リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Synthesis of Bio-based Block Copolymers with Conjugated Segments and Their Applications in Electronic Devices」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Synthesis of Bio-based Block Copolymers with Conjugated Segments and Their Applications in Electronic Devices

徐, 立哲 北海道大学

2021.09.24

概要

In this dissertation, bio-based and stretchable semiconducting polymers through elegant design of conjugated block copolymers (BCPs) with linear and branched soft segments of poly(δ-decanolactone) (PDL) were developed. PDL was chose as the green and soft building block in the target BCPs since it is a bio-based soft polymer with a metal-free and living ring-opening polymerization process. Conjugated-insulating BCPs were prepared through Cu-catalyzed azido–alkyne click reaction (CuAAC) between azido-functionalized PDLs and typical conjugated polymers with alkyne functional group including poly(3-hexylthiophene) (P3HT) and poly(9,9-di-n-hexyl-2,7-fluorene) (PF). Thermal, mechanical and electronic properties were systematically studied for the stretchable electronic applications. In chapter 2, I propose soft-hard-soft type triblock BCPs with poly(3-hexylthiophene) (P3HT) and branched PDL segments to enhance stretchability of BCP without sacrificing charge mobility. The BCPs with AB, AB2, B2AB2 and B3AB3 structure (A: P3HT, B: PDL) exhibit competitive hole mobility of 0.088, 0.085, 0.089 and 0.045 cm2 V-1 s-1, respectively. Interestingly, stretchability of the BCPs increases by introducing soft-hard-soft structure and the branched soft segments, as investigated by optical microscopy (OM) and amplitude modulation-frequency modulation atomic force microscopy (AM-FM AFM). This can be attributed to more random phase separation and smaller P3HT crystallites of the branched triblock BCPs. Finally, OFETs with the stretched and transferred semiconducting layer of the BCPs were fabricated and the B3AB3 device shows the highest mobility retention among all the synthesized BCPs (72%-75%) under 100% strain, and 71-75% mobility retention after 500 stretch-release cycles at 50% strain. In chapter 3, poly(9,9-di-n-hexyl-2,7-fluorene)-block-poly(δ-decanolactone)s (PF-b-PDLs) with AB, AB2 and AB3 structure (A: PF, B: PDL) were designed as stretchable charge-storage layer of organic field-effect transistor (OFET) memory. The BCP thin films exhibit extraordinary stretchability with no cracks observed by optical microscopy (OM) under up to 100% strain owing to the incorporated PDL soft segments. Meanwhile, the trapping density of the electret film of the branched polymers is boosted by the tailored phase separation and higher crystallinity of the BCPs. Quantitative analysis of the polymer thin films on the atomic force microscopic (AFM) images was performed to correlate thin film morphology with memory device performance. As a result, PF-b-PDL3 device exhibits the largest memory window (102 V) and the highest memory ratio (3.5 × 104). OFET memories made by the stretched and transferred BCPs can retain their memory performance under up to 100% strain, and the PF-b-PDL3 device can endure 500 stretch-release cycles at 50% strain with 84% memory window retention. These results highlight the importance of architecture design on modulating electronic properties and stretchability of conjugated BCP using bio-based and soft polymer as building blocks.

この論文で使われている画像

参考文献

1.4 Reference

1. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang and A. J. Heeger, J. Chem. Soc., Chem. Commun., 1977, 578-580.

2. J. H. Burroughes, D. D. Bradley, A. Brown, R. Marks, K. Mackay, R. H. Friend, P. Burns and A. Holmes, Nature, 1990, 347, 539-541.

3. M. Kuik, G. J. A. Wetzelaer, H. T. Nicolai, N. I. Craciun, D. M. De Leeuw and P. W. Blom, Adv. Mater., 2014, 26, 512-531.

4. C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, Adv. Funct. Mater., 2001, 11, 15-26.

5. M. Helgesen, R. Søndergaard and F. C. Krebs, J. Mater. Chem., 2010, 20, 36-60.

6. F. Garnier, R. Hajlaoui, A. Yassar and P. Srivastava, Science, 1994, 265, 1684-1686.

7. H. Sirringhaus, Adv. Mater., 2014, 26, 1319-1335.

8. J. Ouyang, C.-W. Chu, C. R. Szmanda, L. Ma and Y. Yang, Nat. Mater., 2004, 3, 918.

9. P. Heremans, G. H. Gelinck, R. Muller, K.-J. Baeg, D.-Y. Kim and Y.-Y. Noh, Chem. Mater., 2010, 23, 341-358.

10. B. Adhikari and S. Majumdar, Prog. Polym. Sci., 2004, 29, 699-766.

11. L. Torsi, M. Magliulo, K. Manoli and G. Palazzo, Chem. Soc. Rev., 2013, 42, 8612-8628.

12. G. J. N. Wang, A. Gasperini and Z. Bao, Adv. Electron. Mater., 2018, 4, 1700429.

13. M. Stoppa and A. Chiolerio, Sensors, 2014, 14, 11957-11992.

14. Y. Liu, M. Pharr and G. A. Salvatore, ACS nano, 2017, 11, 9614-9635.

15. X. Wang, Z. Liu and T. Zhang, Small, 2017, 13, 1602790.

16. J. S. Heo, J. Eom, Y. H. Kim and S. K. Park, Small, 2018, 14, 1703034.

17. M. Ashizawa, Y. Zheng, H. Tran and Z. Bao, Prog. Polym. Sci., 2019, 101181.

18. J. Onorato, V. Pakhnyuk and C. K. Luscombe, Polym. J., 2017, 49, 41-60.

19. M. Shin, J. Y. Oh, K. E. Byun, Y. J. Lee, B. Kim, H. K. Baik, J. J. Park and U. Jeong, Adv. Mater., 2015, 27, 1255-1261.

