リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Organ accumulation and carcinogenicity of highly dispersed multi-walled carbon nanotubes administered intravenously in transgenic rasH2 mice (遺伝子改変rasH2マウスを用いた高分散した多層カーボンナノチューブの静脈内投与による臓器集積と発癌性評価)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Organ accumulation and carcinogenicity of highly dispersed multi-walled carbon nanotubes administered intravenously in transgenic rasH2 mice (遺伝子改変rasH2マウスを用いた高分散した多層カーボンナノチューブの静脈内投与による臓器集積と発癌性評価)

傍島, 淳 信州大学 DOI:31616140

2020.06.15

概要

【背景】多層カーボンナノチューブ(Multi walled carbon nanotubes: MWCNTs)はその優れた機械的特性や電気的特性から様々な製品に応用されている.MWCNTsを,drug delivery system(DDS), imaging,再生医療の足場材などの生体材料として用いようとの試みがある.しかし現時点でMWCNTsが臨床応用されていない理由は,MWCNTsがアスベストに似た繊維状ナノ粒子であり,循環系に入ったMWCNTsが他臓器に移動し腫瘍を誘導する可能性に関しての安全性が確認されていないことである.本研究ではMWCNTsを遺伝子改変発癌性rasH2マウスに静脈内投与し,内臓臓器への集積と腫瘍誘導の有無を調査した.

【方法】MWCNTsを遺伝子改変発癌性rasH2マウスに静脈内投与し,毎週死亡・衰弱の確認と体重測定を実施した.また最終評価の26週後に犠牲にして,規定された全ての臓器の組織評価と採血検査を行い,MWCNTsの存在と腫瘍の有無を調べた.評価したMWCNTsは,ThinとThickの2種類で,それぞれhigh dose(体重1kgあたり0.7mg)群,low dose(体重1kgあたり0.07mg)群の2群ずつ作製し,分散液と超音波分散機により現在の技術で最も高度に分散させて静脈内投与した.negative control群はpolysorbate 80単独群(Vehicle群)を用いた.

【結果】全ての群の平均体重の変化は有意差はなかった.組織学的所見で肺には全ての群で腫瘍の発生を認めたが,群間に有意差を認めなかった.Vehicle群の1例で胸膜由来と考える中皮腫を発生したがそれ以外は全て腺腫であった.次に腫瘍が多く発生していたのは脾臓で,Thick-MWCNTs(high dose)以外で腫瘍を認めた.肺と同様に,脾臓でも群間に有意差はなかった.その他には胃でVehicleとThick-MWCNTs(low dose)に1匹ずつ腫瘍が認められ,いずれも群間に有意差を認めなかった.これらの腫瘍を発生した部位にMWCNTsがあるかを観察したが,いずれの部位にも存在しなかった.Vehicle群と比較して,2種類のMWCNTsを2用量で投与した全ての群の各臓器の腫瘍発生数に,有意な差はなかった.膵臓ではThin-MWCNTs(high dose)群の2匹で,解剖時に外観からMWCNTの沈着が認められた.2匹ともMWCNTsの沈着は認めるものの,腫瘍は形成していなかった.全てのマウスのその他の臓器の組織標本にMWCNTsの沈着は認めなかった.

【考察】MWCNTsの投与量は,1kgあたりではhigh dose群で0.7mg, low dose群で0.07mgと過去の報告と比較してかなり多い量であるが,MWCNTsの集積を認めたのは2臓器と少なかった.本研究では現在の最も高度と考えられる技術を用いてMWCNTsを十分分散させたため,MWCNTsの凝集体が少なかった.このため,これまでの静脈投与実験に比較して,臓器への集積が少なかったと考える.現在の技術を用いればMWCNTsを静脈内投与しても不要な臓器への集積することなく,DDSやimagingに活用できることを示すことができた.発癌性評価の結果は,2種類のMWCNTs群,Vehicle群のいずれにも,肺,胸腺,脾臓,胃,会陰に腫瘍を生じたマウスがいたが統計学的な有意差はなく,いずれの臓器においてもMWCNTsによる腫瘍発生はなかった.腫瘍を認めた組織標本は詳細に検討されたが,MWCNTsはいずれの標本にも認められなかった.高度に分散されたMWCNTsを遺伝子改変発癌性マウスに投与するという,最も過酷な評価方法で腫瘍が発生しなかったことは重要な結果である.少なくとも本研究で用いた体重1kgあたり約0.7mg以下のMWCNTsを十分に分散させて静脈内注射を行えば,体内で腫瘍を発生する可能性が極めて低いことが明らかになった.

