リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Co-Culture of THP-1 Cells and Normal Human Epidermal Keratinocytes (NHEK) for Modified Human Cell Line Activation Test (h-CLAT)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Co-Culture of THP-1 Cells and Normal Human Epidermal Keratinocytes (NHEK) for Modified Human Cell Line Activation Test (h-CLAT)

Mizuki Iijima Kazutoshi Iijima 30468508 横浜国立大学

2022.06.28

概要

Silica nonwoven fabrics (SNF) prepared using electrospinning have high biocompatibility, thermal stability, and porosity that allows growing three-dimensional culture of cells. In this study, we used SNF to construct a three-dimensional artificial skin model consisting of epidermal and dermal layers with immortalized and primary human cell lines, creating a novel model that minimizes tissue shrinkage. As a result, SNF dermal/epidermal models have enhanced functions in the basement membrane, whereas Collagen dermal/epidermal models have advantages in keratinization and barrier functions. The SNF dermal/epidermal model with mechanical strength formed a basement membrane mimicking structure, suggesting the construction of a stable skin model. Next, we constructed three-dimensional skin models consisting of SNF and collagen. In the combination models, the expression of genes in the basement membrane was significantly increased compared with that in the Collagen dermal/epidermal model, and the gene for keratinization was increased compared with that in the SNF dermal/epidermal model. We believe that the combination model can be a biomimetic model that takes advantage of both SNF and collagen and can be applied to various basic research. Our new skin model is expected to be an alternative method for skin testing to improve the shrinkage of the collagen matrix gel.

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

United Nations. Globally Harmonized System of Classification and Labelling of Chemicals (GHS), 7th ed.; UN: New York, NY, USA;

Geneva, Switzerland, 2017.

OECD (Ed.) OECD TG 442C in Chemico Skin Sensitization Assays Addressing the Adverse Outcome Pathway Key Event on Covalent

Binding to Proteins; OECD: Pairs, France, 2019.

OECD (Ed.) OECD TG 442D In Vitro Skin Sensitization Assays Addressing the Key Event on Activation of Dendritic Cells on the Adverse

Outcome Pathway for Skin Sensitization; OECD: Pairs, France, 2019.

OECD (Ed.) G 442E In Vitro Skin Sensitization Assays Addressing the Key Event on Activation of Dendritic Cells on the Adverse Outcome

Pathway for Skin Sensitization; OECD: Pairs, France, 2017.

Rovida, C.; Alépée, N.; Api, A.M.; Basketter, D.A.; Bois, F.Y.; Caloni, F.; Corsini, E.; Daneshian, M.; Eskes, C.; Ezendam, J.

Integrated Testing Strategies (ITS) for safety assessment. ALTEX 2015, 32, 25–40. [CrossRef] [PubMed]

Urbisch, D.; Mehling, A.; Guth, K.; Ramirez, T.; Honarvar, N.; Kolle, S.; Landsiedel, R.; Jaworska, J.; Kern, P.S.; Gerberick, F.

Assessing skin sensitization hazard in mice and men using non-animal test methods. Regul. Toxicol. Pharmacol. 2015, 71, 337–351.

[CrossRef] [PubMed]

OECD (Ed.) OECD Guidance Document on the Reporting of Defined Approaches and Individual Information Sources to Be Used within

Integrated Approaches to Testing and Assessment (IATA) for Skin Sensitization; OECD: Pairs, France, 2016.

Kleinstreuer, N.C.; Hoffmann, S.; Alépée, N.; Allen, D.; Ashikaga, T.; Casey, W.; Clouet, E.; Cluzel, M.; Desprez, B.; Gellatly, N.

Non-animal methods to predict skin sensitization (II): An assessment of defined approaches. Crit. Rev. Toxicol. 2018, 48, 359–374.

