リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Three-dimensional dynamics of fluctuations appearing during pellet ablation process around a pellet in a fusion plasma experiment」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Three-dimensional dynamics of fluctuations appearing during pellet ablation process around a pellet in a fusion plasma experiment

Ohshima, S. Suzuki, T. Matoike, R. Motojima, G. Kado, S. Mori, A. Miyashita, A. Kobayashi, S. Minami, T. Iwata, A. Qiu, D. Wang, C. Luo, M. Zhang, P. Kondo, Y. Nishino, N. Mizuuchi, T. Okada, H. Konoshima, S. Inagaki, S. Nagasaki, K. 京都大学 DOI:10.1038/s41598-022-18239-z

2022.08.20

概要

Understanding pellet ablation physics is crucial to realizing efficient fueling into a high temperature plasma for the steady state operation of ITER and future fusion reactors. Here we report the first observation of the formation of fluctuation structures in the pellet plasmoid during the pellet ablation process by a fast camera in a medium-sized fusion device, Heliotron J. The fluctuation has a normalized fluctuation level of ~ 15% and propagates around the moving pellet across the magnetic field. By comparing the fluctuation structures with the shape of magnetic field lines calculated with the field line tracing code, we successfully reconstruct the spatio-temporal structure of the fluctuations during the pellet ablation process. The fluctuations are located at the locations displaced toroidally from the pellet and propagate in the cross-field direction around the pellet axis along the field line, indicating a three-dimensional behavior and structure of fluctuations. The fluctuation would be driven by a strong inhomogeneity formed around the pellet and invoke the relaxation of the gradient through a cross-field transport induced by the fluctuations, which could affect the pellet ablation and pellet fueling processes. Such fluctuations can be ubiquitously present at the inhomogeneity formed around a pellet in the pellet ablation process in fusion devices.

この論文で使われている画像

参考文献

1. Baylor, L. R. et al. Pellet fuelling and control of burning plasmas in ITER. Nucl. Fusion 47(5), 443–448. https://doi.org/10.1088/ 0029-5515/47/5/008 (2007).

2. Combs, S. K. et al. Overview of recent developments in pellet injection for ITER. Fusion Eng. Des. 87(5–6), 634–640. https://doi. org/10.1016/j.fusengdes.2012.01.039 (2012).

3. Milora, S. L. Rview of pellet fueling. J. Fusion Energy 1(1), 15. https://doi.org/10.1007/bf01050447 (1981).

4. Pégourié, B. Review: Pellet injection experiments and modelling. Plasma Phys. Control. Fusion 49(8), R87. https://doi.org/10.1088/ 0741-3335/49/8/R01 (2007).

5. Milora, S. L. Review of hydrogen pellet injection technology for plasma fueling applications. J. Vac. Sci. Technol. 7(3), 925. https:// doi.org/10.1116/1.575822 (1989).

6. Combs, S. K. Pellet injection technology. Rev. Sci. Instrum. 64(7), 1679. https://doi.org/10.1063/1.1143995 (1993).

7. Verma, S. K. et al. A review of pellet injector technology: Brief history and recent key developments. Fusion Sci. Technol. 76(6), 770–785. https://doi.org/10.1080/15361055.2020.1777674 (2020).

8. Pegourie, B., Picchiottino, J. M., Drawin, H. W., Geraud, A. & Chatelier, M. Pellet ablation studies on TORE SUPRA. Nucl. Fusion 33(4), 591–600. https://doi.org/10.1088/0029-5515/33/4/I06 (1993).

9. Baylor, L. R. et al. An international pellet ablation database. Nucl. Fusion 37(4), 445. https://doi.org/10.1088/0029-5515/37/4/i02 (1997).

10. Garzotti, L., Pégourié, B., Géraud, A., Frigione, D. & Baylor, L. R. Neutral gas and plasma shielding scaling law for pellet ablation in maxwellian plasmas. Nucl. Fusion 37(8), 1167–1175. https://doi.org/10.1088/0029-5515/37/8/I11 (1997).

11. Rozhansky, V. A. & Senichenkov, I. Y. On the ablation models of fuel pellets. Plasma Phys. Rep. 31(12), 993–1002. https://doi.org/ 10.1134/1.2147645 (2005).

