リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ラットにおけるプレニル化イソフラボンであるグリセオリン類の生体利用性に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ラットにおけるプレニル化イソフラボンであるグリセオリン類の生体利用性に関する研究

張, 曄 YE, ZHANG チョウ, ヨウ 九州大学

2022.03.23

概要

Glyceollins (prenylated 6a-hydroxy-pterocarpans) are also called as phytoalexin, since they are produced in soybeans from isoflavones by environmental (e.g., infection, wounding, freezing, ultraviolet light) or microbial stresses. Clinical evidence has revealed that glyceollins have diverse in vivo physiological functions, such as antioxidation, anti-diabetes, anti-inflammation, and antagonistic effect against estrogen receptor (ER). Irrespective to obtain insights of physiological roles of glyceollins, it is crucial to understand their absorption, distribution, metabolism, and excretion (ADME) in the body system. Due to a variety of prenyl moiety in glyceollins, the ADME behavior must be greatly different among them. Therefore, not only the analysis of intestinal absorption and metabolism, but also the analysis of accumulation in the organs, of importance for deeper understanding of bioactive glyceollins. Thus, the present study aimed to get insights of bioavailability of prenylated isoflavones, glyceollins, in terms of their intestinal absorption and tissue accumulation in animal experiments using Sprague-Dawley (SD) rats.

Firstly, prenylated isoflavones, glyceollins (glyceollin III and I) and daidzein, the mother isoflavones as control, were investigated to clarify the intestinal absorption and metabolism in SD rats. As a result of LC-TOF/MS analysis of plasma samples taken at time points up to 8 h, no peaks corresponding to glyceollin I and III as well as daidzein were detected in their intact form. In contrast, deconjugation treatment of plasma by sulfatase/β-glucuronidase enzymes revealed that absorption amounts of conjugated forms of glyceollin I was much > 8-times higher than that of daidzein (AUC 0-8 h: glyceollin I, 8.5 ± 0.7 nmol·h/mL; glyceollin III, 1.0 ± 0.2 nmol·h/mL; daidzein, 0.6 ± 0.1 nmol·h/mL), according to the magnitude of their log P value or hydrophobicity. MALDI-MS and LC-TOF/MS analyses revealed that the major conjugated forms of both glyceollins were methylation, sulfation, and glucronidation, while daidzein was mainly metabolized to form hydroxylated equol during intestinal absorption process, which demonstrated that prenylated isoflavones (glyceollins) might be absorbed as conjugated forms, but not intact forms. It was demonstrated for the first time that the prenylation of isoflavones may promote intestinal absorption into rat bloodstream compared to their mother isoflavones, according to increasing hydrophobicity.

Secondly, the in vivo health benefits of prenylated isoflavones, glyceollins, in organs strongly suggest that they may play a physiological role through their local accumulation. The accumulation of oral administered glyceollins into typical circulatory organs (the liver, the kidneys, the heart, the lungs, the soleus muscles, and the abdominal aorta) of SD rats were investigated. As a result of LC-TOF/MS analysis of organ accumulations, glyceollin I or III (daidzein as comparative compound) was accumulated as intact and conjugated forms (up to 6 h) in circulatory organs with Tmax of 0.5 h, in the order of the liver > the kidneys > the heart > the lungs > the soleus muscles, the abdominal aorta in single orally administered SD rats. Hydrophobic glyceollin I accumulation in organs was > 1.5-times higher than that of glyceollin III. In contrast, daidzein and equol-OH were detected only in the liver and the kidney at > 1/100-times lower amounts than those of glyceollins. Consequently, it is demonstrated firstly that prenylated isoflavones, glyceollins, were rapidly and preferably accumulated in circulatory organs.

In conclusion, the present study demonstrated firstly the conjugated absorption of prenylated isoflavones, glyceollins, to rat circulating bloodstream. Absorbed glyceollins were received metabolic degradation including methylation, sulfation, and glucuronidation during intestinal absorption process. In addition, the accumulation of oral administered glyceollins into typical circulatory organs (the liver, the kidneys, the heart, the lungs, the soleus muscles, and the abdominal aorta) of SD rats were investigated. The prenylated isoflavones, glyceollins, were preferentially distributed in the circulatory organs as intact, sulfated or glucuronidated forms up to 6 h after the intake. The present study will be essential to better assess the health-benefits of prenlated isoflavones, glyceollins.

参考文献

[1] Yang, X.; Jiang, Y.; Yang, J.; He, J.; Sun, J.; Chen, F.; Zhang, M.; Yang, B. Prenylated flavonoids, promising nutraceuticals with impressive biological activities. Trends Food Sci. Technol. 2015, 44 (1), 93–104.