[CrossRef] [PubMed]

Thélu, A.; Catoire, S.; Kerdine-Römer, S. Immune-competent in vitro co-culture models as an approach for skin sensitization

assessment. Toxicol. Vitr. 2020, 62, 104691. [CrossRef]

Galbiati, V.; Maddalon, A.; Iulini, M.; Marinovich, M.; Corsini, E. Human keratinocytes and monocytes co-culture cell system: An

important contribution for the study of moderate and weak sensitizers. Toxicol. Vitr. 2020, 68, 104929. [CrossRef] [PubMed]

Hennen, J.; Aeby, P.; Goebel, C.; Schettgen, T.; Oberli, A.; Kalmes, M.; Blömeke, B. Cross talk between keratinocytes and dendritic

cells: Impact on the prediction of sensitization. Toxicol. Sci. 2011, 123, 501–510. [CrossRef] [PubMed]

Eskes, C.; Hennen, J.; Schellenberger, M.T.; Hoffmann, S.; Frey, S.; Goldinger-Oggier, D.; Peter, N.; Van Vliet, E.; Blömeke, B.

The HaCaT/THP-1 cocultured activation test (COCAT) for skin sensitization: A study of intra-laboratory reproducibility and

predictivity. ALTEX 2019, 36, 613–622. [CrossRef]

Schellenberger, M.T.; Bock, U.; Hennen, J.; Groeber-Becker, F.; Walles, H.; Blömeke, B. A coculture system composed of THP-1

cells and 3D reconstructed human epidermis to assess activation of dendritic cells by sensitizing chemicals after topical exposure.

Toxicol. Vitr. 2019, 57, 62–66. [CrossRef]

Yoshida, Y.; Sakaguchi, H.; Ito, Y.; Okuda, M.; Suzuki, H. Evaluation of the skin sensitization potential of chemicals using

expression of co-stimulatory molecules, CD54 and CD86, on the naive THP-1 cell line. Toxicol. Vitr. 2003, 17, 221–228. [CrossRef]

Ashikaga, T.; Yoshida, Y.; Hirota, M.; Yoneyama, K.; Itagaki, H.; Sakaguchi, H.; Miyazawa, M.; Ito, Y.; Suzuki, H.; Toyoda, H.

Development of an in vitro skin sensitization test using human cell lines: The human Cell Line Activation Test (h-CLAT): I.

Optimization of the h-CLAT protocol. Toxicol. Vitr. 2006, 20, 767–773. [CrossRef]

Sakaguchi, H.; Ashikaga, T.; Miyazawa, M.; Yoshida, Y.; Ito, Y.; Yoneyama, K.; Hirota, M.; Itagaki, H.; Toyoda, H.; Suzuki, H.

Development of an in vitro skin sensitization test using human cell lines; human Cell Line Activation Test (h-CLAT) II. An

inter-laboratory study of the h-CLAT. Toxicol. Vitr. 2006, 20, 774–784. [CrossRef] [PubMed]

Sakaguchi, H.; Ashikaga, T.; Miyazawa, M.; Kosaka, N.; Ito, Y.; Yoneyama, K.; Sono, S.; Itagaki, H.; Toyoda, H.; Suzuki, H.

The relationship between CD86/CD54 expression and THP-1 cell viability in an in vitro skin sensitization test–human cell line

activation test (h-CLAT). Cell Biol. Toxicol. 2009, 25, 109–126. [CrossRef]

Appl. Sci. 2022, 12, 6207

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

14 of 15

Mitachi, T.; Mezaki, M.; Yamashita, K.; Itagaki, H. Acidic conditions induce the suppression of CD86 and CD54 expression in

THP-1 cells. J. Toxicol. Sci. 2018, 43, 299–309. [CrossRef] [PubMed]

Tsukumo, H.; Matsunari, N.; Yamashita, K.; Kojima, H.; Itagaki, H. Lipopolysaccharide interferes with the use of the human

Cell Line Activation Test to determine the allergic potential of proteins. J. Pharmacol. Toxicol. Methods 2018, 92, 34–42. [CrossRef]

[PubMed]

Kobayashi-Tsukumo, H.; Oiji, K.; Xie, D.; Sawada, Y.; Yamashita, K.; Ogata, S.; Kojima, H.; Itagaki, H. Eliminating the contribution

of lipopolysaccharide to protein allergenicity in the human cell-line activation test (h-CLAT). J. Toxicol. Sci. 2019, 44, 283–297.