20. S. Savagatrup, A. S. Makaram, D. J. Burke and D. J. Lipomi, Adv. Funct. Mater., 2014, 24, 1169-1181.

21. J. Xu, S. Wang, G.-J. N. Wang, C. Zhu, S. Luo, L. Jin, X. Gu, S. Chen, V. R. Feig and J. W. To, Science, 2017, 355, 59-64.

22. P. H. Chu, G. Wang, B. Fu, D. Choi, J. O. Park, M. Srinivasarao and E. Reichmanis, Adv. Electron. Mater., 2016, 2, 1500384.

23. T. Sun, J. I. Scott, M. Wang, R. J. Kline, G. C. Bazan and B. T. O'Connor, Adv. Electron. Mater., 2017, 3, 1600388.

24. H.-C. Wu, S. J. Benight, A. Chortos, W.-Y. Lee, J. Mei, J. W. To, C. Lu, M. He, J. B.-H. Tok and W.-C. Chen, Chem. Mater., 2014, 26, 4544-4551.

25. S. Savagatrup, X. Zhao, E. Chan, J. Mei and D. J. Lipomi, Macromol. Rapid Commun., 2016, 37, 1623-1628.

26. A. D. Printz, S. Savagatrup, D. J. Burke, T. N. Purdy and D. J. Lipomi, RSC Adv., 2014, 4, 13635-13643.

27. S. Savagatrup, A. D. Printz, D. Rodriquez and D. J. Lipomi, Macromolecules, 2014, 47, 1981-1992.

28. H.-C. Wu, C.-C. Hung, C.-W. Hong, H.-S. Sun, J.-T. Wang, G. Yamashita, T. Higashihara and W.-C. Chen, Macromolecules, 2016, 49, 8540-8548.

29. H.-F. Wen, H.-C. Wu, J. Aimi, C.-C. Hung, Y.-C. Chiang, C.-C. Kuo and W.-C. Chen, Macromolecules, 2017, 50, 4982-4992.

30. Y.-C. Chiang, H.-C. Wu, H.-F. Wen, C.-C. Hung, C.-W. Hong, C.-C. Kuo, T. Higashihara and W.-C. Chen, Macromolecules, 2019, 52, 4396-4404.

31. Y.-C. Lin, F.-H. Chen, Y.-C. Chiang, C.-C. Chueh and W.-C. Chen, ACS Appl. Mater. Interfaces, 2019, 11, 34158-34170.

32. J. Y. Oh, S. Rondeau-Gagné, Y.-C. Chiu, A. Chortos, F. Lissel, G.-J. N. Wang, B. C. Schroeder, T. Kurosawa, J. Lopez and T. Katsumata, Nature, 2016, 539, 411-415.

33. Y.-C. Lin, C.-K. Chen, Y.-C. Chiang, C.-C. Hung, M.-C. Fu, S. Inagaki, C.-C. Chueh, T. Higashihara and W.-C. Chen, ACS Appl. Mater. Interfaces, 2020, 12, 33014-33027.

34. Y.-W. Huang, Y.-C. Lin, H.-C. Yen, C.-K. Chen, W.-Y. Lee, W.-C. Chen and C.-C. Chueh, Chem. Mater., 2020, 32, 7370-7382.

35. C. Müller, S. Goffri, D. W. Breiby, J. W. Andreasen, H. D. Chanzy, R. A. Janssen, M. M. Nielsen, C. P. Radano, H. Sirringhaus and P. Smith, Adv. Funct. Mater., 2007, 17, 2674-2679.

36. J.-T. Wang, S. Takshima, H.-C. Wu, C.-C. Shih, T. Isono, T. Kakuchi, T. Satoh and W.-C. Chen, Macromolecules, 2017, 50, 1442-1452.

37. R. Peng, B. Pang, D. Hu, M. Chen, G. Zhang, X. Wang, H. Lu, K. Cho and L. Qiu, J. Mater. Chem. C, 2015, 3, 3599-3606.

38. T. Higashihara, S. Fukuta, Y. Ochiai, T. Sekine, K. Chino, T. Koganezawa and I. Osaka, ACS Appl. Polym. Mater., 2019, 1, 315-320.

39. Y.-C. Chiang, S. Kobayashi, T. Isono, C.-C. Shih, T. Shingu, J.-J. Hung, H.-C. Hsieh, S.- H. Tung, T. Satoh and W.-C. Chen, Polym. Chem., 2019, 10, 5452-5464.

