リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The thermal-radiative wind in low-mass X-ray binary H1743−322: radiation hydrodynamic simulations」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The thermal-radiative wind in low-mass X-ray binary H1743−322: radiation hydrodynamic simulations

大須賀, 健 Tomaru, Ryota Done, Chris Nomura, Mariko Takahashi, Tadayuki 筑波大学 DOI:10.1093/mnras/stz2738

2020.09.14

概要

Blueshifted absorption lines are seen in high inclination black hole binary systems in their disc-dominated states, showing these power an equatorial disc wind. While some contribution from magnetic winds remain a possibility, thermal and thermal-radiative winds are expected to be present. We show results from radiation hydrodynamic simulations that show that the additional radiation force from atomic features (bound–free and lines) is important along with electron scattering. Together, these increase the wind velocity at high inclinations, so that they quantitatively match the observations in H1743−322, unlike purely thermal winds that are too slow. We highlight the role played by shadowing of the outer disc from the (subgrid) inner disc Compton heated layer, and show that the increase in shadow from the higher Compton temperature after the spectral transition to the hard state leads to strong suppression of the wind. Thermal-radiative winds explain all of the spectral features (and their disappearance) in this simplest wind system and magnetic winds play only a minor role. We speculate that thermal-radiative winds can explain all the spectral features seen in the more complex (larger disc size) binaries, GRO J1655−40 and GRS 1915+105, without requiring magnetic winds.

この論文で使われている画像

参考文献

Bachiller R., 1996, ARA&A, 34, 111

Begelman M. C., McKee C. F., 1983, ApJ, 271, 89 (BM83)

Begelman M. C., McKee C. F., Shields G. A., 1983, ApJ, 271, 70 (B83)

Burrows C. J. et al., 1996, ApJ, 473, 437

Carrasco-Gonz´alez C., Rodr´ıguez L. F., Anglada G., Mart´ı J., Torrelles J.

M., Osorio M., 2010, Science, 330, 1209

Coriat M., Fender R. P., Dubus G., 2012, MNRAS, 424, 1991

Cunningham C., 1976, ApJ, 208, 534

Davis S. W., Hubeny I., 2006, ApJS, 164, 530

Davis S. W., Blaes O. M., Hubeny I., Turner N. J., 2005, ApJ, 621, 372

D´ıaz Trigo M., Boirin L., 2016, Astron. Nachr., 337, 368

Done C., Gierli´nski M., Kubota A., 2007, A&AR, 15, 1

Done C., Tomaru R., Takahashi T., 2018, MNRAS, 473, 838 (D18)

Dubus G. et al., 2019, A&A, preprint (arXiv:1909.13601)

Dyda S., Dannen R., Waters T., Proga D., 2017, MNRAS, 467, 4161

Ferland G. J., 2003, ARA&A, 41, 517

Fukumura K., Kazanas D., Contopoulos I., Behar E., 2010, ApJ, 715, 636

Gardner E., Done C., 2014, MNRAS, 442, 2456

Hagino K., Odaka H., Done C., Tomaru R., Watanabe S., Takahashi T., 2016,

MNRAS, 461, 3954

Harten A., 1983, J. Comput. Phys., 49, 357

Heckman T. M., Armus L., Miley G. K., 1990, ApJS, 74, 833

Higginbottom N., Proga D., 2015, ApJ, 807, 107

Higginbottom N., Knigge C., Long K. S., Matthews J. H., Sim S. A., Hewitt

H. A., 2018, MNRAS, 479, 3651

Homan J., Neilsen J., Allen J. L., Chakrabarty D., Fender R., Fridriksson J.

