Jin,

J. Xu and X. Ma, Mol. Catal., 2017, 440, 190–198.

121 T. Di, B. Zhu, J. Zhang, B. Cheng and J. Yu, Appl. Surf. Sci.,

2016, 389, 775–782.

122 K.-Q. Lu, M.-Y. Qi, Z.-R. Tang and Y.-J. Xu, Langmuir, 2019,

35, 11056–11065.

123 F. E. Osterloh, Chem. Soc. Rev., 2013, 42, 2294–2320.

124 R. Hu, L. Meng, J. Zhang, X. Wang, S. Wu, Z. Wu, R. Zhou,

L. Li, D. S. Li and T. Wu, Nanoscale, 2020, 12, 8875–8882.

125 Y. Pihosh, T. Minegishi, V. Nandal, T. Higashi,

M. Katayama, T. Yamada, Y. Sasaki, K. Seki, Y. Suzuki,

M. Nakabayashi, M. Sugiyama and K. Domen, Energy

Environ. Sci., 2020, 13, 1519–1530.

126 X. Zhong, H. He, J. Du, Q. Ren, J. Huang, Y. Tang, J. Wang,

L. Yang, F. Dong, L. Bian and Y. Zhou, Electrochim. Acta,

2019, 304, 301–311.

127 S. S. M. Bhat, S. A Lee, T. H. Lee, C. Kim, J. Park, T.-W. Lee,

S. Y. Kim and H. W. Jang, ACS Appl. Energy Mater., 2020, 3,

5646–5656.

128 D. He, R. T. Gao, S. Liu, M. Sun, X. Liu, K. Hu, Y. Su and

L. Wang, ACS Catal., 2020, 10, 10570–10576.

129 R. T. Gao, L. Wu, S. Liu, K. Hu, X. Liu, J. Zhang and L. Wang,

J. Mater. Chem. A, 2021, 9, 6298–6305.

130 L. Wang, F. Dionigi, N. Truong Nguyen, R. Kirchgeorg,

M. Gliech, S. Grigorescu, P. Strasser and P. Schmuki,

Chem. Mater., 2015, 27, 2360–2366.

131 M. W. Kanan and D. G. Nocera, Science, 2008, 321, 1072–

1075.

132 J. Zhang, Y. Huang, X. Lu, J. Yang and Y. Tong, ACS Sustain.

Chem. Eng., 2021, 9, 8306–8314.

133 A. A. Haleem, S. Majumder, N. Perumandla, Z. N. Zahran

and Y. Naruta, J. Phys. Chem. C, 2017, 121, 20093–20100.

134 J. Seo, T. Takata, M. Nakabayashi, T. Hisatomi, N. Shibata,

T. Minegishi and K. Domen, J. Am. Chem. Soc., 2015, 137,

12780–12783.

135 Y. Gao, G. Yang, Y. Dai, X. Li, J. Gao, N. Li, P. Qiu and L. Ge,

ACS Appl. Mater. Interfaces, 2020, 12, 17364–17375.

136 T. W. Kim and K. S. Choi, Science, 2014, 343, 990–994.

137 L. Wang, F. Dionigi, N. Truong Nguyen, R. Kirchgeorg,

M. Gliech, S. Grigorescu, P. Strasser and P. Schmuki,

Chem. Mater., 2015, 27, 2360–2366.

138 A. A. Haleem, N. Perumandla and Y. Naruta, ACS Omega,

2019, 4, 7815–7821.

139 J. Chang and E. R. Waclawik, RSC Adv., 2014, 4, 23505–

23527.

140 M. S. Bakshi, Cryst. Growth Des., 2015, 16, 1104–1133.

141 N. Sakamoto, H. Ohtsuka, T. Ikeda, K. Maeda, D. Lu,

M. Kanehara, K. Teramura, T. Teranishi and K. Domen,

Nanoscale, 2009, 1, 106–109.

Chem. Sci., 2022, 13, 2824–2840 | 2839

Open Access Article. Published on 08 February 2022. Downloaded on 6/30/2022 3:26:55 AM.

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

Chemical Science

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

142 K. Maeda, N. Sakamoto, T. Ikeda, H. Ohtsuka, A. Xiong,

D. Lu, M. Kanehara, T. Teranishi and K. Domen, Chem.

–Eur. J., 2010, 16, 7750–7759.

143 K. Maeda, A. Xiong, T. Yoshinaga, T. Ikeda, N. Sakamoto,

T. Hisatomi, M. Takashima, D. Lu, M. Kanehara,

T. Setoyama, T. Teranishi and K. Domen, Angew. Chem.,

Int. Ed., 2010, 49, 4096–4099.

144 T. Ikeda, A. Xiong, T. Yoshinaga, K. Maeda, K. Domen and

T. Teranishi, J. Phys. Chem. C, 2012, 117, 2467–2473.

145 T. Yoshinaga, M. Saruyama, A. Xiong, Y. Ham, Y. Kuang,

R. Niishiro, S. Akiyama, M. Sakamoto, T. Hisatomi,

K. Domen and T. Teranishi, Nanoscale, 2018, 10, 10420–

10427.

146 T. Kawawaki, Y. Kataoka, M. Hirata, Y. Iwamatsu,

S. Hossain and Y. Negishi, Nanoscale Horizons, 2021, 6,

409–448.

147 S. Kim, T. Nishino, M. Saruyama, M. Sakamoto,

H. Kobayashi, S. Akiyama, T. Yamada, K. Domen and

T. Teranishi, ChemNanoMat, 2017, 3, 764–771.

148 M. Saruyama, S. Kim, T. Nishino, M. Sakamoto, M. Haruta,

H. Kurata, S. Akiyama, T. Yamada, K. Domen and

T. Teranishi, Chem. Sci., 2018, 9, 4830–4836.

149 T. Su, Q. Shao, Z. Qin, Z. Guo and Z. Wu, ACS Catal., 2018, 8,

2253–2276.