40. D. Neher, Macromol. Rapid Commun., 2001, 22, 1365-1385.

41. Q. Zhao, S. J. Liu and W. Huang, Macromol. Chem. Phys., 2009, 210, 1580-1590.

42. X.-D. Zhuang, Y. Chen, B.-X. Li, D.-G. Ma, B. Zhang and Y. Li, Chem. Mater., 2010, 22, 4455-4461.

43. T.-W. Kim, S.-H. Oh, H. Choi, G. Wang, H. Hwang, D.-Y. Kim and T. Lee, Appl. Phys. Lett., 2008, 92, 231.

44. J.-T. Wang, K. Saito, H.-C. Wu, H.-S. Sun, C.-C. Hung, Y. Chen, T. Isono, T. Kakuchi, T. Satoh and W.-C. Chen, NPG Asia Mater., 2016, 8, e298.

45. H.-C. Hsieh, C.-C. Hung, K. Watanabe, J.-Y. Chen, Y.-C. Chiu, T. Isono, Y.-C. Chiang, R. R. Reghu, T. Satoh and W.-C. Chen, Polym. Chem., 2018, 9, 3820-3831.

46. D.-H. Jiang, S. Kobayashi, C.-C. Jao, Y. Mato, T. Isono, Y.-H. Fang, C.-C. Lin, T. Satoh, S.-H. Tung and C.-C. Kuo, Polymers, 2020, 12, 84.

47. A.-N. Au-Duong, C.-C. Wu, Y.-T. Li, Y.-S. Huang, H.-Y. Cai, I. Jo Hai, Y.-H. Cheng, C.- C. Hu, J.-Y. Lai and C.-C. Kuo, Macromolecules, 2020, 53, 4030-4037.

48. B. O'Connor, R. J. Kline, B. R. Conrad, L. J. Richter, D. Gundlach, M. F. Toney and D. M. DeLongchamp, Adv. Funct. Mater., 2011, 21, 3697-3705.

49. G. J. N. Wang, L. Shaw, J. Xu, T. Kurosawa, B. C. Schroeder, J. Y. Oh, S. J. Benight and Z. Bao, Adv. Funct. Mater., 2016, 26, 7254-7262.

50. S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig and J. Lopez, Nature, 2018, 555, 83.

51. A. D. Printz, S. Savagatrup, D. Rodriquez and D. J. Lipomi, Sol. Energy Mater. Sol. Cells, 2015, 134, 64-72.

52. T. Kim, J.-H. Kim, T. E. Kang, C. Lee, H. Kang, M. Shin, C. Wang, B. Ma, U. Jeong and T.-S. Kim, Nature communications, 2015, 6, 1-7.

53. W. Huang, Z. Jiang, K. Fukuda, X. Jiao, C. R. McNeill, T. Yokota and T. Someya, Joule, 2020, 4, 128-141.

54. D. J. Lipomi, H. Chong, M. Vosgueritchian, J. Mei and Z. Bao, Sol. Energy Mater. Sol. Cells, 2012, 107, 355-365.

55. L. Li, J. Liang, H. Gao, Y. Li, X. Niu, X. Zhu, Y. Xiong and Q. Pei, ACS Appl. Mater. Interfaces, 2017, 9, 40523-40532.

56. J. Qin, L. Lan, S. Chen, F. Huang, H. Shi, W. Chen, H. Xia, K. Sun and C. Yang, Adv. Funct. Mater., 2020, 30, 2002529.

57. P. B. J. St. Onge, M. U. Ocheje, M. Selivanova and S. Rondeau‐Gagné, Chem. Rec., 2019, 19, 1008-1027.

58. C.-C. Shih, W.-Y. Lee and W.-C. Chen, Mater. Horiz., 2016, 3, 294-308.

59. C.-L. Liu and W.-C. Chen, in Electrical Memory Materials and Devices, Royal Society of Chemistry, 2015, pp. 233-255.

60. Q.-D. Ling, D.-J. Liaw, C. Zhu, D. S.-H. Chan, E.-T. Kang and K.-G. Neoh, Prog. Polym. Sci., 2008, 33, 917-978.

61. Y.-C. Lai, Y.-C. Huang, T.-Y. Lin, Y.-X. Wang, C.-Y. Chang, Y. Li, T.-Y. Lin, B.-W. Ye, Y.-P. Hsieh and W.-F. Su, NPG Asia Mater., 2014, 6, e87.

62. C. Ban, X. Wang, Z. Zhou, H. Mao, S. Cheng, Z. Zhang, Z. Liu, H. Li, J. Liu and W. Huang, Sci. Rep., 2019, 9, 1-7.

63. K. Rajan, E. Garofalo and A. Chiolerio, Sensors, 2018, 18, 367.

64. C. C. Hung, Y. C. Chiu, H. C. Wu, C. Lu, C. Bouilhac, I. Otsuka, S. Halila, R. Borsali, S. H. Tung and W. C. Chen, Adv. Funct. Mater., 2017, 27, 1606161.

65. C.-C. Hung, S. Nakahira, Y.-C. Chiu, T. Isono, H.-C. Wu, K. Watanabe, Y.-C. Chiang, S. Takashima, R. Borsali and S.-H. Tung, Macromolecules, 2018, 51, 4966-4975.

