リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「High-normal albuminuria is strongly associated with incident chronic kidney disease in a nondiabetic population with normal range of albuminuria and normal kidney function」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

High-normal albuminuria is strongly associated with incident chronic kidney disease in a nondiabetic population with normal range of albuminuria and normal kidney function

大久保 愛子 広島大学

2020.03.23

概要

Chronic kidney disease (CKD) affects 753 million people globally and is therefore
recognized as a world health concern, with evidence of increased risk for not only endstage renal disease [1, 2] but also cardiovascular disease (CVD) [3, 4]. The definition of
CKD includes individuals with evidence of kidney damage, such as albuminuria and
decline of estimated glomerular filtration rate (eGFR), for longer than 3 months.
Moreover, the Kidney Disease: Improving Global Outcomes 2012 Clinical Practice
Guideline proposes a risk map using urine albumin-to-creatinine ratio (UACR) and
eGFR categories [2]. Thus, to calculate UACR and eGFR, urine tests and blood tests are
widely performed for the diagnosis of CKD as well as to evaluate severity in the clinical
setting. However, the association of normal-range UACR and eGFR with incidence of
CKD in the general population remain unknown.
Although UACR <30 mg/gCr is defined as normal-range, we have recently
demonstrated that UACR •5.9 mg/gCr predicts incidence of CKD in participants with
eGFR •60 mL/min/1.73 m2 [5]. Importantly, eGFR •60 mL/min/1.73 m2 includes the
“mildly decreased” category; therefore, the effect of high-normal albuminuria on the
incidence of CKD should be determined in a population with eGFR •90 mL/min/1.73
m2 that is classified in the “normal or high” category. In addition to albuminuria, early
decline of eGFR may be associated with incidence of CKD. However, its impact on the
incidence of CKD in the population with normal kidney function remains unclear.
In this study, we investigated the association of normal-range UACR and eGFR
with the incidence of CKD in the nondiabetic population. We also investigated the
clinical factors that are reportedly associated with incident CKD. Furthermore, we
examined the cut-off value of clinical parameters to predict the incidence of CKD. ...

この論文で使われている画像

関連論文

参考文献

1.

Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney

disease: global dimension and perspectives. Lancet. 2013;382: 260-72.

2.

Andrew S. Levey, Paul E. de Jong, Josef Coresh, Meguid El Nahas, Brad C. Astor,

Kunihiro Matsushita, et al. The definition, classification, and prognosis of chronic

kidney disease: a KDIGO Controversies Conference report. Kidney Int. 2011;80:

17-28.

3.

Stenvinkel P, Heimbürger O, Paultre F, Diczfalusy U, Wang T, Berglund L, et al.

Strong association between malnutrition, inflammation, and atherosclerosis in

chronic renal failure. Kidney Int. 1999;55: 1899-911.

4.

AA, Wanner C, Sarnak MJ, Piña IL, McIntyre CW, Komenda P, et al. Heart failure

in chronic kidney disease: conclusions from a Kidney Disease: Improving Global

Outcomes (KDIGO) Controversies Conference. Kidney Int. 2019;95: 1304-17.

5.

Ashitani A, Ueno T, Nakashima A, Doi S, Yamane K, Masaki T. High-normal

albuminuria and incident chronic kidney disease in a male nondiabetic population.

Clin Exp Nephrol. 2018;22: 835-42.

6.

Association AD. Erratum. Classification and diagnosis of diabetes. Section 2. In

Standards of Medical Care in Diabetes-2016. Diabetes Care. 2016;39(Suppl 1):

S13-22.

7.

Ketteler M, Block GA, Evenepoel P, Fukagawa M, Herzog CA, McCann L, et al.

Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney DiseaseMineral and Bone Disorder: Synopsis of the Kidney Disease: Improving Global

 

Outcomes 2017 Clinical Practice Guideline Update. Ann Intern Med. 2018;168:

422-30.

8.

Kashiwagi A, Kasuga M, Araki E, Oka Y, Hanafusa T, Ito H, et al. International

clinical harmonization of glycated hemoglobin in Japan: From Japan Diabetes

Society to National Glycohemoglobin Standardization Program values. J Diabetes

Investig. 2012;3: 39-40.

9.

Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations

for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:

982-92.

10. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison

Himmelfarb C, et al. 2017

ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline

for the prevention, detection, evaluation, and management of high blood pressure in

adults: a report of the American College of Cardiology/American Heart Association

Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 2018;71: e127-248.

11. Astor BC, Matsushita K, Gansevoort RT, van der Velde M, Woodward M, Levey

AS, et al. Lower estimated glomerular filtration rate and higher albuminuria are

associated with mortality and end-stage renal disease. A collaborative meta-analysis

of kidney disease population cohorts. Kidney Int. 2011;79: 1331-40.

12. Eckardt KU, Bansal N, Coresh J, Evans M, Grams ME, Herzog CA, et al.

Improving the prognosis of patients with severely decreased glomerular filtration

rate (CKD G4+): conclusions from a Kidney Disease: Improving Global Outcomes

(KDIGO) Controversies Conference. Kidney Int. 2018;93: 1281-92.



13. Jun M, Zhu B, Tonelli M, Jardine MJ, Patel A, Neal B, et al. Effects of fibrates in

kidney disease: a systematic review and meta-analysis. J Am Coll Cardiol. 2012;60:

2061-71.

14. Ricardo AC, Anderson CA, Yang W, Zhang X, Fischer MJ, Dember LM, et al.

Healthy lifestyle and risk of kidney disease progression, atherosclerotic events, and

death in CKD: findings from the Chronic Renal Insufficiency Cohort (CRIC)

Study. Am J Kidney Dis. 2015;65: 412-24.

15. Ladhani M, Craig JC, Irving M, Clayton PA, Wong G. Obesity and the risk of

cardiovascular and all-cause mortality in chronic kidney disease: a systematic

review and meta-analysis. Nephrol Dial Transplant. 2017;32: 439-49.

16. Heo NJ, Ahn JM, Lee TW, Chin HJ, Na KY, Chae DW, et al. Very low-grade

albuminuria reflects susceptibility to chronic kidney disease in combination with

cardiovascular risk factors. Hypertens Res. 2010;33: 573-78.

17. Cachat F, Combescure C, Chehade H, Zeier G, Mosig D, Meyrat B, et al.

Microalbuminuria and hyperfiltration in subjects with nephro-urological disorders.

Nephrol Dial Transplant. 2013;28: 386-91.

18. Melsom T, Schei J, Stefansson VT, Solbu MD, Jenssen TG, Mathisen UD,

Wilsgaard T, et al. Prediabetes and Risk of Glomerular Hyperfiltration and

Albuminuria in the General Nondiabetic Population: A Prospective Cohort Study.

Am J Kidney Dis. 2016;67: 841-50.

19. Ogna A, Forni Ogna V, Bochud M, Guessous I, Paccaud F, Burnier M, et al.

Association between obesity and glomerular hyperfiltration: the confounding effect

of smoking and sodium and protein intakes. Burnier M Eur J Nutr. 2016;55: 108997.



20. Lee SY, Choi ME. Urinary biomarkers for early diabetic nephropathy: beyond

albuminuria. Pediatr Nephrol. 2015;3: 1063-75.

21. Clausen P, Jensen JS, Jensen G, Borch-Johnsen K, Feldt-Rasmussen B. Elevated

urinary albumin excretion is associated with impaired arterial dilatory capacity in

clinically healthy subjects. Circulation. 2001;10;103: 1869-74.

22. Stehouwer CD, Henry RM, Dekker JM, Nijpels G, Heine RJ, Bouter LM.

Microalbuminuria is associated with impaired brachial artery, flow-mediated

vasodilation in elderly individuals without and with diabetes: further evidence for a

link between microalbuminuria and endothelial dysfunction--the Hoorn Study.

Kidney Int Suppl. 2004;92: S42-4.

23. Ochodnicky P, Henning RH, van Dokkum RP, de Zeeuw D. Microalbuminuria and

endothelial dysfunction: emerging targets for primary prevention of end-organ

damage. J Cardiovasc Pharmacol. 2006;47 Suppl 2: 151-62.

24. Pedrinelli R, Dell'Omo G, Penno G, Mariani M. Non-diabetic microalbuminuria,

endothelial dysfunction and cardiovascular disease. Vasc Med. 2001;6: 257-64.

