リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Fetal heart rate variability is a biomarker of rapid but not progressive exacerbation of inflammation in preterm fetal sheep」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Fetal heart rate variability is a biomarker of rapid but not progressive exacerbation of inflammation in preterm fetal sheep

Magawa Shoichi 三重大学

2022.10.24

概要

Perinatal infection/inflammation can trigger preterm birth and contribute to neurodevelopmental disability. There are currently no sensitive, specific methods to identify perinatal infection. We investigated the utility of time, frequency and non-linear measures of fetal heart rate (FHR) variability (FHRV) to identify either progressive or more rapid inflammation. Chronically instrumented preterm fetal sheep were randomly assigned to one of three different 5d continuous i.v. infusions: 1) control (saline infusions; n = 10), 2) progressive lipopolysaccharide (LPS; 200 ng/kg over 24 h, doubled every 24 h for 5d, n = 8), or 3) acute-on-chronic LPS (100 ng/kg over 24 h then 250 ng/kg/24 h for 4d plus 1μg boluses at 48, 72, and 96 h, n = 9). Both LPS protocols triggered transient increases in multiple measures of FHRV at the onset of infusions. No FHRV or physiological changes occurred from 12 h after starting progressive LPS infusions. LPS boluses during the acute-on-chronic protocol triggered transient hypotension, tachycardia and an initial increase in multiple time and frequency domain measures of FHRV, with an asymmetric FHR pattern of predominant decelerations. Following resolution of hypotension after the second and third LPS boluses, all frequencies of FHRV became suppressed. These data suggest that FHRV may be a useful biomarker of rapid but not progressive preterm infection/inflammation.

参考文献

1. Blencowe, H. et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications. Lancet 379, 2162–2172 (2012).

2. Liu, L. et al. Global, regional, and national causes of child mortality: An updated systematic analysis for 2010 with time trends since 2000. Lancet 379, 2151–2161 (2012).

3. Agrawal, V. & Hirsch, E. Intrauterine infection and preterm labor. Semin. Fetal Neonatal. Med. 17, 12–19 (2012).

4. Combs, C. A. et al. Amniotic fluid infection, inflammation, and colonization in preterm labor with intact membranes. Am. J. Obstet. Gynecol. 210(125), e115–e121 (2014).

5. Mueller-Heubach, E., Rubinstein, D. N. & Schwarz, S. S. Histologic chorioamnionitis and preterm delivery in different patient populations. Obstet. Gynecol. 75, 622–626 (1990).

6. Russel, P. Inflammatory lesions of the human placenta. I. Clinical significance of acute chorioamnionitis. Am. J. Diagn. Gynecol. Obstet. 1, 127–137 (1979).

7. Hecht, J. L. et al. Characterization of chorioamnionitis in 2nd-trimester C-section placentas and correlation with microorganism recovery from subamniotic tissues. Pediatr. Dev. Pathol. 11, 15–22 (2008).

8. Yates, N., Gunn, A. J., Bennet, L., Dhillon, S. K. & Davidson, J. O. Preventing brain injury in the preterm infant-current contro- versies and potential therapies. Int. J. Mol. Sci. 22, 1671 (2021).

9. Strunk, T. et al. Infection-induced inflammation and cerebral injury in preterm infants. Lancet Infect. Dis. 14, 751–762 (2014).

10. Stoll, B. J. et al. Early-onset neonatal sepsis 2015 to 2017, the rise of Escherichia coli, and the need for novel prevention strategies.JAMA Pediatr. 174, e200593 (2020).

11. Tita, A. T. & Andrews, W. W. Diagnosis and management of clinical chorioamnionitis. Clin. Perinatol. 37, 339–354 (2010).

12. Galli, L., Dall’Asta, A., Whelehan, V., Archer, A. & Chandraharan, E. Intrapartum cardiotocography patterns observed in suspected clinical and subclinical chorioamnionitis in term fetuses. J. Obstet. Gynaecol. Res. 45, 2343–2350 (2019).

13. Griffin, M. P. et al. Abnormal heart rate characteristics are associated with neonatal mortality. Pediatr. Res. 55, 782–788 (2004).

14. Stone, M. L. et al. Abnormal heart rate characteristics before clinical diagnosis of necrotizing enterocolitis. J. Perinatol. 33, 847–850 (2013).