66. T. Iwata, Angew. Chem. Int. Ed., 2015, 54, 3210-3215.

67. S. M. Roopan, T. Surendra and G. Madhumitha, Handbook of Polymers for Pharmaceutical Technologies; Wiley: Hoboken, NJ, USA, 2015, 3, 541-555.

68. R. P. Babu, K. O'connor and R. Seeram, Progress in biomaterials, 2013, 2, 1-16.

69. V. Forti, C. P. Baldé, R. Kuehr, G. Bel, The Global E-Waste Monitor 2020: Quantities,

Flows and the Circular Economy Potential, Bonn, Geneva, Rotterdam, 2020.

70. M. Irimia-Vladu, Chem. Soc. Rev., 2014, 43, 588-610.

71. K.-T. Huang, C.-C. Chueh and W.-C. Chen, Mater. Today Sustain., 2020, 100057.

72. C. J. Bettinger and Z. Bao, Polym. Int., 2010, 59, 563-567.

73. T. Lei, M. Guan, J. Liu, H.-C. Lin, R. Pfattner, L. Shaw, A. F. McGuire, T.-C. Huang, L. Shao and K.-T. Cheng, Proc. Natl. Acad. Sci. U.S.A., 2017, 114, 5107-5112.

74. J. W. Chang, C. G. Wang, C. Y. Huang, T. D. Tsai, T. F. Guo and T. C. Wen, Adv. Mater., 2011, 23, 4077-4081.

75. P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwödiauer, S. Bauer, H. PiglmayerBrezina, D. Bäuerle and N. S. Sariciftci, Org. Electron., 2007, 8, 648-654.

76. J.-Y. Lam, G.-W. Jang, C.-J. Huang, S.-H. Tung and W.-C. Chen, ACS Sustain.Chem. Eng., 2020, 8, 5100-5106.

77. K.-T. Huang, C.-C. Shih, B.-H. Jiang, R.-J. Jeng, C.-P. Chen and W.-C. Chen, J. Mater. Chem. C, 2019, 7, 12572-12579.

78. K.-T. Huang, C.-P. Chen, B.-H. Jiang, R.-J. Jeng and W.-C. Chen, Org. Electron., 2020, 87, 105924.

79. R. Nie, A. Li and X. Deng, J. Mater. Chem. A, 2014, 2, 6734-6739.

80. P.-C. Lin, Y.-T. Wong, Y.-A. Su, W.-C. Chen and C.-C. Chueh, ACS Sustain. Chem. Eng., 2018, 6, 14621-14630.

81. J. Dagar, M. Scarselli, M. De Crescenzi and T. M. Brown, ACS Energy Lett., 2016, 1, 510-515.

82. H. Liu, R. Jian, H. Chen, X. Tian, C. Sun, J. Zhu, Z. Yang, J. Sun and C. Wang, Nanomaterials, 2019, 9, 950.

83. S. Bonardd, N. Morales, L. Gence, C. Saldías, F. A. Angel, G. Kortaberria and A. Leiva, ACS Appl. Mater. Interfaces, 2020, 12, 13275-13286.

84. N. Maity and A. Dawn, Polymers, 2020, 12, 709.

85. P. Cataldi, I. S. Bayer, F. Bonaccorso, V. Pellegrini, A. Athanassiou and R. Cingolani, Adv. Electron. Mater., 2015, 1, 1500224.

86. Y. Sakai-Otsuka, S. Zaioncz, I. Otsuka, S. Halila, P. Rannou and R. Borsali, Macromolecules, 2017, 50, 3365-3376.

87. K. M. Zia, A. Noreen, M. Zuber, S. Tabasum and M. Mujahid, Int. J. Biol. Macromol., 2016, 82, 1028-1040.

88. C. J. Bettinger and Z. Bao, Adv. Mater., 2010, 22, 651-655.

89. G. Z. Papageorgiou, D. G. Papageorgiou, Z. Terzopoulou and D. N. Bikiaris, Eur. Polym. J., 2016, 83, 202-229.

90. S. K. Burgess, J. E. Leisen, B. E. Kraftschik, C. R. Mubarak, R. M. Kriegel and W. J. Koros, Macromolecules, 2014, 47, 1383-1391.

91. J. Y. Lam, C. C. Shih, W. Y. Lee, C. C. Chueh, G. W. Jang, C. J. Huang, S. H. Tung and W. C. Chen, Macromol. Rapid Commun., 2018, 39, 1800271.

92. M. Labet and W. Thielemans, Chem. Soc. Rev., 2009, 38, 3484-3504.

93. I. Fortelny, A. Ujcic, L. Fambri and M. Slouf, Front. Mater., 2019, 6, 206.

94. T. Patrício, M. Domingos, A. Gloria and P. Bártolo, Procedia Cirp, 2013, 5, 110-114.

95. F. Sugiyama, A. T. Kleinschmidt, L. V. Kayser, M. A. Alkhadra, J. M.-H. Wan, A. S.-C. Chiang, D. Rodriquez, S. E. Root, S. Savagatrup and D. J. Lipomi, Macromolecules, 2018, 51, 5944-5949.