25. Marín R, Gorostidi M, Fernández-Vega F, Alvarez-Navascués R. Systemic and

glomerular hypertension and progression of chronic renal disease: the dilemma of

nephrosclerosis. Kidney Int Suppl. 2005;99: S52-6.

26. Cohen JB, Stephens-Shields AJ, Denburg MR, Anderson AH, Townsend RR,

Reese PP. Obesity, Renin-Angiotensin System Blockade and Risk of Adverse

Renal Outcomes: A Population-Based Cohort Study. Am J Nephrol. 2016;43: 43140.

27. Bragulat E, de la Sierra A. Salt intake, endothelial dysfunction, and salt-sensitive

hypertension. J Clin Hypertens (Greenwich). 2002;4: 41-6.



28. Braam B, Taler SJ, Rahman M, Fillaus JA, Greco BA, Forman JP, et al.

Recognition and Management of Resistant Hypertension. Clin J Am Soc Nephrol.

2017;12: 524-35.

29. Krolewski AS, Skupien J, Rossing P, Warram JH. Fast renal decline to end-stage

renal disease: an unrecognized feature of nephropathy in diabetes. Kidney Int.

2017; 91: 1300-11.

30. Kanda E, Usui T, Kashihara N, Iseki C, Iseki K, Nangaku M. Importance of

glomerular filtration rate change as surrogate endpoint for the future incidence of

end-stage renal disease in general Japanese population: community-based cohort

study. Clin Exp Nephrol. 2018;22: 318-27.

31. Matsushita K, Chen J, Sang Y, Ballew SH, Shimazaki R, Fukagawa M, et al. Risk

of end-stage renal disease in Japanese patients with chronic kidney disease

increases proportionately to decline in estimated glomerular filtration rate. Kidney

Int. 2016;90: 1109-14.

32. Mora-Fernández C, Domínguez-Pimentel V, de Fuentes MM, Górriz JL, Martínez-

Castelao A, Navarro-González JF. Diabetic kidney disease: from physiology to

therapeutics. J Physiol. 2014;592: 3997-4012.

33. Perkins RM, Kirchner HL, Hartle JE, Bucaloiu ID. Estimated glomerular filtration

rate variability and risk of end-stage renal disease among patients with Stage 3

chronic kidney disease. Clin Nephrol. 2013;80: 256-62.

34. Weldegiorgis M, de Zeeuw D, Li L, Parving HH, Hou FF, Remuzzi G, Greene T, et

al. Longitudinal Estimated GFR Trajectories in Patients With and Without Type 2

Diabetes and Nephropathy.Am J Kidney Dis. 2018;71: 91-101.



Figure legends

Figure 1. Comparison of UACR in the group with and without the onset of CKD after

10 years. UACR urine albumin to urine creatinine ratio.The error bars represent the

interquartile range. P<0.001 versus incident CKD group

Figure 2. Receiver-operating characteristic (ROC) curve of baseline UACR and

incident CKD 10 years later. The area under the curve (95% confidence interval) was

0.83, and optimal cut-off points (sensitivity, specificity) of incident CKD 10 years later

were 7.0 mg/gCr (0.79, 0.81)

Figure 3. Transition of UACR ranges after 10 years. UACR urine albumin to urine

creatinine ratio. Participants ZKRGHYHORSHG8$&5•PJJ&UDIWHU\HDUVDUH

shown as light-gray polka-dot bar, and cases 7.0 ”8$&5 mg/gCr after 10 years

are shown as light-gray bar. Cases with UACR of <7.0 mg/gCr even after 10 years are

shown as dark-gray bar



Table 1. Clinical characteristics of study subjects

Non-Incident CKD

Variables

N=288

eGFR

<60a,

UACR

Incident CKD

<30b

eGFR •60a, UACR •b

N=3

N=26

Age, years

41.8 ± 0.3

45.0 ± 3.2

43.2 ± 1.1*

BMI, kg/m2

22.8 ± 3.7

22.8 ± 4.2

25.6 ± 3.8

Current smoking, n (%)

144 (51.4)

2 (66.7)

16 (61.5)