[2] Gonzales, G. B.; Smagghe, G.; Grootaert, C.; Zotti, M.; Raes, K.; Camp, J. Van. Flavonoid interactions during digestion, absorption, distribution and metabolism: a sequential structure-activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metab. Rev. 2015, 47 (2), 175–190.

[3] Boozari, M.; Soltani, S.; Iranshahi, M. Biologically active prenylated flavonoids from the genus sophora and their structure–activity relationship-a review. Phyther. Res. 2019, 33 (3), 546–560.

[4] Bamji, S. F.; Corbitt, C. Glyceollins: soybean phytoalexins that exhibit a wide range of health-promoting effects. J. Funct. Foods 2017, 34, 98–105.

[5] Yoneyama, K.; Akashi, T.; Aoki, T. Molecular characterization of soybean pterocarpan 2-dimethylallyltransferase in glyceollin biosynthesis: local gene and whole-genome duplications of prenyltransferase genes led to the structural diversity of soybean prenylated isoflavonoids. Plant Cell Physiol. 2016, 57 (12), 2497–2509.

[6] Van De Schans, M. G. M.; Bovee, T. F. H.; Stoopen, G. M.; Lorist, M.; Gruppen, H.; Vincken, J. P. Prenylation and backbone structure of flavonoids and isoflavonoids from licorice and hop influence their phase I and II metabolism. J. Agric. Food Chem. 2015, 63 (49), 10628–10640.

[7] Pham, T. H.; Lecomte, S.; Efstathiou, T.; Ferriere, F.; Pakdel, F. An update on the effects of glyceollins on human health: possible anticancer effects and underlying mechanisms. Nutrients 2019, 11 (1), 79–103.

[8] Simons, R.; Vincken, J. P.; Roidos, N.; Bovee, T. F. H.; Van Iersel, M.; Verbruggen, M. A.; Gruppen, H. Increasing soy isoflavonoid content and diversity by simultaneous malting and challenging by a fungus to modulate estrogenicity. J. Agric. Food Chem. 2011, 59 (12), 6748–6758.

[9] Wang, K.; Peng, Q.; Qiao, Y.; Li, Y.; Suo, D.; Shi, B. Different glyceollin synthesis- related metabolic content and gene expressions in soybean callus suspension cultures and cotyledon tissues induced by alginate oligosaccharides. Process Biochem. 2018, 73 (7), 188–196.

[10] Kim, H. J.; Suh, H. J.; Kim, J. H.; Park, S.; Joo, Y. C.; Kim, J. S. Antioxidant activity of glyceollins derived from soybean elicited with Aspergillus sojae. J. Agric. Food Chem. 2010, 58 (22), 11633–11638.

[11] Boué, S. M.; Isakova, I. A.; Burow, M. E.; Cao, H.; Bhatnagar, D.; Sarver, J. G.; Shinde, K. V.; Erhardt, P. W.; Heiman, M. L. Glyceollins, soy isoflavone phytoalexins, improve oral glucose disposal by stimulating glucose uptake. J. Agric. Food Chem. 2012, 60 (25), 6376–6382.

[12] Kim, H. J.; Sung, M. K.; Kim, J. S. Anti-inflammatory effects of glyceollins derived from soybean by elicitation with Aspergillus sojae. Inflamm. Res. 2011, 60 (10), 909–917.

[13] Zimmermann, M. C.; Tilghman, S. L.; Boué, S. M.; Salvo, V. A.; Elliott, S.; Williams, K. Y.; Skripnikova, E. V.; Ashe, H.; Payton-Stewart, F.; Vanhoy-Rhodes, L.; Fonseca, J. P.; Corbitt, C.; Collins-Burow, B. M.; Howell, M. H.; Lacey, M.; Shih, B. Y.; Carter-Wientjes, C.; Cleveland, T. E.; McLachlan, J. A.; Wiese, T. E.; Beckman, B. S.; Burow, M. E. Glyceollin I, a novel antiestrogenic phytoalexin isolated from activated soy. J. Pharmacol. Exp. Ther. 2010, 332 (1), 35–45.

[14] Bamji, S. F.; Rouchka, E.; Zhang, Y.; Li, X.; Kalbfleisch, T.; Corbitt, C. Next generation sequencing analysis of soy glyceollins and 17-β estradiol: effects on transcript abundance in the female mouse brain. Mol. Cell. Endocrinol. 2018, 471, 15–21.