96. M. T. Martello, A. Burns and M. Hillmyer, ACS Macro Lett., 2012, 1, 131-135.

97. D. Tang, C. W. Macosko and M. A. Hillmyer, Polym. Chem., 2014, 5, 3231-3237.

98. D. K. Schneiderman, C. Gilmer, M. T. Wentzel, M. T. Martello, T. Kubo and J. E. Wissinger, J. Chem. Educ., 2014, 91, 131-135.

99. T. Isono, B. J. Ree, K. Tajima, R. Borsali and T. Satoh, Macromolecules, 2018, 51, 428- 437.

100. T. Isono, S. Nakahira, H.-C. Hsieh, S. Katsuhara, H. Mamiya, T. Yamamoto, W.-C. Chen, R. Borsali, K. Tajima and T. Satoh, Macromolecules, 2020, 53, 5408-5417.

101. K. K. Bansal, D. Kakde, L. Purdie, D. J. Irvine, S. M. Howdle, G. Mantovani and C. Alexander, Polym. Chem., 2015, 6, 7196-7210.

102. R. Ferrari, A. Agostini, L. Brunel, L. Morosi and D. Moscatelli, J. Polym. Sci., Part A: Polym. Chem., 2017, 55, 3788-3797.

103. K. K. Bansal, J. Gupta, A. Rosling and J. M. Rosenholm, Saudi. Pharm. J., 2018, 26, 358-368.

104. T. Rali, S. W. Wossa and D. N. Leach, Molecules, 2007, 12, 149-154.

105. Y. Gounaris, Flavour. Fragr. J., 2010, 25, 367-386.

106. K. Houk, A. Jabbari, H. Hall and C. Alemán, J. Org. Chem., 2008, 73, 2674-2678.

107. C. Aleman, O. Betran, J. Casanovas, K. Houk and H. Hall Jr, J. Org. Chem., 2009, 74, 6237-6244.

108. O. Coulembier, P. Degée, J. L. Hedrick and P. Dubois, Prog. Polym. Sci., 2006, 31, 723-747.

109. K. Makiguchi, T. Satoh and T. Kakuchi, Macromolecules, 2011, 44, 1999-2005.

110. T. Isono, I. Otsuka, S. Halila, R. Borsali, T. Kakuchi and T. Satoh, J. Photopolym. Sci. Technol., 2015, 28, 635-642.

111. K. Saito, T. Isono, H.-S. Sun, T. Kakuchi, W.-C. Chen and T. Satoh, Polym. Chem., 2015, 6, 6959-6972.

2.5 Reference

1. C. Ban, X. Wang, Z. Zhou, H. Mao, S. Cheng, Z. Zhang, Z. Liu, H. Li, J. Liu and W. Huang, Sci. Rep., 2019, 9, 1-7.

2. J. A. Rogers, T. Someya and Y. Huang, Science, 2010, 327, 1603-1607.

3. G. J. N. Wang, A. Gasperini and Z. Bao, Adv. Electron. Mater., 2018, 4, 1700429.

4. T. Q. Trung and N. E. Lee, Adv. Mater., 2017, 29, 1603167.

5. M. Shin, J. Y. Oh, K. E. Byun, Y. J. Lee, B. Kim, H. K. Baik, J. J. Park and U. Jeong, Adv. Mater., 2015, 27, 1255-1261.

6. J. Xu, S. Wang, G.-J. N. Wang, C. Zhu, S. Luo, L. Jin, X. Gu, S. Chen, V. R. Feig and J. W. To, Science, 2017, 355, 59-64.

7. J.-S. Kim, J.-H. Kim, W. Lee, H. Yu, H. J. Kim, I. Song, M. Shin, J. H. Oh, U. Jeong and T.-S. Kim, Macromolecules, 2015, 48, 4339-4346.

8. S. Y. Son, J.-H. Kim, E. Song, K. Choi, J. Lee, K. Cho, T.-S. Kim and T. Park, Macromolecules, 2018, 51, 2572-2579.

9. B. O’Connor, E. P. Chan, C. Chan, B. R. Conrad, L. J. Richter, R. J. Kline, M. Heeney, I. McCulloch, C. L. Soles and D. M. DeLongchamp, Acs Nano, 2010, 4, 7538-7544.

10. B. Roth, S. Savagatrup, N. V. de los Santos, O. Hagemann, J. E. Carlé, M. Helgesen, F. Livi, E. Bundgaard, R. R. Søndergaard and F. C. Krebs, Chem. Mater., 2016, 28, 2363-2373.

11. J.-T. Wang, K. Saito, H.-C. Wu, H.-S. Sun, C.-C. Hung, Y. Chen, T. Isono, T. Kakuchi, T. Satoh and W.-C. Chen, NPG Asia Mater., 2016, 8, e298.

12. J.-T. Wang, S. Takshima, H.-C. Wu, C.-C. Shih, T. Isono, T. Kakuchi, T. Satoh and W.-C. Chen, Macromolecules, 2017, 50, 1442-1452.

13. H.-C. Hsieh, C.-C. Hung, K. Watanabe, J.-Y. Chen, Y.-C. Chiu, T. Isono, Y.-C. Chiang, R. R. Reghu, T. Satoh and W.-C. Chen, Polym. Chem., 2018, 9, 3820-3831.