Systolic BP, mmHg

122.7 ± 16.0

126.0 ± 22.6

137.7 ± 16.7*

Diastolic BP, mmHg

77.2 ± 10.2

83.3 ± 15.3

86.7 ± 11.8*

Hematuria, n (%)

12 (4.2)

0 (0)

1 (3.9)

Urinary acid, mg/dL

5.9 ± 1.3

6.4 ± 0.9

6.2 ± 1.0

UACR, mg/g

5.7 ± 0.2

5.6 ± 2.0

12.8 ± 0.7* †

Hemoglobin, g/dL

14.9 ± 0.8

14.2 ± 0.2

15.3 ± 0.9†

Albumin, g/dL

4.6 ± 0.2

4.5 ± 0.3

4.6 ± 0.2

Total cholesterol, mg/dL

192.5 ± 30.2

199.7 ± 5.1

195.6 ± 30.6

LDL cholesterol, mg/dL

105.5 ± 30.3

103.3 ± 15.5

104.5 ±30.1

HDL cholesterol, mg/dL

59.5 ± 15.5

53.0 ± 19.0

61.2 ± 14.7

137.4 ± 119.1

216.7 ± 126.2

149.1 ± 89.2

12.8 ± 2.8

12.9 ± 1.2

12.7 ± 2.8

0.70 ± 0.003

0.73 ± 0.03

0.68 ± 0.01*

eGFR, mL/min/1.73 m

99.0 ± 0.5

92.6 ± 4.7

101.8 ± 1.6* †

High-sensitivity CRP, mg/dL

0.28 ± 1.22

0.04 ± 0.17

0.10 ± 0.10

5.8 ± 0.8

5.9 ± 0.5

5.8 ± 0.7

Triglycerides, mg/dL

BUN, mg/dL

Creatinine, mg/dL

HbA1c, %

Incident CKD

eGFR (mL/min/1.73 m2), b UACR (mg/gCr)

UACR, urine albumin to urine creatinine ratio; BMI, body mass index; BP, blood pressure;

eGFR, estimated glomerular filtration rate. Data are mean ± SD or median (interquartile range)

for continuous variables. Differences between the groups were analyzed using the MannWhitney U test or chi-square test. * P<0.05 versus Non-Incident CKD.



Table 2. Multivariate logistic regression analysis of parameters related

to incident CKD

Parameters

Odds ratio

95% CI

P value

Age, 1 year

1.01

0.93 – 1.10

0.80

BMI, 1 kg/m²

1.00

0.92 – 1.11

0.91

Current smoker, presence

1.18

0.46 – 2.98

0.73

Hypertension, presence

2.52

0.97 – 6.53

0.045

UACR, 1 mg/gCr

1.24

1.14 – 1.35

<0.001

Dyslipidemia, presence

1.16

0.47 – 2.84

0.74

eGFR, 1 mL/min/1.73 m2

1.00

0.96 – 1.06

0.84

The adjusted r2 of the model was 0.25

CI, confidence interval; BMI, body mass index; UACR, urine albumin to urine creatinine ratio;

eGFR, estimated glomerular filtration rate. Hypertension was defined as systolic blood pressure

%3•PP+J or GLDVWROLF%3•PP+J Dyslipidemia was defined as LDL cholesterol

•PJG/+'/FKROHVWHURO PJG/WULJO\FHULGHV•PJG/, or use of lipid-lowering

drugs.



Table 3. Comparison of clinical characteristics according to

albuminuria levels

Age, years

UACR <7.0 mg/gCr

N=240

41.2 ± 5.7

8$&5•PJJCr

N=77

44.0 ± 4.8

BMI, kg/m2

22.6 ± 2.8

24.2 ± 5.7

0.053

Current smoker, n (%)

113 (48.1)

50 (66.7)

0.005

Systolic BP, mmHg

122.1 ± 15.5

129.9 ± 18.5

0.002

Diastolic BP, mmHg

76.6 ± 9.9

82.5 ± 11.9

<0.001

8 (3.3)

5 (6.5)

