リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Time-resolved study on signaling pathway of photoactivated adenylate cyclase and its nonlinear optical response」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Time-resolved study on signaling pathway of photoactivated adenylate cyclase and its nonlinear optical response

Nakasone, Yusuke Murakami, Hiroto Tokonami, Shunrou Oda, Takashi Terazima, Masahide 京都大学 DOI:10.1016/j.jbc.2023.105285

2023.11

概要

Photoactivated adenylate cyclases (PACs) are multidomain BLUF proteins that regulate the cellular levels of cyclic adenosine 3', 5'-monophosphate (cAMP) in a light-dependent manner. The signaling route and dynamics of PAC from Oscillatoria acuminata (OaPAC), which consists of a light sensor BLUF domain, an adenylate cyclase domain, and a connector helix (α3-helix), were studied by detecting conformational changes in the protein moiety. Although circular dichroism and small-angle X-ray scattering measurements did not show significant changes upon light illumination, the transient grating method successfully detected light-induced changes in the diffusion coefficient (diffusion-sensitive conformational change (DSCC)) of full-length OaPAC (FL-PAC) and the BLUF domain with the α3-helix. DSCC of FL-PAC was observed only when both protomers in a dimer were photoconverted. This light intensity dependence suggests that OaPAC is a cyclase with a nonlinear light intensity response. The enzymatic activity indeed nonlinearly depends on light intensity, that is, OaPAC is activated under strong light conditions. It was also found that both DSCC and enzymatic activity were suppressed by a mutation in the W90 residue, indicating the importance of the highly conserved Trp in many BLUF domains for the function. Based on these findings, a reaction scheme was proposed together with the reaction dynamics.

この論文で使われている画像

参考文献

1. Iseki, M., Matsunaga, S., Murakami, A., Ohno, K., Shiga, K., Yoshida, K.,

et al. (2002) A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415, 1047–1051

2. Ito, S., Murakami, A., Iseki, M., Takahashi, T., Higashi, S., and Watanabe,

M. (2010) Differentiation of photocycle characteristics of flavin-binding

BLUF domains of α- and β-subunits of photoactivated adenylyl cyclase

of Euglena gracilis. Photochem. Photobiol. Sci. 9, 1327–1335

12 J. Biol. Chem. (2023) 299(11) 105285

3. Ohki, M., Sugiyama, K., Kawai, F., Tanaka, H., Nihei, Y., Unzai, S., et al.

(2016) Structural insight into photoactivation of an adenylate cyclase

from a photosynthetic cyanobacterium. Proc. Natl. Acad. Sci. U. S. A. 113,

6659–6664

4. Ohki, M., Sato-Tomita, A., Matsunaga, S., Iseki, M., Tame, J. R. H.,

Shibayama, N., et al. (2017) Molecular mechanism of photoactivation of a

light-regulated adenylate cyclase. Proc. Natl. Acad. Sci. U. S. A. 114,

8562–8567

5. Stierl, M., Stumpf, P., Udwari, D., Gueta, R., Hagedorn, R., Losi, A., et al.

(2011) Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. J. Biol.

Chem. 286, 1181–1188

6. Lindner, R., Hartmann, E., Tarnawski, M., Winkler, A., Frey, D., Reinstein, J., et al. (2017) Photoactivation mechanism of a bacterial lightregulated adenylyl cyclase. J. Mol. Biol. 429, 1336–1351

7. Raffelberg, S., Wang, L., Gao, S., Losi, A., Gärtner, W., and Nagel, G.

(2013) A LOV-domain-mediated blue-light-activated adenylate (adenylyl)

cyclase from the cyanobacterium Microcoleus chthonoplastes PCC 7420.