14. Y.-C. Chiang, S. Kobayashi, T. Isono, C.-C. Shih, T. Shingu, J.-J. Hung, H.-C. Hsieh, S.- H. Tung, T. Satoh and W.-C. Chen, Polym. Chem., 2019, 10, 5452-5464.

15. R. Peng, B. Pang, D. Hu, M. Chen, G. Zhang, X. Wang, H. Lu, K. Cho and L. Qiu, J. Mater. Chem. C, 2015, 3, 3599-3606.

16. T. Higashihara, S. Fukuta, Y. Ochiai, T. Sekine, K. Chino, T. Koganezawa and I. Osaka, ACS Appl. Polym. Mater., 2019, 1, 315-320.

17. F. Ge, Z. Liu, F. Tian, Y. Du, L. Liu, X. Wang, H. Lu, Z. Wu, G. Zhang and L. Qiu, Polym. Chem., 2018, 9, 4517-4522.

18. M. T. Martello, A. Burns and M. Hillmyer, ACS Macro Lett., 2012, 1, 131-135.

19. T. Isono, B. J. Ree, K. Tajima, R. Borsali and T. Satoh, Macromolecules, 2018, 51, 428-437.

20. K. Makiguchi, T. Satoh and T. Kakuchi, Macromolecules, 2011, 44, 1999-2005. Poly(3-hexylthiophene)-block-poly(δ-decanolactone)s: Toward High-Performance and Stretchable Semiconducting Material Through Branched Soft-Hard-Soft Type Triblock Copolymer Design

21. T. Isono, I. Otsuka, Y. Kondo, S. Halila, S. Fort, C. Rochas, T. Satoh, R. Borsali and T. Kakuchi, Macromolecules, 2013, 46, 1461-1469.

22. A. E. Speers, G. C. Adam and B. F. Cravatt, J. Am. Chem. Soc., 2003, 125, 4686-4687.

23. R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu and J. M. Frechet, Adv. Mater., 2003, 15, 1519-1522.

24. R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, J. M. Fréchet and M. F. Toney, Macromolecules, 2005, 38, 3312-3319.

25. Y. Ito, A. A. Virkar, S. Mannsfeld, J. H. Oh, M. Toney, J. Locklin and Z. Bao, J. Am. Chem. Soc., 2009, 131, 9396-9404.

26. A. Labuda, M. Kocuń, W. Meinhold, D. Walters and R. Proksch, Beilstein J. Nanotechnol., 2016, 7, 970-982.

27. H. K. Nguyen, M. Ito and K. Nakajima, Jpn. J. Appl. Phys., 2016, 55, 08NB06.

28. Z. N. Mahani and M. Tajvidi, Int. J. Adhes. Adhes., 2017, 79, 59-66.

29. J. Tang and E. Y. X. Chen, J. Polym. Sci., Part A: Polym. Chem., 2018, 56, 2271-2279.

30. M. Hong and E. Y.-X. Chen, Nat. Chem., 2016, 8, 42.

31. P. Kohn, S. Huettner, H. Komber, V. Senkovskyy, R. Tkachov, A. Kiriy, R. H. Friend, U. Steiner, W. T. Huck and J.-U. Sommer, J. Am. Chem. Soc., 2012, 134, 4790-4805.

32. G. Strobl, Prog. Polym. Sci., 2006, 31, 398-442.

33. H. Park, B. S. Ma, J.-S. Kim, Y. Kim, H. J. Kim, D. Kim, H. Yun, J. Han, F. S. Kim and T.-S. Kim, Macromolecules, 2019, 52, 7721-7730.

34. J. Park, C. Choi, S. Hyun, H. C. Moon, K. L. Vincent Joseph and J. K. Kim, Macromolecules, 2016, 49, 616-623.

35. H. Lim, C.-Y. Chao and W.-F. Su, Macromolecules, 2015, 48, 3269-3281.

36. M. Alizadehaghdam, B. Heck, S. Siegenführ, F. Abbasi and G. n. Reiter, Macromolecules, 2019, 52, 2487-2494.

37. M. Roesing, J. Howell and D. Boucher, J. Polym. Sci., Part B: Polym. Phys., 2017, 55, 1075-1087.

38. O. Inganäs, W. Salaneck, J.-E. Österholm and J. Laakso, Synth. Met., 1988, 22, 395-406.

39. L. He, S. Pan and J. Peng, J. Polym. Sci., Part B: Polym. Phys., 2016, 54, 544-551.

40. H. Yamagata and F. C. Spano, J. Chem. Phys., 2012, 136, 184901.

41. B. O'Connor, R. J. Kline, B. R. Conrad, L. J. Richter, D. Gundlach, M. F. Toney and D. M. DeLongchamp, Adv. Funct. Mater., 2011, 21, 3697-3705.

42. J. Mai, T.-K. Lau, J. Li, S.-H. Peng, C.-S. Hsu, U.-S. Jeng, J. Zeng, N. Zhao, X. Xiao and X. Lu, Chem. Mater., 2016, 28, 6186-6195.