0.22

Urinary acid, mg/dL

5.9 ± 1.2

6.0 ± 1.3

0.37

UACR, mg/gCr

4.6 ± 1.0

11.5 ± 5.3

<0.001

Hemoglobin, g/dL

14.9 ± 0.8

15.0 ± 0.8

0.76

Albumin, g/dL

4.6 ± 0.2

4.6 ± 0.3

0.60

Total cholesterol, mg/dL

193.4 ± 30.0

191.2 ± 30.5

0.73

LDL cholesterol, mg/dL

107.6 ± 29.5

98.7 ± 31.3

0.02

HDL cholesterol, mg/dL

59.4 ± 15.6

60.2 ± 15.1

0.33

132.0 ± 100.6

161.5 ± 156.1

0.09

12.9 ± 2.6

12.5 ± 3.0

0.50

0.71 ± 0.05

0.68 ± 0.06

<0.001

eGFR, mL/min/1.73 m

98.6 ± 7.4

101.0 ± 9.7

0.08

High-sensitivity CRP, mg/dL

0.3 ± 1.3

0.1 ± 0.1

0.44

HbA1c, %

5.7 ± 0.7

5.7 ± 0.8

0.49

Variables

Hematuria, n (%)

Triglycerides, mg/dL

BUN, mg/dL

Creatinine, mg/dL

P value

<0.001

BMI, body mass index; BP, blood pressure; UACR, urine albumin to urine creatinine ratio;

eGFR, estimated glomerular filtration rate; BUN, blood urea nitrogen; HbA1c, hemoglobin

A1c; CRP, C-reactive protein. Data are mean ± SD or median (interquartile range) for

continuous variables. Differences between the groups were analyzed using the Mann-Whitney U

test or Chi-squared test.



Table 4. Multivariable odds ratios for incident CKD according to the

value of UACR

Parameters

Odds ratio

95% CI

P value

UACR •PJJ&U

17.36

6.16 – 48.93

<0.001

Age, 1 year

1.00

0.91 – 1.09

0.95

BMI, 1 kg/m²

0.99

0.90 – 1.08

0.78

Current smoker, presence

1.01

0.41 – 2.52

0.97

Hypertension, presence

2.71

1.05 – 6.98

0.04

Dyslipidemia, presence

1.41

0.59 – 3.39

0.45

eGFR, 1 mL/min/1.73 m2

1.00

0.95 – 1.05

0.91

The adjusted r2 of the model was 0.26

UACR, urine albumin to urine creatinine ratio; BMI, body mass index; eGFR, estimated

glomerular filtration rate. Hypertension was defined as V\VWROLF%3•PP+J or diastolic BP

•PP+J'\VOLSLGHPLDZDVGHILQHGDV/'/FKROHVWHURO•PJG/+'/FKROHVWHURO 

PJG/WULJO\FHULGHV•PJG/or use of lipid-lowering drugs.



mg/gCr

Prevalence of UACR

Figure 1

Figure 2

Parcentage of participants

0%

20%

40%

60%

80%

100%

EDVHOLQH8$&5•PJJ&U

Figure 3

baseline UACR<7.0 mg/gCr

UACR < 7.0 mg/gCr

”8$&5 PJJ&U

8$&5•PJJ&U

Supplemental Table 1. Multivariate logistic analysis of parameters related to incident

CKD with UACR •mg/gCr

Parameters

Odds ratio

95% CI

P value

Age, 1 year

1.00

0.91 – 1.09

0.95

BMI, 1 kg/m²

1.01

0.91 – 1.11

0.88

Current smoker, presence

1.11

0.41 – 3.05

0.84

Hypertension, presence

2.96

1.04 – 8.37

0.04

UACR, 1 mg/gCr

1.26

1.15 – 1.38

<0.001

Dyslipidemia, presence

1.01

0.38 – 2.65

0.98

eGFR, 1 mL/min/1.73m2

1.02

0.97 – 1.07

0.48

The adjusted r2 of the model was 0.25

CI, confidence interval; BMI, body mass index; UACR, urine albumin to urine creatinine ratio;

eGFR, estimated glomerular filtration rate. Hypertension was defined as systolic blood pressure

%3•PP+J or GLDVWROLF%3•PP+J Dyslipidemia was defined as LDL cholesterol

•PJG/+'/FKROHVWHURO PJG/WULJO\FHULGHV•PJG/RUXVHRIOLSLG-lowering

drugs.