【結論】循環系に入った高分散したMWCNTsの最も過酷な発癌性評価として,遺伝子改変発癌性rasH2マウスを用いて静脈内投与試験を初めて行った.一部の個体にMWCNTsの膵臓への集積を認めたが,全ての臓器で腫瘍の発生率は増加しなかった.高分散したMWCNTsを静脈内投与しても発癌する可能性は少ないと考える.本研究の結果は,MWCNTsの吸い込みによる循環系への移動や,癌治療薬のDDSや病変部のimagingなど生体材料として用いる際の,臓器への集積と発癌性の評価に重要な情報を提供する.

参考文献

1. Park HS, Kim JS, Choi BG, et al. Sonochemical hybridization of carbon nanotubes with gold nanoparticles for the production of flexible transparent conducing films. Carbon. 2010;48(5):1325–1330. doi:10.1016/j.carbon.2009.11.054

2. He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham-Huy C. Carbon nanotubes: applications in pharmacy and medicine. Biomed Res Int. 2013;2013:578290. doi:10.1155/2013/578290

3. Silva RM, Doudrick K, Franzi LM, et al. Instillation versus inhalation of multiwalled carbon nanotubes: exposure-related health effects, clearance, and the role of particle characteristics. ACS Nano. 2014;8 (9):8911–8931. doi:10.1021/nn503887r

4. Muller J, Huaux F, Moreau N, et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol. 2005;207(3):221–231. doi:10.1016/j.taap.2005.02.021

5. Takagi A, Hirose A, Nishimura T, et al. Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci. 2008;33(1):105–116. doi:10.2131/jts.33.105

6. Yamashita K, Yoshioka Y, Higashisaka K, et al. Carbon nanotubes elicit DNA damage and inflammatory response relative to their size and shape. Inflammation. 2010;33(4):276–280. doi:10.1007/s10753-010-9182-7

7. Nagai H, Okazaki Y, Hwu S, Misawa N, Yamashita Y, Akatsuka S. Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc Natl Acad Sci USA. 2011;108(49):E1330–E1338. doi:10.1073/pnas.1110013108

8. Donaldson K, Murphy FA, Duffin R, Poland CA. Asbestos, carbon nano- tubes and the pleural mesothelium : a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol. 2010;7:5. doi:10.1186/1743-8977-7-5

9. Matsumoto M, Serizawa H, Sunaga M, et al. No toxicological effects on acute and repeated oral gavage doses of single-wall or multi-wall carbon nanotube in rats. J Toxicol Sci. 2012;37(3):463–474.

10. El-Gazzar AM, Abdelgied M, Alexander DB, et al. Comparative pulmonary toxicity of a DWCNT and MWCNT-7 in rats. Arch Toxicol. 2019;93(1):49–59. doi:10.1007/s00204-018-2336-3

11. Mercer RR, Scabilloni JF, Hubbs AF, et al. Extrapulmonary transport of MWCNT following inhalation exposure. Part Fibre Toxico. 2013;10:38. doi:10.1186/1743-8977-10-56

12. Thompson LC, Holland NA, Snyder RJ, et al. Pulmonary instillation of MWCNT increases lung permeability, decreases gp130 expression in the lungs, and initiates cardiovascular IL-6 transsignaling. Am J Physiol Lung Cell Mol Physiol. 2016;310(2):L142–L154. doi:10.1152/ajplung.00384.2014