[15] Burow, M. E.; Boue, S. M.; Collins-Burow, B. M.; Melnik, L. I.; Duong, B. N.; Carter-Wientjes, C. H.; Li, S.; Wiese, T. E.; Cleveland, T. E.; Mclachlan, J. A. Phytochemical glyceollins, isolated from soy, mediate antihormonal effects through estrogen receptor α and β. J. Clin. Endocrinol. Metab. 2001, 86 (4), 1750–1758.

[16] Nikov, G. N.; Hopkins, N. E.; Boue, S.; Alworth, W. L. Interactions of dietary estrogens with human estrogen receptors and the effect on estrogen receptor-estrogen response element complex formation. Environ. Health Perspect. 2000, 108 (9), 867–872.

[17] Yamamoto, T.; Sakamoto, C.; Tachiwana, H.; Kumabe, M.; Matsui, T.; Yamashita, T.; Shinagawa, M.; Ochiai, K.; Saitoh, N.; Nakao, M. Endocrine therapy-resistant breast cancer model cells are inhibited by soybean glyceollin I through eleanor non- coding RNA. Sci. Rep. 2018, 8 (1), 1–12.

[18] Farrell, K.; Jahan, M. A.; Kovinich, N. Distinct mechanisms of biotic and chemical elicitors enable additive elicitation of the anticancer phytoalexin glyceollin I. Molecules 2017, 22 (8),1261–1274.

[19] Seo, J. Y.; Kim, B. R.; Oh, J.; Kim, J. S. Soybean-derived phytoalexins improve cognitive function through activation of Nrf2/HO-1 signaling pathway. Int. J. Mol. Sci. 2018, 19 (1), 1–12.

[20] Bamji, S. F.; Page, R. B.; Patel, D.; Sanders, A.; Alvarez, A. R.; Gambrell, C.; Naik, K.; Raghavan, A. M.; Burow, M. E.; Boue, S. M.; Klinge, C. M.; Ivanova, M.; Corbitt, C. Soy glyceollins regulate transcript abundance in the female mouse brain. Funct. Integr. Genomics 2015, 15 (5), 549–561.

[21] Yoon, E. K.; Kim, H. K.; Cui, S.; Kim, Y. H.; Lee, S. H. Soybean glyceollins mitigate inducible nitric oxide synthase and cyclooxygenase-2 expression levels via suppression of the NF-ΚB signaling pathway in RAW 264.7 cells. Int. J. Mol. Med. 2012, 29 (4), 711–717.

[22] Lee, W.; Ku, S. K.; Lee, Y. M.; Bae, J. S. Anti-septic effects of glyceollins in HMGB1-induced inflammatory responses in vitro and in vivo. Food Chem. Toxicol. 2014, 63, 1–8.

[23] Kim, H. J.; Cha, B. Y.; Choi, B.; Lim, J. S.; Woo, J. T.; Kim, J. S. Glyceollins inhibit platelet-derived growth factor-mediated human arterial smooth muscle cell proliferation and migration. Br. J. Nutr. 2012, 107 (1), 24–35.

[24] Song, M. J.; Baek, I.; Jeon, S. B.; Seo, M.; Kim, Y. H.; Cui, S.; Jeong, Y. S.; Lee, I. J.; Shin, D. H.; Hwang, Y. H.; Kim, I. K. Effects of glyceollin I on vascular contraction in rat aorta. Naunyn. Schmiedebergs. Arch. Pharmacol. 2010, 381 (6), 517–528.

[25] Lee, Y. S.; Kim, H. K.; Lee, K. J.; Jeon, H. W.; Cui, S.; Lee, Y. M.; Moon, B. J.; Kim, Y. H.; Lee, Y. S. Inhibitory effect of glyceollin isolated from soybean against melanogenesis in B16 melanoma cells. BMB Rep. 2010, 43 (7), 461–467.

[26] Shin, S. H.; Lee, Y. M. Glyceollins, a novel class of soybean phytoalexins, inhibit SCF-induced melanogenesis through attenuation of SCF/c-Kit downstream signaling pathways. Exp. Mol. Med. 2013, 45 (2), 1–9.

[27] Bateman, M. E.; Strong, A. L.; Hunter, R. S.; Bratton, M. R.; Komati, R.; Sridhar, J.; Riley, K. E.; Wang, G.; Hayes, D. J.; Boue, S. M.; Burow, M. E.; Bunnell, B. A. Osteoinductive effects of glyceollins on adult mesenchymal stromal/stem cells from adipose tissue and bone marrow. Phytomedicine 2017, 27, 39–51.

[28] Park, S.; Ahn, I. S.; Kim, J. H.; Lee, M. R.; Kim, J. S.; Kim, H. J. Glyceollins, one of the phytoalexins derived from soybeans under fungal stress, enhance insulin sensitivity and exert lnsulinotropic actions. J. Agric. Food Chem. 2010, 58 (3), 1551–1557.