Biochem. J. 455, 359–365

8. Blain-Hartung, M., Rockwell, N. C., Moreno, M. V., Martin, S. S., Gan, F.,

Bryant, D. A., et al. (2018) Cyanobacteriochrome-based photoswitchable

adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP

levels in cells. J. Biol. Chem. 293, 8473–8483

9. Scheib, U., Broser, M., Constantin, O. M., Yang, S., Gao, S., Mukherjee,

S., et al. (2018) Rhodopsin-cyclases for photocontrol of cGMP/cAMP

and 2.3 Å structure of the adenylyl cyclase domain. Nat. Commun. 9,

2046

10. Nagahama, T., Suzuki, T., Yoshikawa, S., and Iseki, M. (2007) Functional

transplant of photoactivated adenylyl cyclase (PAC) into Aplysia sensory

neurons. Neurosci. Res. 59, 81–88

11. Schröder-Lang, S., Schwärzel, M., Seifert, R., Strünker, T., Kateriya, S.,

Looser, J., et al. (2007) Fast manipulation of cellular cAMP level by light

in vivo. Nat. Methods 4, 39–42

12. Zhou, Z., Tanaka, K. F., Matsunaga, S., Iseki, M., Watanabe, M., Matsuki,

N., et al. (2016) Photoactivated adenylyl cyclase (PAC) reveals novel

mechanisms underlying cAMP-dependent axonal morphogenesis. Sci.

Rep. 5, 19679

13. Stierl, M., Penzkofer, A., Kennis, J. T. M., Hegemann, P., and Mathes, T.

(2014) Key residues for the light regulation of the blue light-activated

adenylyl cyclase from Beggiatoa sp. Biochemistry 53, 5121–5130

14. Steuer Costa, W., Yu, S. C., Liewald, J. F., and Gottschalk, A. (2017) Fast

cAMP modulation of neurotransmission via neuropeptide signals and

vesicle loading. Curr. Biol. 27, 495–507

15. Zhang, F., and Tzanakakis, E. S. (2017) Optogenetic regulation of insulin

secretion in pancreatic β-cells. Sci. Rep. 7, 9357

16. Tanwar, M., Khera, L., Haokip, N., Kaul, R., Naorem, A., and Kateriya, S.

(2017) Modulation of cyclic nucleotide-mediated cellular signaling and

gene expression using photoactivated adenylyl cyclase as an optogenetic

tool. Sci. Rep. 7, 12048

17. Jansen, V., Alvarez, L., Balbach, M., Strünker, T., Hegemann, P., Kaupp,

U. B., et al. (2015) Controlling fertilization and cAMP signaling in sperm

by optogenetics. Elife. https://doi.org/10.7554/eLife.05161

18. Kleis, P., Paschen, E., Häussler, U., Bernal Sierra, Y. A., and Haas, C. A.

(2022) Long-term in vivo application of a potassium channel-based

optogenetic silencer in the healthy and epileptic mouse hippocampus.

BMC Biol. 20, 18

19. Xia, G., Shi, H., Su, Y., Han, B., Shen, C., Gao, S., et al. (2022) Photoactivated adenylyl cyclases attenuate sepsis-induced cardiomyopathy by

suppressing macrophage-mediated inflammation. Front. Immunol. 13,

1008702

20. Xia, A., Qian, M., Wang, C., Huang, Y., Liu, Z., Ni, L., et al. (2021)

Optogenetic modification of Pseudomonas aeruginosa enables

controllable twitching motility and host infection. ACS Synth. Biol. 10,

531–541

21. Hagio, H., Koyama, W., Hosaka, S., Song, A. D., Narantsatsral, J., Matsuda, K., et al. (2023) Optogenetic manipulation of neuronal and cardiomyocyte functions in zebrafish using microbial rhodopsins and

adenylyl cyclases. Elife. https://doi.org/10.7554/eLife.83975

Signaling pathway of PAC and its nonlinear optical response

22. Tolentino Collado, J., Iuliano, J. N., Pirisi, K., Jewlikar, S., Adamczyk, K.,

Greetham, G. M., et al. (2022) Unraveling the photoactivation mechanism of a light-activated adenylyl cyclase using ultrafast spectroscopy

coupled with unnatural amino acid mutagenesis. ACS Chem. Biol. 17,

2643–2654

23. Hirano, M., Takebe, M., Ishido, T., Ide, T., and Matsunaga, S. (2019) The

C-terminal region affects the activity of photoactivated adenylyl cyclase

from Oscillatoria acuminata. Sci. Rep. 9, 20262

24. Raics, K., Pirisi, K., Zhuang, B., Fekete, Z., Kis-Bicskei, N., Pecsi, I., et al.

(2023) Photocycle alteration and increased enzymatic activity in genetically modified photoactivable adenylate cyclase OaPAC. J. Biol. Chem.