150 J. Zhu, S. Pang, T. Dittrich, Y. Gao, W. Nie, J. Cui, R. Chen,

H. An, F. Fan and C. Li, Nano Lett., 2017, 17, 6735–6741.

151 R. Chen, F. Fan, T. Dittrich and C. Li, Chem. Soc. Rev., 2018,

47, 8238.

152 R. T. Tung, Appl. Phys. Rev., 2014, 1, 011304.

153 Z. Wang, N. Xue and J. Chen, J. Phys. Chem. C, 2019, 123,

24404–24408.

154 M. Yoshida, A. Yamakata, K. Takanabe, J. Kubota,

M. Osawa and K. Domen, J. Am. Chem. Soc., 2009, 131,

13218–13219.

155 A. Yamakata and J. J. M. Vequizo, J. Photochem. Photobiol.,

C, 2019, 40, 234–243.

156 M. Okano, M. Sakamoto, T. Teranishi and Y. Kanemitsu, J.

Phys. Chem. Lett., 2014, 5, 2951–2956.

157 A. Yamakata, M. Kawaguchi, N. Nishimura, T. Minegishi,

J. Kubota and K. Domen, J. Phys. Chem. C, 2014, 118,

23897–23906.

158 F. M. Toma, J. K. Cooper, V. Kunzelmann, M. T. McDowell,

J. Yu, D. M. Larson, N. J. Borys, C. Abelyan, J. W. Beeman,

K. M. Yu, J. Yang, L. Chen, M. R. Shaner, J. Spurgeon,

F. A. Houle, K. A. Persson and I. D. Sharp, Nat. Commun.,

2016, 7, 1–11.

2840 | Chem. Sci., 2022, 13, 2824–2840

View Article Online

Perspective

159 T. Takashima, K. Hashimoto and R. Nakamura, J. Am.

Chem. Soc., 2012, 134, 1519–1527.

˜ ez, R. Nafria, S. Mart´ı-S´

160 Z. Luo, E. Irtem, M. Ib´

an

anchez,

A. Genç, M. de la Mata, Y. Liu, D. Cadavid, J. Llorca,

J. Arbiol, T. Andreu, J. Ramon Morante and A. Cabot, ACS

Appl. Mater. Interfaces, 2016, 8, 17435–17444.

161 S. Zhang, X. Zhang, Y. Rui, R. Wang and X. Li, Green Energy

Environ., 2021, 6, 458–478.

162 L. Zhang, H. Jang, H. Liu, M. G. Kim, D. Yang, S. Liu, X. Liu

and J. Cho, Angew. Chem., Int. Ed., 2021, 60, 18821–18829.

163 L. Fu, X. Hu, Y. Li, G. Cheng and W. Luo, Nanoscale, 2019,

11, 8898–8905.

164 M. Yoshida, K. Takanabe, K. Maeda, A. Ishikawa, J. Kubota,

Y. Sakata, Y. Ikezawa and K. Domen, J. Phys. Chem. C, 2009,

113, 10151–10157.

165 T. Takata, C. Pan, M. Nakabayashi, N. Shibata and

K. Domen, J. Am. Chem. Soc., 2015, 137, 9627–9634.

166 J. A. Bau and K. Takanabe, ACS Catal., 2017, 7, 7931–7940.

167 S. Okunaka, H. Kameshige, T. Ikeda, H. Tokudome,

T. Hisatomi, T. Yamada and K. Domen, ChemSusChem,

2020, 13, 4906–4910.

168 M. Qureshi, T. Shinagawa, N. Tsiapis and K. Takanabe, ACS

Sustain. Chem. Eng., 2017, 5, 8079–8088.

169 T. Nishino, M. Saruyama, Z. Li, Y. Nagatsuma,

M. Nakabayashi, N. Shibata, T. Yamada, R. Takahata,

S. Yamazoe, T. Hisatomi, K. Domen and T. Teranishi,

Chem. Sci., 2020, 11, 6862–6867.

170 R. Khare, A. Jentys and J. A. Lercher, Phys. Chem. Chem.

Phys., 2020, 22, 18891–18901.

171 D. Spanu, A. Minguzzi, S. Recchia, F. Shahvardanfard,

O. Tomanec, R. Zboril, P. Schmuki, P. Ghigna and

M. Altomare, ACS Catal., 2020, 10, 8293–8302.

172 H. Lee, D. E. Yoon, S. Koh, M. S. Kang, J. Lim and D. C. Lee,

Chem. Sci., 2020, 11, 2318–2329.

173 D. F. Zhang, H. Zhang, L. Guo, K. Zheng, X. D. Han and

Z. Zhang, J. Mater. Chem., 2009, 19, 5220–5225.

174 Z. Xiong, Z. Lei, X. Chen, B. Gong, Y. Zhao, J. Zhang,

C. Zheng and J. C. S. Wu, Catal. Commun., 2017, 96, 1–5.

175 M. Matsukawa, R. Ishikawa, T. Hisatomi, Y. Moriya,

N. Shibata, J. Kubota, Y. Ikuhara and K. Domen, Nano

Lett., 2014, 14, 1038–1041.

176 Y. Kuang, Q. Jia, G. Ma, T. Hisatomi, T. Minegishi,

H. Nishiyama, M. Nakabayashi, N. Shibata, T. Yamada,

A. Kudo and K. Domen, Nat. Energy, 2016, 2, 16191.

© 2022 The Author(s). Published by the Royal Society of Chemistry

...

参考文献をもっと見る