[29] Park, S.; Kim, D. S.; Kim, J. H.; Kim, J. S.; Kim, H. J. Glyceollin-containing fermented soybeans improve glucose homeostasis in diabetic mice. Nutrition 2012, 28 (2), 204–211.

[30] Huang, H.; Xie, Z.; Boue, S. M.; Bhatnagar, D.; Yokoyama, W.; Yu, L.; Wang, T. T. Y. Cholesterol-lowering activity of soy-derived glyceollins in the golden syrian hamster model. J. Agric. Food Chem. 2013, 61 (24), 5772–5782.

[31] Wood, C. E.; Boue, S. M.; Collins-Burow, B. M.; Rhodes, L. V.; Register, T. C.; Cline, J. M.; Dewi, F. N.; Burow, M. E. Glyceollin-elicited soy protein consumption induces distinct transcriptional effects as compared to standard soy protein. J. Agric. Food Chem. 2012, 60 (1), 81–86.

[32] Kim, H. J.; di Luccio, E.; Kong, A. N. T.; Kim, J. S. Nrf2-mediated induction of phase II detoxifying enzymes by glyceollins derived from soybean exposed to Aspergillus sojae. Biotechnol. J. 2011, 6 (5), 525–536.

[33] Kim, B. R.; Seo, J. Y.; Sung, M. K.; Park, J. H. Y.; Suh, H. J.; Liu, K. H.; Kim, J. S. Suppression of 7,12-dimethylbenz(a)anthracene-induced mammary tumorigenesis by glyceollins. Mol. Nutr. Food Res. 2015, 59 (5), 907–917.

[34] Kretzschmar, G.; Zierau, O.; Wober, J.; Tischer, S.; Metz, P.; Vollmer, G. Prenylation has a compound specific effect on the estrogenicity of naringenin and genistein. J. Steroid Biochem. Mol. Biol. 2010, 118, 1–6.

[35] Mukai, R.; Fujikura, Y.; Murota, K.; Uehara, M.; Minekawa, S.; Matsui, N.; Kawamura, T.; Nemoto, H.; Terao, J. Prenylation enhances quercetin uptake and reduces efflux in caco-2 cells and enhances tissue accumulation in mice fed long- term. J. Nutr. 2013, 143 (10), 1558–1564.

[36] Terao, J.; Mukai, R. Prenylation modulates the bioavailability and bioaccumulation of dietary flavonoids. Arch. Biochem. Biophys. 2014, 559, 12–16.

[37] Gu, L.; Laly, M.; Chang, H. C.; Prior, R. L.; Fang, N.; Ronis, M. J. J.; Badger, T. M. Isoflavone conjugates are underestimated in tissues using enzymatic hydrolysis. J. Agric. Food Chem. 2005, 53 (17), 6858–6863.

[38] Chang, H. C.; Churchwell, M. I.; Delclos, K. B.; Newbold, R. R.; Doerge, D. R. Mass spectrometric determination of genistein tissue distribution diet-exposed Sprague-Dawley rats. J. Nutr. 2000, 130 (8), 1963–1970.

[39] Soucy, N. V.; Parkinson, H. D.; Sochaski, M. A.; Borghoff, S. J. Kinetics of genistein and its conjugated metabolites in pregnant Sprague-Dawley rats following single and repeated genistein administration. Toxicol. Sci. 2006, 90 (1), 230–240.

[40] Liu, C. S.; Chen, L.; Hu, Y. N.; Dai, J. L.; Ma, B.; Tang, Q. F.; Tan, X. M. Self-microemulsifying drug delivery system for improved oral delivery and hypnotic efficacy of ferulic acid. Int. J. Nanomedicine 2020, 15, 2059–2070.

[41] Chen, X. Q.; Wei, L. T.; Pu, X. P.; Wang, Y. L.; Xu, Y. J. Pharmacokinetics and tissue distribution study of 15 ingredients of polygonum chinense linn extract in rats by UHPLC–MS/MS. Biomed. Chromatogr.2021, 35(2), 4975-4989.

[42] Shi, X.; Tang, Y.; Zhu, H.; Li, W.; Li, Z.; Li, W.; Duan, J. ao. Comparative tissue distribution profiles of five major bio-active components in normal and blood deficiency rats after oral administration of danggui buxue decoction by UPLC- TQ/MS. J. Pharm. Biomed. Anal. 2014, 88, 207–215.

[43] Li, S. Y.; Pei, W. H.; Guo, T.; Zhang, H. Distributions of eight bioactive components in rat tissues administered marsdenia tenacissima extract orally detected through UPLC–MS/MS. Biomed. Chromatogr. 2021, 35 (4), 1–15.