13. Kasai T, Umeda Y, Ohnishi M, Mine T, Kondo H, Takeuchi T. Lung carcinogenicity of inhaled multi- walled carbon nanotube in rats. Part Fibre Toxicol. 2016;13(1):53. doi:10.1186/s12989-016-0164-2

14. Hara K, Aoki K, Usui Y, et al. Evaluation of CNT toxicity by comparison to tattoo ink. Mater Today. 2011;14(9):434–440. doi:10.1016/S1369-7021(11)70188-2

15. Eletskii AV. Carbon nanotube-based electron field emitters. Phys Usp. 2010;53:863–889. doi:10.3367/UFNe.0180.201009a.0897

16. Rosen Y, Elman NM. Carbon nanotubes in drug delivery: focus on infectious diseases. Expert Opin Drug Deliv. 2009;6(5):517–530. doi:10.1517/17425240902865579

17. Usui Y, Aoki K, Narita N, et al. Carbon nanotubes with high bone- tissue compatibility and bone-formation acceleration effects. Small. 2008;4(2):240–242. doi:10.1002/smll.200700670

18. Shimizu M, Kobayashi Y, Mizoguchi T, et al. Carbon nanotubes induce bone calcification by bidirectional interaction with osteoblasts. Adv Mater. 2012;24(16):2176–2185. doi:10.1002/adma.201103832

19. Tanaka M, Sato Y, Zhang M, et al. In vitro and in vivo evaluation of a three- dimensional porous multi-walled carbon nanotube scaffold for bone regen- eration. Nanomaterials (Basel). 2017;7(2):46. doi:10.3390/nano7120458

20. Tanaka M, Sato Y, Haniu H, et al. A three-dimensional block struc- ture consisting exclusively of carbon nanotubes serving as bone regeneration scaffold and as bone defect filler. PLoS One. 2017;12 (2):e0172601. doi:10.1371/journal.pone.0172601

21. Jain S, Thakare VS, Das M, et al. Toxicity of multiwalled carbon nanotubes with end defects critically depends on their functionaliza- tion density. Chem Res Toxicol. 2011;24(11):2028–2039. doi:10. 1021/tx2003728

22. Pauluhn J. Subchronic 13-week inhalation exposure of rats to multi- walled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci. 2010;113 (1):226–242. doi:10.1093/toxsci/kfp247

23. U.S. Department of Health, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. Current intelligence bulletin 65, occupational exposure to carbon nanotubes and nanofibers. DHHS (NIOSH) Publication No. 2013-145. April 2013. Available from: https://www.cdc.gov/niosh/docs/2013-145/pdfs/2013-145.pdf. Accessed February 11, 2019.

24. Hosseinpour M, Azimirad V, Alimohammadi M, Shahabi P, Sadighi M. The cardiac effects of carbon nanotubes in rat. Bioimpacts. 2016;6 (2):79–84. doi:10.15171/bi.2016.11

25. Rittinghausen S, Hackbarth A, Creutzenberg O, et al. The carcino- genic effect of various multi-walled carbon nanotubes (MWCNTs) after intraperitoneal injection in rats. Part Fibre Toxicol. 2014;11:59. doi:10.1186/s12989-014-0059-z

26. Mercer RR, Scabilloni JF, Hubbs AF, et al. Distribution and fibrotic response following inhalation exposure to multi-walled carbon nano- tubes. Part Fibre Toxicol. 2013;10:33. doi:10.1186/1743-8977-10-56

27. Yamaguchi A, Fujitani T, Ohyama K, et al. Effects of sustained stimulation with multi-wall carbon nanotubes on immune and inflam- matory responses in mice. J Toxicol Sci. 2012;37(1):177–189.