[CrossRef] [PubMed]

Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal.

2012, 24, 981–990. [CrossRef] [PubMed]

DiGiovanni, J.; Gill, R.D.; Nettikumara, A.N.; Colby, A.B.; Reiners, J.J. Effect of extracellular calcium concentration on the

metabolism of polycyclic aromatic hydrocarbons by cultured mouse keratinocytes. Cancer Res. 1989, 49, 5567–5574. Available

online: https://cancerres.aacrjournals.org/content/49/20/5567 (accessed on 17 June 2022).

Huh, D.; Hamilton, G.A.; Ingber, D.E. From 3D cell culture to organs-on-chips. Trends Cell Biol. 2011, 21, 745–754. [CrossRef]

Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013, 48,

452–458. [CrossRef]

OECD (Ed.) OECD TG 430 In Vitro Skin Corrosion: Transcutaneous Electrical Resistance Test Method (TER); OECD: Paris, France, 2013.

Lepoittevin, J.P. Metabolism versus chemical transformation or pro-versus prehaptens? Contact Dermat. 2006, 54, 73–74. [CrossRef]

Smith, C.M.; Hotchkiss, S.A.M. Enzymes and pathways of xenobiotic metabolism in skin. In Allergic Contact Dermatitis: Chemical

and Metabolic Mechanisms; Taylor and Francis: London, UK, 2001; pp. 89–117. [CrossRef]

Swanson, H.I. Cytochrome P450 expression in human keratinocytes: An aryl hydrocarbon receptor perspective. Chem. Biol.

Interact. 2004, 149, 69–79. [CrossRef] [PubMed]

Chipinda, I.; Ruwona, T.B.; Templeton, S.P.; Siegel, P.D. Use of the human monocytic leukemia THP-1 cell line and co-incubation

with microsomes to identify and differentiate hapten and prohapten sensitizers. Toxicology 2011, 280, 135–143. [CrossRef]

Chen, C.C.; Chen, J.J.; Chou, C.Y. Protein kinase Cα but not p44/42 mitogen-activated protein kinase, p38, or c-Jun NH2-terminal

kinase is required for intercellular adhesion molecule-1 expression mediated by interleukin-1β: Involvement of sequential

activation of tyrosine kinase, nuclear factor-κB-inducing kinase, and IκB kinase 2. Mol. Pharmacol. 2000, 58, 1479–1489. [CrossRef]

[PubMed]

Rossol, M.; Pierer, M.; Raulien, N.; Quandt, D.; Meusch, U.; Rothe, K.; Schubert, K.; Schöneberg, T.; Schaefer, M.; Krügel, U.

Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors.

Nat. Commun. 2012, 3, 1329. [CrossRef]

Mitachi, T.; Kouzui, M.; Maruyama, R.; Yamashita, K.; Ogata, S.; Kojima, H.; Itagaki, H. Some non-sensitizers upregulate CD54

expression by activation of the NLRP3 inflammasome in THP-1 cells. J. Toxicol. Sci. 2019, 44, 213–224. [CrossRef]

Grodzki, A.C.G.; Giulivi, C.; Lein, P.J. Oxygen tension modulates differentiation and primary macrophage functions in the human

monocytic THP-1 cell line. PLoS ONE 2013, 8, e54926. [CrossRef] [PubMed]

Köck, A.; Schwarz, T.; Kirnbauer, R.; Urbanski, A.; Perry, P.; Ansel, J.C.; Luger, T.A. Human keratinocytes are a source for tumor

necrosis factor alpha: Evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light. J. Exp. Med. 1990,

172, 1609–1614. [CrossRef] [PubMed]

Enk, A.H.; Katz, S.I. Identification and induction of keratinocyte-derived IL-10. J. Immunol. 1992, 149, 92–95. Available online:

https://www.jimmunol.org/content/149/1/92 (accessed on 17 June 2022).