299, 105056

25. Masuda, S., Hasegawa, K., Ishii, A., and Ono, T. A. (2004) Light-induced

structural changes in a putative blue-light receptor with a novel FAD

binding fold sensor of blue-light using FAD (BLUF); Slr1694 of synechocystis sp. PCC6803. Biochemistry 43, 5304–5313

26. Unno, M., Masuda, S., Ono, T. A., and Yamauchi, S. (2006) Orientation of

a key glutamine residue in the BLUF domain from AppA revealed by

mutagenesis, spectroscopy, and quantum chemical calculations. J. Am.

Chem. Soc. 128, 5638–5639

27. Grinstead, J. S., Avila-Perez, M., Hellingwerf, K. J., Boelens, R., and

Kaptein, R. (2006) Light-induced flipping of a conserved glutamine

sidechain and its orientation in the AppA BLUF domain. J. Am. Chem.

Soc. 128, 15066–15067

28. Stelling, A. L., Ronayne, K. L., Nappa, J., Tonge, P. J., and Meech, S. R.

(2007) Ultrafast structural dynamics in BLUF domains: transient infrared

spectroscopy of AppA and its mutants. J. Am. Chem. Soc. 129,

15556–15564

29. Sadeghian, K., Bocola, M., and Schütz, M. (2008) A conclusive mechanism of the photoinduced reaction cascade in blue light using flavin

photoreceptors. J. Am. Chem. Soc. 130, 12501–12513

30. Bonetti, C., Stierl, M., Mathes, T., van Stokkum, I. H. M., Mullen, K. M.,

Cohen-Stuart, T. A., et al. (2009) The role of key amino acids in the

photoactivation pathway of the Synechocystis Slr1694 BLUF domain.

Biochemistry 48, 11458–11469

31. Gauden, M., van Stokkum, I. H. M., Key, J. M., Lührs, D. C., van

Grondelle, R., Hegemann, P., et al. (2006) Hydrogen-bond switching

through a radical pair mechanism in a flavin-binding photoreceptor. Proc.

Natl. Acad. Sci. U. S. A. 103, 10895–10900

32. Fukushima, Y., Okajima, K., Shibata, Y., Ikeuchi, M., and Itoh, S. (2005)

Primary intermediate in the photocycle of a blue-light sensory BLUF

FAD-protein, Tll0078, of Thermosynechococcus elongatus BP-1.

Biochemistry 44, 5149–5158

33. Gauden, M., Yeremenko, S., Laan, W., van Stokkum, I. H. M., Ihalainen,

J. A., van Grondelle, R., et al. (2005) Photocycle of the flavin-binding

photoreceptor AppA, a bacterial transcriptional antirepressor of photosynthesis genes. Biochemistry 44, 3653–3662

34. Lukacs, A., Haigney, A., Brust, R., Zhao, R. K., Stelling, A. L., Clark, I. P.,

et al. (2011) Photoexcitation of the blue light using FAD photoreceptor

AppA results in ultrafast changes to the protein matrix. J. Am. Chem. Soc.