Supplemental Table 2. Multivariate logistic analysis of parameters related to incident

CKD

Odds ratio

95% CI

P value

Age, 1 year

1.05

0.98 – 1.14

0.18

BMI, 1 kg/m²

1.05

0.96 – 1.14

0.30

Current smoker, presence

1.67

0.74 – 3.76

0.21

Hypertension, presence

2.56

1.12 – 5.89

0.03

Hematuria, presence

0.77

0.09 – 6.58

0.80

Dyslipidemia, presence

1.14

0.51 – 2.52

0.75

The adjusted r2 of the model was 0.07

CI, confidence interval; BMI, body mass index. Hypertension was defined as systolic blood

SUHVVXUH%3•PP+J or GLDVWROLF%3•PP+J Dyslipidemia was defined as LDL

cholesterol •PJG/+'/FKROHVWHURO PJG/WULJO\FHULGHV•PJG/RUXVHRIOLSLGlowering drugs.

Supplemental Table 3. Multivariate logistic regression analysis of parameters related to

incident CKD

Parameters

Odds ratio

95% CI

P value

Age, 1 year

1.01

0.93 – 1.11

0.77

BMI, 1 kg/m²

0.98

0.88 – 1.06

0.68

Current smoker, presence

1.18

0.46 – 3.01

0.74

Systolic BP, 1 mmHg

1.05

1.01 – 1.08

0.004

UACR, 1 mg/gCr

1.22

1.12 – 1.33

<0.001

Dyslipidemia, presence

1.06

0.43 – 2.63

0.90

eGFR, 1 mL/min/1.73m2

1.01

0.96 – 1.06

0.77

The adjusted r2 of the model was 0.26

BMI, body mass index; UACR, urine albumin to urine creatinine ratio; eGFR, estimated

glomerular filtration rate. '\VOLSLGHPLDZDVGHILQHGDV/'/FKROHVWHURO•PJG/+'/

cholesterol <40 mg/dL, WULJO\FHULGHV•PJG/RUXVHRIOLSLG-lowering drugs.

Supplemental Table 4. Multivariable odds ratios for incident CKD according to the value

of UACR

Parameters

Odds ratio

95% CI

P value

U$&5•PJJ&U

15.37

5.34 – 43.73

<0.001

Age, 1 year

0.99

0.91 – 1.09

0.89

BMI, 1 kg/m²

0.96

0.86 – 1.06

0.34

Current smoker, presence

1.06

0.42 – 2.68

0.90

Systolic BP, 1 mmHg

1.05

1.02 – 1.08

0.002

Dyslipidemia, presence

1.25

0.50 – 3.10

0.63

eGFR, 1 mL/min/1.73m2

1.00

0.95 – 1.05

0.97

The adjusted r2 of the model was 0.26

BMI, body mass index; UACR, urine albumin to urine creatinine ratio; eGFR, estimated

glomerular filtration rate. '\VOLSLGHPLDZDVGHILQHGDV/'/FKROHVWHURO•PJG/+'/

FKROHVWHURO PJG/WULJO\FHULGHV•PJG/RUXVHRIlipid-lowering drugs.

Supplemental Table 5. Baseline characteristics according to combination of eGFR and

UACR

Variables

Number

G2

G3

G4

eGFR • 0a

H*)5• a

60 䍸eGFR <90a

60 䍸eGFR <90a

UACR <7.0b

UACR •b

UACR <7.0b

UACR •b

240

75

898

165

UACR, mg/gCr

4.6 ± 0.1

11.3 ± 0.3

4.2 ± 0.1

11.4 ± 0.2†§

Age, years

41.2 ± 5.7

44.0 ± 4.8†

44.9 ± 5.1†

46.4 ± 4.9†‡§

BMI, kg/m2

22.6 ± 2.8

24.1 ± 5.7†

23.2 ± 2.7†

24.3 ± 2.7†§

Current smoker, n (%)

113 (48.1)

48 (65.5)†

382 (43.5)‡

74 (44.9)‡

Systolic BP, mmHg

122.1 ± 15.5

129.1 ± 18.1†

122.6 ± 15.6‡

129.6 ± 18.7†§

Diastolic BP, mmHg

76.6 ± 9.9

82.0 ± 11.7†

76.2 ± 10.0‡

82.7 ± 12.4†§

Hematuria, n (%)