12. Pégourié, B. et al. Modelling of pellet ablation in additionally heated plasmas. Plasma Phys. Control. Fusion 47(1), 17–35. https:// doi.org/10.1088/0741-3335/47/1/002 (2005).

13. Motojima, G., Sakamoto, R., Goto, M., Yamada, H. & LHD experiment group. Spectroscopic diagnostics for spatial density dis- tribution of plasmoid by pellet injection in the large helical device. Plasma Fusion Res. 5, S1033–S1033 https://doi.org/10.1585/ pfr.5.s1033 (2010).

14. McNeill, D. H., Greene, G. J., Newburger, J. D. & Owens, D. K. Spectroscopic measurements of the parameters of the ablation clouds of deuterium pellets injected into tokamaks. Phys. Fluids B 3(8), 1994–2009. https://doi.org/10.1063/1.859668 (1991).

15. Müller, H. W. et al. High β plasmoid formation, drift and striations during pellet ablation in ASDEX upgrade. Nucl. Fusion 42(3), 301–309. https://doi.org/10.1088/0029-5515/42/3/311 (2002).

16. Kirk, A. et al. Filament structures at the plasma edge on MAST. Plasma Phys. Control. Fusion 48(12B), 2006. https://doi.org/10. 1088/0741-3335/48/12B/S41 (2006).

17. Maqueda, R. J. et al. Gas puff imaging of edge turbulence (invited). Rev. Sci. Instrum. 74(3II), 2020–2026. https://doi.org/10.1063/1. 1535249 (2003).

18. Zweben, S. J. et al. GPI measurements of edge and SOL turbulence across the L-H transition in NSTX. Transition 2009, 54 (2009).

19. Mishra, J. S., SaKoćamoto, R., Matsuyama, A., Motojima, G. & Yamada, H. Observation of three-dimensional motion of the pellet ablatant in the Large Helical Device. Nucl. Fusion 51, 8. https://doi.org/10.1088/0029-5515/51/8/083039 (2011).

20. Bortolon, A. et al. Ablation of solid pellets induced by supra-thermal ions in the far scrape-off layer of DIII-D plasmas. Nucl. Fusion 59, 8. https://doi.org/10.1088/1741-4326/ab267f (2019).

21. Sakamoto, R. & Yamada, H. Observation of cross-field transport of pellet plasmoid in LHD. Plasma Fusion Res. 6, 2011. https:// doi.org/10.1585/PFR.6.1402085 (2011).

22. Sakamoto, R., Masuzaki, S., Miyazawa, J. & LHD Experimental Group. Observation of striation in collapsing plasma. Plasma Fusion Res. 1, 019; https://doi.org/10.1585/pfr.1.019 (2006).

23. Sakamoto, R. et al. Observation of pellet ablation behaviour on the large helical device. Nucl. Fusion 44(5), 624–630. https://doi. org/10.1088/0029-5515/44/5/006 (2004).

24. Garzotti, L. et al. Observation and analysis of pellet material δb drift on MAST. Nucl. Fusion 50, 10. https://doi.org/10.1088/0029- 5515/50/10/105002 (2010).

25. Panadero, N. et al. Experimental studies and simulations of hydrogen pellet ablation in the stellarator TJ-II. Nucl. Fusion 58(2), 026025. https://doi.org/10.1088/1741-4326/aa9f8a (2018).

26. Wakatani, M. et al. Study of a helical axis heliotron. Nucl. Fusion 40(3), 569–573. https://doi.org/10.1088/0029-5515/40/3Y/318 (2000).

27. Obiki, T. et al. First plasmas in Heliotron J. Nucl. Fusion 41(7), 833–844. https://doi.org/10.1088/0029-5515/41/7/305 (2001).

28. Motojima, G. et al. Injection barrel with a tapered structure for a low speed and small size cryogenic hydrogen pellet in medium- sized plasma fusion devices. Rev. Sci. Inst. 87(10), 103503. https://doi.org/10.1063/1.4964476 (2016).

29. Motojima, G. et al. High-density experiments with hydrogen ice pellet injection and analysis of pellet penetration depth in Helio- tron J. Plasma Phys. Control. Fusion 61(7), 075014. https://doi.org/10.1088/1361-6587/AB1D40 (2019).