[44] Zeng, X.; Su, W.; Zheng, Y.; He, Y.; He, Y.; Rao, H.; Peng, W.; Yao, H. Pharmacokinetics, tissue distribution, metabolism, and excretion of naringin in aged rats. Front. Pharmacol. 2019, 9 (1), 1–12.

[45] Chen, X.; Zhu, P.; Liu, B.; Wei, L.; Xu, Y. Simultaneous determination of fourteen compounds of hedyotis diffusa willd extract in rats by UHPLC–MS/MS method: application to pharmacokinetics and tissue distribution study. J. Pharm. Biomed. Anal. 2018, 159, 490–512.

[46] Prasain, J. K.; Wang, C. C.; Barnes, S. Mass spectrometric methods for the determination of flavonoids in biological samples. Free Radic. Biol. Med. 2004, 37 (9), 1324–1350.

[47] Mukai, R.; Horikawa, H.; Fujikura, Y.; Kawamura, T.; Nemoto, H.; Nikawa, T.; Terao, J. Prevention of disuse muscle atrophy by dietary ingestion of 8- prenylnaringenin in denervated mice. PLoS One 2012, 7 (9), 1–11.

[48] Arung, E. T.; Shimizu, K.; Tanaka, H.; Kondo, R. 3-Prenyl luteolin, a new prenylated flavone with melanin biosynthesis inhibitory activity from wood of artocarpus heterop. Fitoterapia 2010, 81 (6), 640–643.

[49] Wood, C. E.; Clarkson, T. B.; Appt, S. E.; Franke, A. A.; Boue, S. M.; Burow, M. E.; McCoy, T.; Cline, J. M. Effects of soybean glyceollins and estradiol in postmenopausal female monkeys. Nutr. Cancer 2006, 56 (1), 74–81.

[50] Lo, Y. L. Relationships between the hydrophilic-lipophilic balance values of pharmaceutical excipients and their multidrug resistance modulating effect in Caco- 2 cells and rat intestines. J. Control. Release 2003, 90 (1), 37–48.

[51] Murota, K.; Shimizu, S.; Miyamoto, S.; Izumi, T.; Obata, A.; Kikuchi, M.; Terao, J. Unique uptake and transport of isoflavone aglycones by human intestinal Caco-2 cells: comparison of isoflavonoids and flavonoids. J. Nutr. 2002, 132, 1956–1961.

[52] Chimezie, C.; Ewing, A.; Schexnayder, C.; Bratton, M.; Glotser, E.; Skripnikova, E.; Sá, P.; Boué, S.; Stratford, R. E. Glyceollin effects on MRP2 and BCRP in Caco-2 cells, and implications for metabolic and transport interactions. J. Pharm. Sci. 2016, 105 (2), 972–981.

[53] Schexnayder, C.; Stratford, R. E. Genistein and glyceollin effects on ABCC2 (MRP2) and ABCG2 (BCRP) in Caco-2 cells. Int. J. Environ. Res. Public Health 2015, 13 (1), 17–30.

[54] Demeule, M.; Régina, A.; Jodoin, J.; Laplante, A.; Dagenais, C.; Berthelet, F.; Moghrabi, A.; Béliveau, R. Drug transport to the brain: key roles for the efflux pump P-glycoprotein in the blood-brain barrier. Vasc. Pharmacol. 2002, 38 (6), 339–348.

[55] Drennen, C.; Gorse, E.; Stratford, R. E. Cellular pharmacokinetic model-based analysis of genistein, glyceollin, and MK-571 effects on 5 (and 6)-carboxy-2′,7′- dichloroflourescein disposition in Caco-2 cells. J. Pharm. Sci. 2018, 107 (4), 1194–1203.

[56] Zhang, J.; Guo, Q.; Wei, M.; Bai, J.; Huang, J.; Liu, Y.; Su, Z.; Qiu, X. Metabolite identification and pharmacokinetic profiling of isoflavones from black soybean in rats using ultrahigh-performance liquid chromatography with linear-ion-trap-orbitrap and triple-quadrupole tandem mass spectrometry. J. Agric. Food Chem. 2018, 66 (49), 12941–12952.

[57] Barnes, S.; Prasain, J.; D’Alessandro, T.; Arabshahi, A.; Botting, N.; Lila, M. A.; Jackson, G.; Janle, E. M.; Weaver, C. M. The metabolism and analysis of isoflavones and other dietary polyphenols in foods and biological systems. Food Funct. 2011, 2 (5), 235–244.