15. Weitkamp, J. H. et al. Meningitis, urinary tract, and bloodstream infections in very low birth weight infants enrolled in a heart rate characteristics monitoring trial. Pediatr. Res. 87, 1226–1230 (2020).

16. Swanson, J. R. et al. Neonatal intensive care unit length of stay reduction by heart rate characteristics monitoring. J. Pediatr. 198, 162–167 (2018).

17. Moorman, J. R. et al. Mortality reduction by heart rate characteristic monitoring in very low birth weight neonates: A randomized trial. J. Pediatr. 159, 900-906.e901 (2011).

18. Rio, L. et al. Monitoring of heart rate characteristics to detect neonatal sepsis. Pediatr. Res. https://doi.org/10.1038/s41390-021- 01913-9 (2021).

19. Girard, S. et al. Role of perinatal inflammation in cerebral palsy. Pediatr. Neurol. 40, 168–174 (2009).

20. Prasad, J. D. et al. Anti-Inflammatory Therapies for Treatment of Inflammation-Related Preterm Brain Injury. Int. J. Mol. Sci. 22, 4008 (2021).

21. Lear, C. A. et al. Biphasic changes in fetal heart rate variability in preterm fetal sheep developing hypotension after acute on chronic lipopolysaccharide exposure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R387-395 (2014).

22. Lear, C. A. et al. Subclinical decelerations during developing hypotension in preterm fetal sheep after acute on chronic lipopolysac- charide exposure. Sci. Rep. 5, 16201 (2015).

23. Galinsky, R. et al. Tumor necrosis factor inhibition attenuates white matter gliosis after systemic inflammation in preterm fetal sheep. J. Neuroinflamm. 17, 92 (2020).

24. Galinsky, R. et al. Magnetic resonance imaging correlates of white matter gliosis and injury in preterm fetal sheep exposed to progressive systemic inflammation. Int. J. Mol. Sci. 21, 8891 (2020).

25. Percie du Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. J. Physiol. 598, 3793–3801 (2020).

26. McIntosh, G. H., Baghurst, K. I., Potter, B. J. & Hetzel, B. S. Foetal brain development in the sheep. Neuropathol. Appl. Neurobiol.5, 103–114 (1979).

27. Barlow, R. M. The foetal sheep: Morphogenesis of the nervous system and histochemical aspects of myelination. J. Comp. Neurol.135, 249–262 (1969).

28. van den Heuij, L. G. et al. Synergistic white matter protection with acute-on-chronic endotoxin and subsequent asphyxia in preterm fetal sheep. J. Neuroinflamm. 11, 89 (2014).

29. Mathai, S. et al. Acute on chronic exposure to endotoxin in preterm fetal sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R189-197 (2013).

30. Vest, A. N. et al. An open source benchmarked toolbox for cardiovascular waveform and interval analysis. Physiol. Meas. 39, 105004 (2018).

31. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17, 354–381 (1996).

32. Kasai, M. et al. Early sinusoidal heart rate patterns and heart rate variability to assess hypoxia-ischaemia in near-term fetal sheep.J. Physiol. 597, 5535–5548 (2019).

33. Koome, M. E. et al. Ontogeny and control of the heart rate power spectrum in the last third of gestation in fetal sheep. Exp. Physiol.99, 80–88 (2014).

34. Shaw, C. J. et al. Altered autonomic control of heart rate variability in the chronically hypoxic fetus. J. Physiol. 596, 6105–6119 (2018).

35. Myers, M. M., Fifer, W., Haiken, J. & Stark, R. I. Relationships between breathing activity and heart rate in fetal baboons. Am. J. Physiol. 258, R1479-1485 (1990).

36. Karin, J., Hirsch, M. & Akselrod, S. An estimate of fetal autonomic state by spectral analysis of fetal heart rate fluctuations. Pediatr. Res. 34, 134–138 (1993).

37. Gustafson, K. M., Allen, J. J., Yeh, H. W. & May, L. E. Characterization of the fetal diaphragmatic magnetomyogram and the effect of breathing movements on cardiac metrics of rate and variability. Early Hum. Dev. 87, 467–475 (2011).

38. van Laar, J. O., Porath, M. M., Peters, C. H. & Oei, S. G. Spectral analysis of fetal heart rate variability for fetal surveillance: Review of the literature. Acta Obstet. Gynecol. Scand. 87, 300–306 (2008).