30. Nishino, N. et al. Peripheral plasma measurement during SMBI in Heliotron J using fast cameras. J. Nucl. Mater. 415(1), 447–450. https://doi.org/10.1016/j.jnucmat.2010.12.037 (2011).

31. Nishino, N. et al. Estimation of three-dimensional structure on peripheral fluctuation using fast camera images and magnetic field calculation in Heliotron J. Nucl. Mater. Energy 20, 5. https://doi.org/10.1016/j.nme.2019.100678 (2019).

32. Zweben, S. J. et al. Edge turbulence measurements in toroidal fusion devices. Plasma Phys. Control. Fusion 49, 7. https://doi.org/ 10.1088/0741-3335/49/7/S01 (2007).

33. Shesterikov, I. et al. Direct evidence of eddy breaking and tilting by edge sheared flows observed in the TEXTOR tokamak. Nucl. Fusion 52, 4. https://doi.org/10.1088/0029-5515/52/4/042004 (2012).

34. Zweben, S. J. et al. Quiet periods in edge turbulence preceding the L-H transition in the National Spherical Torus Experiment.Phys. Plasmas 17(10), 1–18. https://doi.org/10.1063/1.3476276 (2010).

35. Liewer, P. C. Measurements of microturbulence in tokamaks and comparisons with theories of turbulence and anomalous transport.Nucl. Fusion 25(5), 543–621. https://doi.org/10.1088/0029-5515/25/5/004 (1985).

36. Kobayashi, S. et al. Development of beam emission spectroscopy for turbulence transport study in Heliotron J. Rev. Sci. Instrum.87, 11. https://doi.org/10.1063/1.4959949 (2016).

37. Nakamura, Y. Low-n mode stability analysis for l-2 Hliotron/Torsatron by VMEC-STEP Code. Plasma Fusion Res. 69, 41 (1993).

38. Conway, G. D., Schirmer, J., Klenge, S., Suttrop, W. & Holzhauer, E. Plasma rotation profile measurements using Doppler reflec- tometry. Plasma Phys. Control. Fusion 46(6), 951–970. https://doi.org/10.1088/0741-3335/46/6/003 (2004).

39. Hirsch, M., Holzhauer, E., Baldzuhn, J., Kurzan, B. & Scott, B. Doppler reflectometry for the investigation of propagating density perturbations. Plasma Phys. Control. Fusion 43(12), 1641–1660. https://doi.org/10.1088/0741-3335/43/12/302 (2001).

40. Parks, P. B. Theory of pellet cloud oscillation striations. Plasma Phys. Control. Fusion 38(4), 571–591. https://doi.org/10.1088/ 0741-3335/38/4/008 (1996).

41. De Kloe, J., Noordermeer, E., Lopes-Cardozo, N. J. & Oomens, A. A. M. Fast backward drift of pellet ablatant in tokamak plasmas.Phys. Rev. Lett. 82(13), 2685. https://doi.org/10.1103/PhysRevLett.82.2685 (1999).

42. Rozhansky, V., Veselova, I. & Voskoboynikov, S. Evolution and stratification of a plasma cloud surrounding a pellet. Plasma Phys. Control. Fusion 37(4), 399–414. https://doi.org/10.1088/0741-3335/37/4/003 (1995).

43. Ishizaki, R. & Nakajima, N. Magnetohydrodynamic simulation on pellet plasmoid in torus plasmas. Plasma Phys. Control. Fusion 53, 5. https://doi.org/10.1088/0741-3335/53/5/054009 (2011).

44. Parks, P. B., Lu, T. & Samulyak, R. Charging and E×B rotation of ablation clouds surrounding refueling pellets in hot fusion plasmas.Phys. Plasmas 16, 6. https://doi.org/10.1063/1.3158562 (2009).

45. Runov, A., Aleynikov, P., Arnold, A. M., Breizman, B. N. & Helander, P. Modelling of parallel dynamics of a pellet-produced plasmoid. J. Plasma Phys. 87, 905870407. https://doi.org/10.1017/S0022377821000714 (2021).

46. Matsuyama, A. et al. Over-ablation and deflection of hydrogen pellets injected into neutral beam injection heated plasmas in the Large Helical Device. Plasma Phys. Control. Fusion 54, 3. https://doi.org/10.1088/0741-3335/54/3/035007 (2012).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る