[58] Legette, L. L.; Prasain, J.; King, J.; Arabshahi, A.; Barnes, S.; Weaver, C. M. Pharmacokinetics of equol, a soy isoflavone metabolite, changes with the form of equol (dietary versus intestinal production) in ovariectomized rats. J. Agric. Food Chem. 2014, 62 (6), 1294–1300.

[59] Houghton, M. J.; Kerimi, A.; Mouly, V.; Tumova, S.; Williamson, G. Gut microbiome catabolites as novel modulators of muscle cell glucose metabolism. FASEB J. 2019, 33 (2), 1887–1898.

[60] Van Rymenant, E.; Van Camp, J.; Pauwels, B.; Boydens, C.; Vanden Daele, L.; Beerens, K.; Brouckaert, P.; Smagghe, G.; Kerimi, A.; Williamson, G.; Grootaert, C.; Van de Voorde, J. Ferulic acid-4-O-sulfate rather than ferulic acid relaxes arteries and lowers blood pressure in mice. J. Nutr. Biochem. 2017, 44, 44–51.

[61] Gu, L.; Laly, M.; Chang, H. C.; Prior, R. L.; Fang, N.; Ronis, M. J. J.; Badger, T. M. Isoflavone conjugates are underestimated in tissues using enzymatic hydrolysis. J. Agric. Food Chem. 2005, 53 (17), 6858–6863.

[62] Chang, H. C.; Churchwell, M. I.; Delclos, K. B.; Newbold, R. R.; Doerge, D. R. Mass spectrometric determination of genistein tissue distribution diet-exposed Sprague-Dawley rats. J. Nutr. 2000, 130 (8), 1963–1970.

[63] Soucy, N. V.; Parkinson, H. D.; Sochaski, M. A.; Borghoff, S. J. Kinetics of genistein and its conjugated metabolites in pregnant Sprague-Dawley rats following single and repeated genistein administration. Toxicol. Sci. 2006, 90 (1), 230–240.

[64] Urpi-Sarda, M.; Morand, C.; Besson, C.; Kraft, G.; Viala, D.; Scalbert, A.; Besle, J. M.; Manach, C. Tissue distribution of isoflavones in ewes after consumption of red clover silage. Arch. Biochem. Biophys. 2008, 476 (2), 205–210.

[65] Domínguez-Avila, J. A.; Wall-Medrano, A.; Velderrain-Rodríguez, G. R.; Chen, C. Y. O.; Salazar-López, N. J.; Robles-Sánchez, M.; González-Aguilar, G. A. Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds. Food Funct. 2017, 8 (1), 15–38.

[66] Simmons, A. L.; Chitchumroonchokchai, C.; Vodovotz, Y.; Failla, M. L. Isoflavone retention during processing, bioaccessibility, and transport by Caco-2 cells: effects of source and amount of fat in a soy soft pretzel. J. Agric. Food Chem. 2012, 60 (49), 12196–12203.

[67] Liu, Y.; Hu, M. Absorption and metabolism of flavonoids in the Caco-2 cell culture model and a perfused rat intestinal model. Drug Metab. Dispos. 2002, 30 (4), 370– 377.

[68] Miyake, M.; Kondo, S.; Koga, T.; Yoda, N.; Nakazato, S.; Emoto, C.; Mukai, T.; Toguchi, H. Evaluation of intestinal metabolism and absorption using the Ussing chamber system equipped with intestinal tissue from rats and dogs. Eur. J. Pharm. Biopharm. 2018, 122 (2), 49–53.

[69] Nguyen, H. N.; Tanaka, M.; Li, B.; Ueno, T.; Matsuda, H.; Matsui, T. Novel in situ visualisation of rat intestinal absorption of polyphenols via matrix-assisted laser desorption/ionisation mass spectrometry imaging. Sci. Rep. 2019, 9 (1), 5–8.

[70] Tanaka, M.; Hong, S. M.; Akiyama, S.; Hu, Q. Q.; Matsui, T. Visualized absorption of anti-atherosclerotic dipeptide, Trp-His, in Sprague-Dawley rats by LC-MS and MALDI-MS imaging analyses. Mol. Nutr. Food Res. 2015, 59 (8), 1541–1549.

[71] Yang, W.; Yu, X. C.; Chen, X. Y.; Zhang, L.; Lu, C. T.; Zhao, Y. Z. Pharmacokinetics and tissue distribution profile of icariin propylene glycol-liposome intraperitoneal injection in mice. J. Pharm. Pharmacol. 2012, 64 (2), 190–198.

[72] Chen, L.; Cao, H.; Huang, Q.; Xiao, J.; Teng, H. Absorption, metabolism and bioavailability of flavonoids: a review. Crit. Rev. Food Sci. Nutr. 2021, 1–13.