Ansel, J.; Perry, P.; Brown, J.; Damm, D.; Phan, T.; Hart, C.; Luger, T.; Hefeneider, S. Cytokine modulation of keratinocyte cytokines.

J. Investig. Dermatol. 1990, 94, s101–s107. [CrossRef]

Ioffreda, M.D.; Whitaker, D.; Murphy, G.F. Mast cell segranulation upregulates ∝6 integrins on epidermal langerhans cells. J.

Investig. Dermatol. 1993, 101, 150–154. [CrossRef]

Cumberbatch, M.; Kimber, I. Dermal tumour necrosis factor-alpha induces dendritic cell migration to draining lymph nodes, and

possibly provides one stimulus for Langerhans’ cell migration. Immunology 1992, 75, 257–263.

Enk, A.H.; Angeloni, V.L.; Udey, M.C.; Katz, S.I. Inhibition of Langerhans cell antigen-presenting function by IL-10. A role for IL10 in induction of tolerance. J. Immunol. 1993, 151, 2390–2398. Available online: https://www.jimmunol.org/content/151/5/2390

(accessed on 17 June 2022).

Witmer-Pack, M.D.; Olivier, W.; Valinsky, J.; Schuler, G.; Steinman, R.M. Granulocyte/macrophage colony-stimulating factor

is essential for the viability and function of cultured murine epidermal langerhans cells. J. Exp. Med. 1987, 166, 1484–1498.

[CrossRef]

Heufler, C.; Koch, F.; Schuler, G. Granulocyte/macrophage colony-stimulating factor and interleukin 1 mediate the maturation of

murine epidermal Langerhans cells into potent immunostimulatory dendritic cells. J. Exp. Med. 1988, 167, 700–705. [CrossRef]

[PubMed]

Berg, E.L.; Hsu, Y.C.; Lee, J.A. Consideration of the cellular microenvironment: Physiologically relevant co-culture systems in

drug discovery. Adv. Drug Deliv. Rev. 2014, 69, 190–204. [CrossRef] [PubMed]

Abbott, R.D.; Kaplan, D.L. Strategies for improving the physiological relevance of human engineered tissues. Trends Biotechnol.

2015, 33, 401–407. [CrossRef] [PubMed]

Appl. Sci. 2022, 12, 6207

44.

45.

46.

47.

48.

49.

15 of 15

Peehl, D.M.; Ham, R.G. Growth and differentiation of human keratinocytes without a feeder layer or conditioned medium. Vitro

1980, 16, 516–525. [CrossRef] [PubMed]

Kobayashi, D.; Kusama, M.; Onda, M.; Nakahata, N. The effect of pantothenic acid deficiency on keratinocyte proliferation and

the synthesis of keratinocyte growth factor and collagen in fibroblasts. J. Pharmacol. Sci. 2011, 115, 230–234. [CrossRef] [PubMed]

Gröne, A. Keratinocytes and cytokines. Vet. Immunol. Immunopathol. 2002, 88, 1–12. [CrossRef]

Ghahary, A.; Marcoux, Y.; Karimi-Busheri, F.; Tredget, E.E. Keratinocyte differentiation inversely regulates the expression of

involucrin and transforming growth factor β1. J. Cell. Biochem. 2001, 83, 239–248. [CrossRef]

Ramsden, D.; Zhou, J.; Tweedie, D.J. Determination of a degradation constant for CYP3A4 by direct suppression of mRNA in a

novel human hepatocyte model, HepatoPac. Drug Metab. Dispos. 2015, 43, 1307–1315. [CrossRef]

OECD (Ed.) OECD TG 439 In Vitro Skin Irritation: Reconstructed Human Epidermis Test Method; OECD: Paris, France, 2021.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る