3.5 Reference

1. D. Son, J. H. Koo, J.-K. Song, J. Kim, M. Lee, H. J. Shim, M. Park, M. Lee, J. H. Kim and D.-H. Kim, ACS nano, 2015, 9, 5585-5593.

2. Y.-C. Lai, Y.-C. Huang, T.-Y. Lin, Y.-X. Wang, C.-Y. Chang, Y. Li, T.-Y. Lin, B.-W. Ye, Y.-P. Hsieh and W.-F. Su, NPG Asia Mater., 2014, 6, e87-e87.

3. C. a. Di, F. Zhang and D. Zhu, Adv. Mater., 2013, 25, 313-330.

4. Y. Ni, Y. Wang and W. Xu, Small, 2020, 1905332.

5. A.-N. Au-Duong, C.-C. Kuo and Y.-C. Chiu, Polym. J., 2018, 50, 649-658.

6. W. L. Leong, P. S. Lee, A. Lohani, Y. M. Lam, T. Chen, S. Zhang, A. Dodabalapur and S.G. Mhaisalkar, Adv. Mater., 2008, 20, 2325-2331.

7. M. Kang, K. J. Baeg, D. Khim, Y. Y. Noh and D. Y. Kim, Adv. Funct. Mater., 2013, 23, 3503-3512.

8. J. Hoffman, X. Pan, J. W. Reiner, F. J. Walker, J. Han, C. H. Ahn and T. Ma, Adv. Mater., 2010, 22, 2957-2961.

9. R. C. Naber, K. Asadi, P. W. Blom, D. M. de Leeuw and B. de Boer, Adv. Mater., 2010, 22, 933-945.

10. Y.-H. Chou, H.-C. Chang, C.-L. Liu and W.-C. Chen, Polym. Chem., 2015, 6, 341-352.

11. K. J. Baeg, Y. Y. Noh, J. Ghim, B. Lim and D. Y. Kim, Adv. Funct. Mater., 2008, 18, 3678-3685.

12. C.-C. Shih, W.-Y. Lee and W.-C. Chen, Mater. Horiz., 2016, 3, 294-308.

13. C. C. Shih, Y. C. Chiu, W. Y. Lee, J. Y. Chen and W. C. Chen, Adv. Funct. Mater., 2015, 25, 1511-1519.

14. C.-C. Shih, Y.-C. Chiang, H.-C. Hsieh, Y.-C. Lin and W.-C. Chen, ACS Appl. Mater. Interfaces, 2019, 11, 42429-42437.

15. H. Ling, J. Lin, M. Yi, B. Liu, W. Li, Z. Lin, L. Xie, Y. Bao, F. Guo and W. Huang, ACS Appl. Mater. Interfaces, 2016, 8, 18969-18977.

16. J.-C. Hsu, W.-Y. Lee, H.-C. Wu, K. Sugiyama, A. Hirao and W.-C. Chen, J. Mater. Chem., 2012, 22, 5820-5827.

17. Y.-C. Chiu, C.-C. Shih and W.-C. Chen, J. Mater. Chem. C, 2015, 3, 551-558.

18. C. Müller, S. Goffri, D. W. Breiby, J. W. Andreasen, H. D. Chanzy, R. A. Janssen, M. M. Nielsen, C. P. Radano, H. Sirringhaus and P. Smith, Adv. Funct. Mater., 2007, 17, 2674-2679.

19. J.-T. Wang, S. Takshima, H.-C. Wu, C.-C. Shih, T. Isono, T. Kakuchi, T. Satoh and W.-C. Chen, Macromolecules, 2017, 50, 1442-1452.

20. Y.-C. Chiang, S. Kobayashi, T. Isono, C.-C. Shih, T. Shingu, J.-J. Hung, H.-C. Hsieh, S.- H. Tung, T. Satoh and W.-C. Chen, Polym. Chem., 2019, 10, 5452-5464.

21. H.-C. Hsieh, C.-C. Hung, K. Watanabe, J.-Y. Chen, Y.-C. Chiu, T. Isono, Y.-C. Chiang, R. R. Reghu, T. Satoh and W.-C. Chen, Polym. Chem., 2018, 9, 3820-3831.

22. M. T. Martello, A. Burns and M. Hillmyer, ACS Macro Lett., 2012, 1, 131-135.

23. T. Isono, B. J. Ree, K. Tajima, R. Borsali and T. Satoh, Macromolecules, 2018, 51, 428-437.

24. T. Isono, S. Nakahira, H.-C. Hsieh, S. Katsuhara, H. Mamiya, T. Yamamoto, W.-C. Chen, R. Borsali, K. Tajima and T. Satoh, Macromolecules, 2020, 53, 5408-5417.

25. K. Makiguchi, T. Satoh and T. Kakuchi, Macromolecules, 2011, 44, 1999-2005.

26. S. Kobayashi, K. Fujiwara, D.-H. Jiang, T. Yamamoto, K. Tajima, Y. Yamamoto, T. Isono and T. Satoh, Polym. Chem., 2020, 11, 6832-6839.