[73] Yuan, J. P.; Wang, J. H.; Liu, X. Metabolism of dietary soy isoflavones to equol by human intestinal microflora-implications for health. Mol. Nutr. Food Res. 2007, 51 (7), 765–781.

[74] Abe, C.; Zhang, Y.; Takao, K.; Sasaki, K.; Ochiai, K.; Matsui, T. Visualization analysis of glyceollin production in germinating soybeans by matrix-assisted laser desorption/ionization mass spectrometric imaging technique. J. Agric. Food Chem. 2021, 69 (25), 7057–7063.

[75] Nectoux, A. M.; Abe, C.; Huang, S. W.; Ohno, N.; Tabata, J.; Miyata, Y.; Tanaka, K.; Tanaka, T.; Yamamura, H.; Matsui, T. Absorption and metabolic behavior of hesperidin (rutinosylated hesperetin) after single oral administration to Sprague- Dawley rats. J. Agric. Food Chem. 2019, 67 (35), 9812–9819.

[76] Nagata, C.; Takatsuka, N.; Kawakami, N.; Shimizu, H. Soy product intake and hot flashes in Japanese women: results from a community-based prospective study. Am. J. Epidemiol. 2001, 153 (8), 790–793.

[77] Wang, H. J.; Murphy, P. A. Isoflavone composition of American and Japanese soybeans in iowa: effects of variety, crop year, and location. J. Agric. Food Chem. 1994, 42 (8), 1674–1677.

[78] Matthies, A.; Loh, G.; Blaut, M.; Braune, A. Daidzein and genistein are converted to equol and 5-hydroxy-equol by human intestinal slackia isoflavoniconvertens in gnotobiotic rats. J. Nutr. 2012, 142 (1), 40–46.

[79] Soukup, S. T.; Helppi, J.; Müller, D. R.; Zierau, O.; Watzl, B.; Vollmer, G.; Diel, P.; Bub, A.; Kulling, S. E. Phase II metabolism of the soy isoflavones genistein and daidzein in humans, rats and mice: a cross-species and sex comparison. Arch. Toxicol. 2016, 90 (6),1335–1347.

[80] Shelnutt, S. R.; Cimino, C. O.; Wiggins, P. A.; Ronis, M. J. J.; Badger, T. M. Pharmacokinetics of the glucuronide and sulfate conjugates of genistein and daidzein in men and women after consumption of a soy beverage. Am. J. Clin. Nutr. 2002, 76 (3), 588–594.

[81] Beckman, B. S.; Burow, M. E. Transport and metabolism of equol by Caco-2 human intestinal cells. J. Agric. Food Chem. 2001, 57 (1), 2921–2927.

[82] Rüfer, C. E.; Maul, R.; Donauer, E.; Fabian, E. J.; Kulling, S. E. In vitro and in vivo metabolism of the soy isoflavone glycitein. Mol. Nutr. Food Res. 2007, 51 (7), 813– 823.

[83] John, K. M. M.; Jung, E. S.; Lee, S.; Kim, J. S.; Lee, C. H. Primary and secondary metabolites variation of soybean contaminated with Aspergillus sojae. Food Res. Int. 2013, 54 (1), 487–494.

[84] Ge, J.; Tan, B. X.; Chen, Y.; Yang, L.; Peng, X. C.; Li, H. Z.; Lin, H. J.; Zhao, Y.; Wei, M.; Cheng, K.; Li, L. H.; Dong, H.; Gao, F.; He, J. P.; Wu, Y.; Qiu, M.; Zhao, Y. L.; Su, J. M.; Hou, J. M.; Liu, J. Y. Interaction of green tea polyphenol epigallocatechin-3-gallate with sunitinib: potential risk of diminished sunitinib bioavailability. J. Mol. Med. 2011, 89 (6), 595–602.

[85] Yang, C.; Wang, Q.; Yang, S.; Yang, Q.; Wei, Y. An LC–MS/MS method for quantitation of cyanidin-3-O-glucoside in rat plasma: application to a comparative pharmacokinetic study in normal and streptozotocin-induced diabetic rats. Biomed. Chromatogr. 2018, 32 (2), 1–6.

[86] Li, X.; Choi, J. S. Effect of genistein on the pharmacokinetics of paclitaxel administered orally or intravenously in rats. Int. J. Pharm. 2007, 337, 188–193.

[87] Murota, K.; Shimizu, S.; Miyamoto, S.; Izumi, T.; Obata, A.; Kikuchi, M.; Terao, J. Unique uptake and transport of isoflavone aglycones by human intestinal Caco-2 cells: comparison of isoflavonoids and flavonoids. J. Nutr. 2002, 132 (7), 1956–1961.