K., Remillard R. A., Schulz N., 2016, ApJ, 830, L5

Hynes R. I., Haswell C. A., Chaty S., Shrader C. R., Cui W., 2002, MNRAS,

331, 169

Hynes R. I., Brien K. O., Mullally F., Ashcraft T., 2009, MNRAS, 399, 281

Kalemci E., Begelman M. C., Maccarone T. J., Dincer T., Russell T. D.,

Bailyn C., Tomsick J. A., 2016, MNRAS, 463, 615

Kallman T. R., Bautista M. A., Goriely S., Mendoza C., Miller J. M., Palmeri

P., Quinet P., Raymond J., 2009, ApJ, 701, 865

Kara E. et al., 2019, Nature, 565, 198

Kimura M., Done C., 2019, MNRAS, 482, 626

Luketic S., Proga D., Kallman T. R., Raymond J. C., Miller J. M., 2010,

ApJ, 719, 515

Marcel G. et al., 2018, A&A, 617, A46

Miller J. M., Raymond J., Fabian A., Steeghs D., Homan J., Reynolds C. S.,

van der Klis M., Wijnands R., 2006a, Nature, 441, 953

Miller J. M. et al., 2006b, ApJ, 646, 394

Miller J. M. et al., 2012, ApJ, 759, L6

Miller J. M., Fabian A. C., Kaastra J., Kallman T., King A. L., Proga D.,

Raymond J., Reynolds C. S., 2015, ApJ, 814, 87

Mirabel I. F., Rodr´ıguez L. F., 1999, ARA&A, 37, 409

Motta S., Mu˜noz-Darias T., Belloni T., 2010, MNRAS, 408, 1796

Neilsen J., Homan J., 2012, ApJ, 750, 27

Neilsen J., Lee J., 2009, Nature, 458, 481

Neilsen J., Rahoui F., Homan J., Buxton M., 2016, ApJ, 822, 20

Nomura M., Ohsuga K., Takahashi H. R., Wada K., Yoshida T., 2016, PASJ,

68, 16

O’Brien K., Horne K., Hynes R. I., Chen W., Haswell C. A., Still M. D.,

2002, MNRAS, 334, 426

Ponti G., Fender R. P., Begelman M. C., Dunn R. J. H., Neilsen J., Coriat

M., 2012, MNRAS, 422, L11

Ponti G., Mu˜noz-Darias T., Fender R. P., 2014, MNRAS, 444, 1829

Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 1992,

Numerical Recipes in FORTRAN. The Art of Scientific Computing,

2nd edn. Cambridge Univ. Press, Cambridge

Proga D., Kallman T. R., 2002, ApJ, 565, 455

Proga D., Kallman T. R., 2004, ApJ, 616, 688

Proga D., Stone J. M., Kallman T. R., 2000, ApJ, 543, 686

Remillard R. A., McClintock J. E., 2006, ARA&A, 44, 49

Shidatsu M., Done C., 2019, ApJ, in press (arXiv:1906.02469)

Shidatsu M., Done C., Ueda Y., 2016, ApJ, 823, 159

Steiner J. F., McClintock J. E., Reid M. J., 2012, ApJ, 745, L7

Takahashi H. R., Ohsuga K., 2013, ApJ, 772, 127

Tarter C. B., McKee C. F., 1973, ApJ, 186, L63

Tomaru R., Done C., Odaka H., Watanabe S., Takahashi T., 2018, MNRAS,

476, 1776

Tombesi F., Cappi M., Reeves J. N., Palumbo G. G. C., Yaqoob T., Braito

V., Dadina M., 2010, A&A, 521, A57

Ueda Y., Yamaoka K., Remillard R., 2009, ApJ, 695, 888

Uttley P., Klein-Wolt M., 2015, MNRAS, 451, 475

van Paradijs J., 1996, ApJ, 464, L139

Veledina A., Gandhi P., Hynes R., Kajava J. J. E., Tsygankov S. S.,

Revnivtsev M. G., Durant M., Poutanen J., 2017, MNRAS, 470, 48

Woods D. T., Klein R. I., Castor J. I., McKee C. F., Bell J. B., 1996, ApJ,

461, 767

A P P E N D I X A : BA S I C E Q UAT I O N A N D

NUMERICAL METHOD

In this section, we include for completeness the full hydrodynamic

equations. We solve these in spherical polar coordinates (R, φ, θ ).

The basic equations are the equation of continuity,

∂ρ

+ ∇ · (ρv) = 0,

∂t

(A1)

the equation of motion,

vφ2

v2

∂(ρvR )

∂p

+∇ · (ρvR v) = −

+ρ θ +

+ gR + frad (ξ, T ) ,

∂t

∂R

(A2)

∂(ρvθ )

1 ∂p

+ ∇ · (ρvθ v) = −

∂t

R ∂θ

vφ2

vR vθ

cot θ

,

(A3) ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る