39. Castro, L., Loureiro, M., Henriques, T. S. & Nunes, I. Systematic review of intrapartum fetal heart rate spectral analysis and an application in the detection of fetal acidemia. Front. Pediatr. 9, 661400 (2021).

40. Bauer, A. et al. Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: Cohort study. Lancet 367, 1674–1681 (2006).

41. Georgieva, A., Papageorghiou, A. T., Payne, S. J., Moulden, M. & Redman, C. W. Phase-rectified signal averaging for intrapartum electronic fetal heart rate monitoring is related to acidaemia at birth. BJOG 121, 889–894 (2014).

42. Georgieva, A. et al. Deceleration area and capacity during labour-like umbilical cord occlusions identify evolving hypotension: A controlled study in fetal sheep. Br. J. Obstet. Gynaecol. 128, 1433–1442 (2020).

43. Kovatchev, B. P. et al. Sample asymmetry analysis of heart rate characteristics with application to neonatal sepsis and systemic inflammatory response syndrome. Pediatr. Res. 54, 892–898 (2003).

44. Griffin, M. P. et al. Abnormal heart rate characteristics preceding neonatal sepsis and sepsis-like illness. Pediatr. Res. 53, 920–926 (2003).

45. Biswas, S. K. & Lopez-Collazo, E. Endotoxin tolerance: New mechanisms, molecules and clinical significance. Trends Immunol30, 475–487 (2009).

46. Ikeda, T., Yang, L., Ikenoue, T., Mallard, C. & Hagberg, H. Endotoxin-induced hypoxic-ischemic tolerance is mediated by up- regulation of corticosterone in neonatal rat. Pediatr. Res. 59, 56–60 (2006).

47. Blad, S., Welin, A. K., Kjellmer, I., Rosen, K. G. & Mallard, C. ECG and heart rate variability changes in preterm and near-term fetal lamb following LPS exposure. Reprod. Sci. 15, 572–583 (2008).

48. Herry, C. L. et al. Temporal patterns in sheep fetal heart rate variability correlate to systemic cytokine inflammatory response: A methodological exploration of monitoring potential using complex signals bioinformatics. PLoS ONE 11, e0153515 (2016).

49. Durosier, L. D. et al. Does heart rate variability reflect the systemic inflammatory response in a fetal sheep model of lipopolysac- charide-induced sepsis?. Physiol. Meas. 36, 2089–2102 (2015).

50. Banks, W. A. & Robinson, S. M. Minimal penetration of lipopolysaccharide across the murine blood-brain barrier. Brain. Behav. Immun. 24, 102–109 (2010).

51. Yan, E., Castillo-Melendez, M., Nicholls, T., Hirst, J. & Walker, D. Cerebrovascular responses in the fetal sheep brain to low-dose endotoxin. Pediatr. Res. 55, 855–863 (2004).

52. Tracey, K. J. Physiology and immunology of the cholinergic antiinflammatory pathway. J. Clin. Invest. 117, 289–296 (2007).

53. Fairchild, K. D., Srinivasan, V., Moorman, J. R., Gaykema, R. P. & Goehler, L. E. Pathogen-induced heart rate changes associated with cholinergic nervous system activation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R330-339 (2011).

54. Lake, D. E., Richman, J. S., Griffin, M. P. & Moorman, J. R. Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R789-797 (2002).

55. Klockner, U. et al. Inhibition of cardiac pacemaker channel hHCN2 depends on intercalation of lipopolysaccharide into channel- containing membrane microdomains. J. Physiol. 592, 1199–1211 (2014).

56. Dean, J. M. et al. Cerebellar white matter injury following systemic endotoxemia in preterm fetal sheep. Neuroscience 160, 606–615 (2009).

57. Keogh, M. J. et al. Subclinical exposure to low-dose endotoxin impairs EEG maturation in preterm fetal sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R270-278 (2012).

58. Maeda, Y. et al. Transient effects of forebrain ischemia on fetal heart rate variability in fetal sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 320, R916–R924 (2021).

59. Georgieva, A. et al. Computer-based intrapartum fetal monitoring and beyond: A review of the 2nd Workshop on Signal Process- ing and Monitoring in Labor (October 2017, Oxford, UK). Acta Obstet. Gynecol. Scand. 98, 1207–1217 (2019).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る