133, 16893–16900

35. Mathes, T., van Stokkum, I. H. M., Bonetti, C., Hegemann, P., and

Kennis, J. T. M. (2011) The hydrogen-bond switch reaction of the Blrb

Bluf domain of Rhodobacter sphaeroides. J. Phys. Chem. B. 115,

7963–7971

36. Brust, R., Lukacs, A., Haigney, A., Addison, K., Gil, A., Towrie, M., et al.

(2013) Proteins in action: femtosecond to millisecond structural dynamics

of a photoactive flavoprotein. J. Am. Chem. Soc. 135, 16168–16174

37. Lukacs, A., Brust, R., Haigney, A., Laptenok, S. P., Addison, K., Gil, A.,

et al. (2014) BLUF domain function does not require a metastable radical

intermediate state. J. Am. Chem. Soc. 136, 4605–4615

38. Conrad, K. S., Manahan, C. C., and Crane, B. R. (2014) Photochemistry of

flavoprotein light sensors. Nat. Chem. Biol. 10, 801–809

39. Domratcheva, T., Hartmann, E., Schlichting, I., and Kottke, T. (2016)

Evidence for tautomerisation of glutamine in BLUF blue light receptors

by vibrational spectroscopy and computational chemistry. Sci. Rep. 6,

22669

40. Iwata, T., Nagai, T., Ito, S., Osoegawa, S., Iseki, M., Watanabe, M., et al.

(2018) Hydrogen bonding environments in the photocycle process

around the flavin chromophore of the AppA-BLUF domain. J. Am. Chem.

Soc. 140, 11982–11991

41. Goings, J. J., Reinhardt, C. R., and Hammes-Schiffer, S. (2018) Propensity

for proton relay and electrostatic impact of protein reorganization in

Slr1694 BLUF photoreceptor. J. Am. Chem. Soc. 140, 15241–15251

42. Goings, J. J., and Hammes-Schiffer, S. (2019) Early photocycle of Slr1694

blue-light using flavin photoreceptor unraveled through adiabatic

excited-state quantum mechanical/molecular mechanical dynamics. J.

Am. Chem. Soc. 141, 20470–20479

43. Tokonami, S., Onose, M., Nakasone, Y., and Terazima, M. (2022) Slow

conformational changes of blue light sensor BLUF proteins in milliseconds. J. Am. Chem. Soc. 144, 4080–4090

44. Zhou, Z., Chen, Z., Kang, X. W., Zhou, Y., Wang, B., Tang, S., et al.

(2022) The nature of proton-coupled electron transfer in a blue light

using flavin domain. Proc. Natl. Acad. Sci. U. S. A. 119, e2203996119

45. Kang, X. W., Chen, Z., Zhou, Z., Zhou, Y., Tang, S., Zhang, Y., et al.

(2022) Direct observation of ultrafast proton rocking in the BLUF

domain. Angew. Chem. Int. Ed. Engl. 61, e202114423

46. Hontani, Y., Mehlhorn, J., Domratcheva, T., Beck, S., Kloz, M., Hegemann, P., et al. (2023) Spectroscopic and computational observation of

glutamine tautomerization in the blue light sensing using flavin domain

photoreaction. J. Am. Chem. Soc. 145, 1040–1052

47. Terazima, M. (2021) Spectrally silent protein reaction dynamics revealed

by time-resolved thermodynamics and diffusion techniques. Acc. Chem.

Res. 54, 2238–2248

48. Terazima, M. (2011) Studies of photo-induced protein reactions by

spectrally silent reaction dynamics detection methods: applications to the

photoreaction of the LOV2 domain of phototropin from Arabidopsis

thaliana. Biochim. Biophys. Acta 1814, 1093–1105

49. Nakasone, Y., and Terazima, M. (2022) Time-resolved diffusion reveals

photoreactions of BLUF proteins with similar functional domains. Photochem. Photobiol. Sci. 21, 493–507

50. Iwata, K., Terazima, M., and Masuhara, H. (2018) Novel physical

chemistry approaches in biophysical researches with advanced application of lasers: detection and manipulation. Biochim. Biophys. Acta Gen.