28. Muller J, Delos M, Panin N, Rabolli V, Huaux F, Lison D. Absence of carcinogenic response to multiwall carbon nanotubes in a 2-year bioassay in the peritoneal cavity of the rat. Toxicol Sci. 2009;110 (2):442–448. doi:10.1093/toxsci/kfp100

29. Urano K, Suzuki S, Machida K, et al. Examination of percutaneous application in a 26-week carcinogenicity test in CB6F1-TG rasH2 mice. J Toxicol Sci. 2007;32(4):367–375. doi:10.2131/jts.32.367

30. Kuroda C, Ueda K, Haniu H, et al. Different aggregation and shape characteristics of carbon materials affect biological responses in RAW264 cells. Int J Nanomedicine. 2018;13:6079–6088. doi:10.2147/IJN.S177627

31. Takaya M, Serita F, Yamazaki K, et al. Characteristics of multiwall carbon nanotubes for an intratracheal instillation study with rats. Ind Health. 2010;48:452–459. doi:10.2486/indhealth.MS1128

32. Paranjpe MG, Elbekaei RH, Shah SA, Hickman M, Wenk ML, Zahalka EA. Historical control data of spontaneous tumors in trans- genic CByB6F1-Tg(HRAS)2Jic (Tg.rasH2) mice. Int J Toxicol. 2013;32(1):48–57. doi:10.1177/1091581812471565

33. Suguro M, Numano T, Kawabe M, et al. Tumor induction by 26- week dermal application of 1, 2-Dichloroethane in CB6F1-Tg rasH2 mice. Toxicol Pathol. 2017;45(3):427–434. doi:10.1177/ 0192623317701003

34. Morton D, Alden CL, Roth AJ, Usui T. The Tg rasH2 mouse in cancer hazard identification. Toxicol Pathol. 2002;30(1):139–146. doi:10.1080/01926230252824851

35. Macdonald J, French J, Gerson RJ, et al. The utility of genetically modified mouse assays for identifying human carcinogens : a basic understanding and path forward. Toxicol Sci. 2004;77(2):188–194. doi:10.1093/toxsci/kfh037

36. Long GG, Morton D, Peters T, Short B, Skydgaard M. Alternative mouse models for carcinogenicity assessment : industry use and issues with pathology interpretation. Toxicol Pathol. 2010;38(1):43– 50. doi:10.1177/0192623309354107

37. Nambiar PR, Morton D. The rasH2 mouse model for assessing carcinogenic potential of pharmaceuticals. Toxicol Pathol. 2013;41 (8):1058–1067. doi:10.1177/0192623313477257

38. Tamaoki N. The rasH2 transgenic mouse: nature of the model and mechanistic studies on tumorigenesis. Toxicol Pathol. 2001;29 (Suppl):81–89. doi:10.1080/019262301753385933

39. Tsuji S, Kuwahara Y, Takagi H, Sugiura M. Gene expression analysis in the lung of the rasH2 transgenic mouse at week 4 prior to induc- tion of malignant tumor formation by urethane and N-methylolacry- lamide. J Toxicol Sci. 2015;40(6):685–700. doi:10.2131/jts.40.887

40. ISO 10993-1: 2018. Biological Evaluation of Medical Devices - Part 1: Evaluation and Testing within a Risk Management Process.

41. ISO 10993-3:2014. Biological Evaluation of Medical Devices - Part 3: Tests for Genotoxicity, Carcinogenicity and Reproductive Toxicity.

42. Urano K, Suzuki S, Machida K, Sawa N, Eguchi N. Use of IC tags in short-term carcinogenicity study on CB6F1 TGrasH2 mice. J Toxicol Sci. 2006;31:407–418. doi:10.2131/jts.31.407

43. Takanashi S, Hara K, Aoki K, et al. Carcinogenicity evaluation for the application of carbon nanotubes as biomaterials in rasH2 mice. Sci Rep. 2012;2:498. doi:10.1038/srep00386

44. Castranova V, Schulte PA, Zumwalde RD. Occupational nanosafety considerations for carbon nanotubes and carbon nanofibers. Acc Chem Res. 2013;46(3):642–649. doi:10.1021/ar300004a

45. ISO/TS 13278: 2017. Nanotechnologies - Determination of Elemental Impurities in Samples of Carbon Nanotubes Using Inductively Coupled Plasma Mass Spectrometry.