8 (3.3)

5 (6.7)

35 (3.9)

15 (9.1) †§

Hemoglobin, g/dL

14.9 ± 0.8

15.0 ± 0.8

15.0 ± 0.8

15.2 ± 0.9†‡§

HbA1c, %

5.8 ± 0.4

5.8 ± 0.3

5.8 ± 0.8

5.8 ± 0.4

Total cholesterol, mg/dL

193.4 ± 30.0

191.9 ± 30.6

198.1 ± 31.7†

207.8 ± 33.4†‡§

LDL cholesterol, mg/dL

107.6 ± 29.5

98.7 ± 31.7†

111.8 ± 29.6†‡

120.7 ± 30.2†‡§

HDL cholesterol, mg/dL

59.4 ± 15.6

60.5 ± 15.2

58.2 ± 14.8

57.4 ± 19.5‡

131.6 ± 100.6

163.9 ± 157.4

135.4 ± 936

148.2 ± 82.9†§

BUN, mg/dL

12.9 ± 2.8

12.6 ± 3.0

14.5 ± 3.0†‡

15.0 ± 3.5†‡

Creatinine, mg/dL

0.71 ± 0.05

0.68 ± 0.06

0.86 ± 0.08†‡

0.86 ± 0.08†‡

eGFR, mL/min/1.73m2

98.6 ± 7.4

101.0 ± 9.8

77.3 ± 7.3†‡

77.2 ± 7.2†‡

Total protein, g/dL

7.3 ± 0.4

7.3 ± 0.4

7.3 ± 0.4

7.4 ± 0.4

Albumin, g/dL

4.6 ± 0.2

4.6 ± 0.3

4.6 ± 0.2

4.6 ± 0.3

5.9 ± 1.2

6.0 ± 1.2

6.2 ± 1.2

6.2 ± 1.2†

0.31 ± 1.33

0.10 ± 0.10

0.07 ± 0.15

0.10 ± 0.13§

Triglycerides, mg/dL

Urinary acid, mg/dL

High-sensitivity CRP, mg/dL

G1

†‡

eGFR (mL/min/1.73 m2), b UACR (mg/gCr)

UACR, urine albumin to urine creatinine ratio; BMI, body mass index; BP, blood pressure; eGFR,

estimated glomerular filtration rate. Data are mean ± SD or median (interquartile range) for

continuous variables. Differences between the groups were analyzed using the Mann-Whitney U

test or chi-square test. †P<0.05 versus G1. ‡P<0.05 versus G2. §P<0.05 versus G3.

Supplemental Table 6. Multivariate logistic regression analysis of parameters related to

incident CKD, which divided into groups by combining eGFR and UACR

G1

G2

G3

G4

eGFR • 0a

H*)5• a

60 䍸eGFR <90a

60 䍸eGFR <90a

UACR <7.0b

UACR •b

UACR <7.0b

UACR •b

Model 1c

1 (reference)

16.19 (6.26 – 41.88)g

5.39 (2.34 – 12.41)g

16.00 (6.65 – 38.47)g

Model 2d

1 (reference)

13.77 (5.28 – 35.94)g

4.46 (1.92 – 10.37)g

12.20 (5.00 – 29.80)g

Model 3e

1 (reference)

14.26 (5.44 – 37.34)g

4.54 (1.95 – 10.57)g

12.08 (4.94 – 29.57)g

Model 4f

1 (reference)

20.93 (7.84 – 55.86)g

0.56 (0.216 – 1.51)

1.65 (0.60 – 4.58)

eGFR (mL/min/1.73 m2), b UACR (mg/gCr)

Values are expressed as odds ratio (95% confidence interval). Hypertension was defined as

systolic BP • mmHg or diastolic BP • mmHg. Dyslipidemia was defined as LDL

cholesterol •mg/dL, HDL cholesterol <40 mg/dL, triglycerides •mg/dL, or use of lipidlowering drugs.

Model 1 were unadjusted.

Model 2 were adjusted for age, BMI.

Model 3 were adjusted for age, BMI, current smoker, hypertension, dyslipidemia

Model 4 were adjusted for age, BMI, current smoker, hypertension, dyslipidemia, eGFR.

P<0.001 versus reference group.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る