Subj. 1862, 335–357

51. Terazima, M. (2011) Time-dependent intermolecular interaction during

protein reactions. Phys. Chem. Chem. Phys. 13, 16928–16940

52. Nakasone, Y., and Terazima, M. (2021) A time-resolved diffusion technique for detection of the conformational changes and molecular assembly/disassembly processes of biomolecules. Front. Genet. 12, 691010

53. Terazima, M. (2021) Time-resolved detection of association/dissociation

reactions and conformation changes in photosensor proteins for application in optogenetics. Biophys. Rev. 13, 1053–1059

54. Shibata, K., Nakasone, Y., and Terazima, M. (2018) Photoreaction of

BlrP1: the role of a nonlinear photo-intensity sensor. Phys. Chem. Chem.

Phys. 20, 8133–8142

55. Shibata, K., Nakasone, Y., and Terazima, M. (2022) Selective photoinduced dimerization and slow recovery of a BLUF domain of EB1. J. Phys.

Chem. B. 126, 1024–1033

56. Nakasone, Y., Kawasaki, Y., Konno, M., Inoue, K., and Terazima, M.

(2023) Time-resolved detection of light-induced conformational changes

of heliorhodopsin. Phys. Chem. Chem. Phys. 25, 12833–12840

57. Nakasone, Y., Kikukawa, K., Masuda, S., and Terazima, M. (2019) Timeresolved study of interprotein signaling process of a blue light sensor

PapB-PapA complex. J. Phys. Chem. B. 123, 3210–3218

58. Nakasone, Y., Eitoku, T., Matsuoka, D., Tokutomi, S., and Terazima, M.

(2007) Dynamics of conformational changes of Arabidopsis phototropin 1

LOV2 with the linker domain. J. Mol. Biol. 367, 432–442

59. Strickland, E. H., and Beychok, S. (1974) Aromatic contributions to circular dichroism spectra of protein. CRC Crit. Rev. Biochem. 2, 113–175

60. Kelly, S. M., Jess, T. J., and Price, N. C. (2005) How to study proteins by

circular dichroism. Biochim. Biophys. Acta 1751, 119–139

61. Li, Z., and Hirst, J. D. (2017) Quantitative first principles calculations of

protein circular dichroism in the near-ultraviolet. Chem. Sci. 8, 4318–4333

J. Biol. Chem. (2023) 299(11) 105285

13

Signaling pathway of PAC and its nonlinear optical response

62. Guinier, A., Fournet, G., Walker, C. B., and Vineyard, G. H. (1956) Smallangle scattering of X-rays. Phys. Today 9, 38–39

63. Williams, C. E., May, R. P., and Guinier, A. (2007) Small-angle scattering

of X-rays and neutrons. In X-Ray Characterization of Materials, WileyVCH Verlag GmbH, Weinheim, Germany: 211–254

64. Arai, S., Kriszt, R., Harada, K., Looi, L. S., Matsuda, S., Wongso, D., et al.

(2018) RGB-color intensiometric indicators to visualize spatiotemporal dynamics of ATP in single cells. Angew. Chem. Int. Ed. Engl. 57, 10873–10878

65. Nakasone, Y., Ono, T. A., Ishii, A., Masuda, S., and Terazima, M. (2007)

Transient dimerization and conformational change of a BLUF protein:

YcgF. J. Am. Chem. Soc. 129, 7028–7035

66. Tokonami, S., Nakasone, Y., and Terazima, M. (2023) Effects of N- and Cterminal regions on oligomeric formation of blue light sensor protein