46. ISO/TS 11888: 2017. Nanotechnologies - Characterization of Multiwall Carbon Nanotubes - Mesoscopic Shape Factors.

47. ISO/TS 12805: 2011. Nanotechnologies - Materials Specifications - Guidance on Specifying Nano-Objects.

48. Badie BH, Rezaee R, Valokala GM, et al. Cardiotoxicity of nano- particles. Life Sci. 2016;165:91–99. doi:10.1016/j.lfs.2016.09.017

49. Wu T, Tang M. Review of the effects of manufactured nanoparticles on mammalian target organs. J Appl Toxicol. 2018;38(1):25–40. doi:10.1002/jat.v38.1

50. Qu G, Bai Y, Zhang Y, Jia Q, Zhang W, Yan B. The effect of multiwalled carbon nanotube agglomeration on their accumulation in and damage to organs in mice. Carbon. 2009;47(8):2060–2069. doi:10.1016/j.carbon.2009.03.056

51. Zhang T, Tang M, Zhang S, et al. Systemic and immunotoxicity of pristine and PEGylated multi-walled carbon nanotubes in an intrave- nous 28 days repeated dose toxicity study. Int J Nanomedicine. 2017;12:1539–1554. doi:10.2147/IJN.S123345

52. Ji Z, Zhang D, Li L, et al. The hepatotoxicity of multi-walled carbon nanotubes in mice. Nanotechnology. 2009;20:44. doi:10.1088/0957- 4484/20/44/445101

53. Toyokuni S. Genotoxicity and carcinogenicity risk of carbon nano- tubes. Adv Drug Deliv Rev. 2013;65:2098–2110. doi:10.1016/j. addr.2013.05.011

54. Firme CP, Bandaru PR. Toxicity issues in the application of carbon nanotubes to biological systems. Nanomedicine (Basel). 2010;6 (2):245–256. doi:10.1016/j.nano.2009.07.003

55. Iancu C, Mocan L. Advances in cancer therapy through the use of carbon nanotube-mediated targeted hyperthermia. Int J Nanomedicine. 2011;6:1675–1684. doi:10.2147/IJN.S25646

56. Sakamoto Y, Nakae D, Fukumori N, et al. Induction of mesothe- lioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male Fischer 344 rats. J Toxicol Sci. 2009;34 (1):65–76.

57. Kavosi A, Hosseini S, Noei G, Madani S, Khalighfard S. The toxicity and therapeutic effects of single-and multi-wall carbon nanotubes on mice breast cancer. Sci Rep. 2018;8(1):8375. doi:10.1038/s41598- 018-26790-x

58. Crouzier D, Follot S, Gentilhomme E, et al. Carbon nanotubes induce inflammation but decrease the production of reactive oxygen species in lung. Toxicology. 2010;272(1–3):39–45. doi:10.1016/j.tox.2010.04.001

59. Nygaard UC, Hansen JS, Samuelsen M, Alberg T, Marioara CD, Løvik M. Single-walled and multi-walled carbon nanotubes promote allergic immune responses in mice. Toxicol Sci. 2009;109(1):113–123. doi:10.1093/toxsci/kfp057

60. Sato Y, Yokoyama A, Shibata K, et al. Influence of length on cytotoxi- city of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol Biosyst. 2005;1(2):176–182. doi:10.1039/b502429c

61. Yoshizawa K, Yuki M, Kinoshita Y, et al. N-methyl-N-nitrosourea- induced schwannomas in male Sprague-Dawley rats with a literature review of inducible and spontaneous lesions. Exp Toxicol Pathol. 2016;68(7):371–379. doi:10.1016/j.etp.2016.05.005

62. Teixeira-Guedes CI, Faustino-Rocha AI, Talhada D, et al. A liver schwannoma observed in a female Sprague-Dawley rat treated with MNU. Exp Toxicol Pathol. 2014;66(2–3):125–128. doi:10.1016/j. etp.2013.11.003

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る