[88] Sugawara, T.; Kushiro, M.; Zhang, H.; Nara, E.; Ono, H.; Nagao, A. Lysophosphatidylcholine enhances carotenoid uptake from mixed micelles by Caco- 2 human intestinal cells. J. Nutr. 2001, 131 (11), 2921–2927.

[89] Hosoda, K.; Furuta, T.; Yokokawa, A.; Ishii, K. Identification and quantification of daidzein-7-glucuronide-4′-sulfate, genistein-7-glucuronide-4′-sulfate and genistein- 4′,7-diglucuronide as major metabolites in human plasma after administration of kinako. Anal. Bioanal. Chem. 2010, 397, 1563-1572.

[90] Zhang, Y.; Song, T. T.; Cunnick, J. E.; Murphy, P. A.; Hendrich, S. Daidzein and genistein glucuronides in vitro are weakly estrogenic and activate human natural killer cells at nutritionally relevant concentrations. J. Nutr. 1999, 129 (2), 399–405.

[91] Cao, Y. X.; Yang, X. J.; Liu, J.; Li, K. X. Effects of daidzein sulfates on blood pressure and artery of rats. Basic Clin. Pharmacol. Toxicol. 2006, 99, 425–430.

[92] Mukai, R. Prenylation enhances the biological activity of dietary flavonoids by altering their bioavailability. Biosci. Biotechnol. Biochem. 2018, 82 (2), 207–215.

[93] Barbhaiya, R. H.; Dandekar, K. A., Greene, D. S. Pharmacokinetics, absolute bioavailability, and disposition of [14C] nefazodone in humans. Drug Metab. Dispos.1996, 24(1), 91–95.

[94] Kida, K.; Suzuki, M.; Matsumoto, N.; Nanjo, F.; Hara, Y. Identification of biliary metabolites of (-)-epigallocatechin gallate in rats. J. Agric. Food Chem. 2000, 48 (9), 4151–4155.

[95] Bijsterbosch, M. K.; Duursma, A. M.; Bouma, J. M. W.; Gruber, M. The plasma volume of the Wistar rat in relation to the body weight. Experientia 1981, 37 (4), 381–382.

[96] Quadri, S. S.; Stratford, R. E.; Boué, S. M.; Cole, R. B. Screening and identification of glyceollins and their metabolites by electrospray ionization tandem mass spectrometry with precursor ion scanning. Anal. Chem. 2013, 85 (3), 1727–1733.

[97] Quadri, S. S.; Stratford, R. E.; Boué, S. M.; Cole, R. B. Identification of glyceollin metabolites derived from conjugation with glutathione and glucuronic acid in male ZDSD rats by online liquid chromatography-electrospray ionization tandem mass spectrometry. J. Agric. Food Chem. 2014, 62 (12), 2692–2700.

[98] Wang, Q.; Morris, M. E. Flavonoids modulate monocarboxylate transporter-1- mediated transport of γ-hydroxybutyrate in vitro and in vivo. Pharmacology 2007, 35 (2), 201–208.

[99] An, G.; Wang, X.; Morris, M. E. Flavonoids are inhibitors of human Organic Anion Transporter 1 (OAT1)-mediated transport. Drug Metab. Dispos. 2014, 42 (9), 1357–1366.

[100] Wang, X.; Wolkoff, A. W.; Morris, M. E. Flavonoids as a novel class of human organic anion-transporting polypeptide OATP1B1 (OATP-C) modulators. Drug Metab. Dispos. 2005, 33 (11), 1666–1672.

[101] Tipoe, G. L.; Leung, T. M.; Liong, E. C.; Lau, T. Y. H.; Fung, M. L.; Nanji, A. A. Epigallocatechin-3-gallate (EGCG) reduces liver inflammation, oxidative stress and fibrosis in carbon tetrachloride (CCl4)-induced liver injury in mice. Toxicology 2010, 273 (1), 45–52.

[102] Mokni, M.; Limam, F.; Elkahoui, S.; Amri, M.; Aouani, E. Strong cardioprotective effect of resveratrol, a red wine polyphenol, on isolated rat hearts after ischemia/reperfusion injury. Arch. Biochem. Biophys. 2007, 457 (1), 1–6.

[103] Lee, S. J.; Vuong, T. A.; Go, G. Y.; Song, Y. J.; Lee, S.; Lee, S. Y.; Kim, S. W.; Lee, J.; Kim, Y. K.; Seo, D. W.; Kim, K. H.; Kang, J. S.; Bae, G. U. An isoflavone compound daidzein elicits myoblast differentiation and myotube growth. J. Funct. Foods 2017, 38, 438–446.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る