SyPixD. Protein Sci. 32, e4658

67. Karadi, K., Kapetanaki, S. M., Raics, K., Pecsi, I., Kapronczai, R., Fekete, Z.,

et al. (2020) Functional dynamics of a single tryptophan residue in a

BLUF protein revealed by fluorescence spectroscopy. Sci. Rep. 10, 2061

68. Masuda, S., Tomida, Y., Ohta, H., and Takamiya, K. I. (2007) The critical

role of a hydrogen bond between Gln63 and Trp104 in the blue-light

sensing BLUF domain that controls AppA activity. J. Mol. Biol. 368,

1223–1230

69. Yuan, H., Dragnea, V., Wu, Q., Gardner, K. H., and Bauer, C. E. (2011)

Mutational and structural studies of the PixD BLUF output signal that

affects light-regulated interactions with PixE. Biochemistry 50, 6365–6375

70. Mehlhorn, J., Lindtner, T., Richter, F., Glass, K., Steinocher, H., Beck, S.,

et al. (2015) Light-induced rearrangement of the β5 strand in the BLUF

photoreceptor SyPixD (Slr1694). J. Phys. Chem. Lett. 6, 4749–4753

71. Masuda, S., Hasegawa, K., Ohta, H., and Ono, T. A. (2008) Crucial role in

light signal transduction for the conserved Met93 of the BLUF protein

PixD/Slr1694. Plant Cell Physiol. 49, 1600–1606

72. Barends, T. R. M., Hartmann, E., Griese, J. J., Beitlich, T., Kirienko, N. V.,

Ryjenkov, D. A., et al. (2009) Structure and mechanism of a bacterial lightregulated cyclic nucleotide phosphodiesterase. Nature 459, 1015–1018

73. Winkler, A., Udvarhelyi, A., Hartmann, E., Reinstein, J., Menzel, A.,

Shoeman, R. L., et al. (2014) Characterization of elements involved in

14 J. Biol. Chem. (2023) 299(11) 105285

74.

75.

76.

77.

78.

79.

80.

81.

82.

allosteric light regulation of phosphodiesterase activity by comparison of

different functional BlrP1 states. J. Mol. Biol. 426, 853–868

Tanaka, K., Nakasone, Y., Okajima, K., Ikeuchi, M., Tokutomi, S., and

Terazima, M. (2011) A way to sense light intensity: multiple-excitation of

the BLUF photoreceptor TePixD suppresses conformational change.

FEBS Lett. 585, 786–790

Tanaka, K., Nakasone, Y., Okajima, K., Ikeuchi, M., Tokutomi, S., and

Terazima, M. (2012) Time-resolved tracking of interprotein signal

transduction: synechocystis PixD-PixE complex as a sensor of light intensity. J. Am. Chem. Soc. 134, 8336–8339

Tanaka, K., Nakasone, Y., Okajima, K., Ikeuchi, M., Tokutomi, S., and

Terazima, M. (2011) Light-induced conformational change and transient

dissociation reaction of the BLUF photoreceptor Synechocystis PixD

(Slr1694). J. Mol. Biol. 409, 773–785

Shibata, K., Nakasone, Y., and Terazima, M. (2021) Enzymatic activity of

the blue light-regulated phosphodiesterase BlrP1 from Klebsiella pneumoniae shows a nonlinear dependence on light intensity. FEBS Lett. 595,

1473–1479

Shimizu, N., Yatabe, K., Nagatani, Y., Saijyo, S., Kosuge, T., and Igarashi,

N. (2016) Software development for analysis of small-angle x-ray scattering data. AIP Conf. Proc. 1741, 050017

Petoukhov, M. V., Franke, D., Shkumatov, A. V., Tria, G., Kikhney, A. G.,

Gajda, M., et al. (2012) New developments in the ATSAS program

package for small-angle scattering data analysis. J. Appl. Crystallogr. 45,

342–350

Franke, D., Petoukhov, M. V., Konarev, P. V., Panjkovich, A., Tuukkanen,

A., Mertens, H. D. T., et al. (2017) Atsas 2.8: a comprehensive data

analysis suite for small-angle scattering from macromolecular solutions.

J. Appl. Crystallogr. 50, 1212–1225

Knight, C. J., and Hub, J. S. (2015) WAXSiS: a web server for the

calculation of SAXS/WAXS curves based on explicit-solvent molecular

dynamics. Nucleic Acids Res. 43, W225–W230

Svergun, D. I. (1992) Determination of the regularization parameter in

indirect-transform methods using perceptual criteria. J. Appl. Crystallogr.

25, 495–503

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る