27. D.-H. Jiang, S. Kobayashi, C.-C. Jao, Y. Mato, T. Isono, Y.-H. Fang, C.-C. Lin, T. Satoh, S.-H. Tung and C.-C. Kuo, Polymers, 2020, 12, 84.

28. L.-C. Hsu, S. Kobayashi, T. Isono, Y.-C. Chiang, B. J. Ree, T. Satoh and W.-C. Chen, Macromolecules, 2020, 53, 7496-7510.

29. N. E. Persson, M. A. McBride, M. A. Grover and E. Reichmanis, Chem. Mater., 2017, 29, 3-14.

30. S. Chen, A. Su, C. Su and S. Chen, J. Phys. Chem. B., 2006, 110, 4007-4013.

31. J.-T. Xu, J. P. A. Fairclough, S.-M. Mai, C. Chaibundit, M. Mingvanish, C. Booth and A. J. Ryan, Polymer, 2003, 44, 6843-6850.

32. S. Tzavalas, D. E. Mouzakis, V. Drakonakis and V. G. Gregoriou, J. Polym. Sci., Part B: Polym. Phys., 2008, 46, 668-676.

33. C. Liu, K. W. Chan, J. Shen, C. Z. Liao, K. W. K. Yeung and S. C. Tjong, Polymers, 2016, 8, 425.

34. W.-R. Wu, W.-T. Chuang, U.-S. Jeng, C.-J. Su, S.-H. Chen, C.-Y. Chen, C.-H. Su and A.- C. Su, Polymer, 2012, 53, 3928-3936.

35. J. Liu, Q. Wang, C. Liu, H. Chang, H. Tian, Y. Geng and D. Yan, Polymer, 2015, 65, 1-8.

36. C.-H. Kim and I. Kymissis, J. Mater. Chem. C, 2017, 5, 4598-4613.

4.3 Reference

1. C. Zhang, D. K. Schneiderman, T. Cai, Y.-S. Tai, K. Fox and K. Zhang, ACS Sustain.Chem. Eng., 2016, 4, 4396-4402.

2. J.-T. Wang, S. Takshima, H.-C. Wu, C.-C. Shih, T. Isono, T. Kakuchi, T. Satoh and W.-C. Chen, Macromolecules, 2017, 50, 1442-1452.

3. H.-C. Hsieh, C.-C. Hung, K. Watanabe, J.-Y. Chen, Y.-C. Chiu, T. Isono, Y.-C. Chiang, R. R. Reghu, T. Satoh and W.-C. Chen, Polym. Chem., 2018, 9, 3820-3831.

4. “Buy Delta Decalactone,713-95-1,Farwell 713-95-1 Delta Decalactone Product on Alibaba.com”, 2021, 7, Data sources are from: https://www.alibaba.com/productdetail/Farwell-713-95-1-Delta-Decalactone_326909813.html?spm=a2700.galleryoffer list.normal_offer.d_title.11dlleeejsfbal

5. “What do we need to achieve at COP26?”, UN Climate Change Conference UK 2021, Data sources are from: https://ukcop26.org/cop26-goals/.

6. R. Fayt, R. Forte, C. Jacobs, R. Jérôme, T. Ouhadi, P. Teyssié and S. K. Varshney, Macromolecules, 1987, 20, 1442-1444.

7. S. Y. Son, Y. Kim, J. Lee, G.-Y. Lee, W.-T. Park, Y.-Y. Noh, C. E. Park and T. Park, J. Am. Chem. Soc., 2016, 138, 8096-8103.

8. F. Sugiyama, A. T. Kleinschmidt, L. V. Kayser, M. A. Alkhadra, J. M.-H. Wan, A. S.-C. Chiang, D. Rodriquez, S. E. Root, S. Savagatrup and D. J. Lipomi, Macromolecules, 2018, 51, 5944-5949.

9. H. Ling, J. Lin, M. Yi, B. Liu, W. Li, Z. Lin, L. Xie, Y. Bao, F. Guo and W. Huang, ACS Appl. Mater. Interfaces, 2016, 8, 18969-18977.

10. C.-C. Shih, Y.-C. Chiang, H.-C. Hsieh, Y.-C. Lin and W.-C. Chen, ACS Appl. Mater. Interfaces, 2019, 11, 42429-42437.

11. Y.-C. Chen, Y.-C. Lin, H.-C. Hsieh, L.-C. Hsu, W.-C. Yang, T. Isono, T. Satoh and W.-C. Chen, J. Mater. Chem. C, 2021, 9, 1259-1268.

12. H. A. Al‐Attar and A. P. Monkman, Adv. Funct. Mater., 2012, 22, 3824-3832.

13. C.-L. Liu, C.-H. Lin, C.-C. Kuo, S.-T. Lin and W.-C. Chen, Prog. Polym. Sci., 2011, 36, 603-637.

14. W.-C. Wu, C.-Y. Chen, W.-Y. Lee and W.-C. Chen, Polymer, 2015, 65, A1-A16.

15. S. Burattini, B. W. Greenland, D. H. Merino, W. Weng, J. Seppala, H. M. Colquhoun, W. Hayes, M. E. Mackay, I. W. Hamley and S. J. Rowan, J. Am. Chem. Soc., 2010, 132, 12051-12058.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る