リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of continuum-based particle models of cell growth and proliferation for simulating tissue morphogenesis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of continuum-based particle models of cell growth and proliferation for simulating tissue morphogenesis

Yokoyama, Yuka Kameo, Yoshitaka Adachi, Taiji 京都大学 DOI:10.1016/j.jmbbm.2023.105828

2023.04

概要

Biological tissues acquire various characteristic shapes through morphogenesis. Tissue shapes result from the spatiotemporally heterogeneous cellular activities influenced by mechanical and biochemical environments. To investigate multicellular tissue morphogenesis, this study aimed to develop a novel multiscale method that can connect each cellular activity to the mechanical behaviors of the whole tissue by constructing continuum-based particle models of cellular activities. This study proposed mechanical models of cell growth and proliferation that are expressed as volume expansion and cell division by extending the material point method. By simulating cell hypertrophy and proliferation under both free and constraint conditions, the proposed models demonstrated potential for evaluating the mechanical state and tracing cells throughout tissue morphogenesis. Moreover, the effect of a cell size checkpoint was incorporated into the cell proliferation model to investigate the mechanical behaviors of the whole tissue depending on the condition of cellular activities. Consequently, the accumulation of strain energy density was suppressed because of the influence of the checkpoint. In addition, the whole tissues acquired different shapes depending on the influence of the checkpoint. Thus, the models constructed herein enabled us to investigate the change in the mechanical behaviors of the whole tissue according to each cellular activity depending on the mechanical state of the cells during morphogenesis.

この論文で使われている画像

参考文献

Alt, S., Ganguly, P., Salbreux, G., 2017. Vertex models: from cell mechanics to tissue

morphogenesis. Phil. Trans. R. Soc. B 372, 20150520. https://doi.org/10.1098/

rstb.2015.0520.

Bardenhagen, S.G., Kober, E.M., 2004. The generalized interpolation material point

method. CMES - Comput. Model. Eng. Sci. 5, 477–495. https://doi.org/10.3970/

cmes.2004.005.477.

Chagnon, G., Rebouah, M., Favier, D., 2015. Hyperelastic energy densities for soft

biological tissues: a review. J. Elasticity 120, 129–160. https://doi.org/10.1007/

s10659-014-9508-z.

Chanet, S., Miller, C.J., Vaishnav, E.D., Ermentrout, B., Davidson, L.A., Martin, A.C.,

2017. Actomyosin meshwork mechanosensing enables tissue shape to orient cell

force. Nat. Commun. 8, 15014 https://doi.org/10.1038/ncomms15014.

Charlton, T.J., Coombs, W.M., Augarde, C.E., 2017. iGIMP: an implicit generalised

interpolation material point method for large deformations. Comput. Struct. 190,

108–125. https://doi.org/10.1016/j.compstruc.2017.05.004.

Conte, V., Munoz, J., Miodownik, M., 2008. A 3D finite element model of ventral furrow

invagination in the Drosophila melanogaster embryo. J. Mech. Behav. Biomed.

Mater. 1, 188–198. https://doi.org/10.1016/j.jmbbm.2007.10.002.

Dahl-Jensen, S., Grapin-Botton, A., 2017. The physics of organoids: a biophysical

approach to understanding organogenesis. Development 144, 946–951. https://doi.

org/10.1242/dev.143693.

Felsenthal, N., Zelzer, E., 2017. Mechanical regulation of musculoskeletal system

development. Development 144, 4271–4283. https://doi.org/10.1242/dev.151266.

Galea, G.L., Zein, M.R., Allen, S., Francis-West, P., 2021. Making and shaping

endochondral and intramembranous bones. Dev. Dynam. 250, 414–449. https://doi.

org/10.1002/dvdy.278.

Giorgi, M., Carriero, A., Shefelbine, S.J., Nowlan, N.C., 2014. Mechanobiological

simulations of prenatal joint morphogenesis. J. Biomech. 47, 989–995. https://doi.

org/10.1016/j.jbiomech.2014.01.002.

Green, J.D., Tollemar, V., Dougherty, M., Yan, Z., Yin, L., Ye, J., Collier, Z.,

Mohammed, M.K., Haydon, R.C., Luu, H.H., Kang, R., Lee, M.J., Ho, S.H., He, T.-C.,

Shi, L.L., Athiviraham, A., 2015. Multifaceted signaling regulators of

chondrogenesis: implications in cartilage regeneration and tissue engineering. Genes

Dis. 2, 307–327. https://doi.org/10.1016/j.gendis.2015.09.003.

Heer, N.C., Martin, A.C., 2017. Tension, contraction and tissue morphogenesis.

Development 144, 4249–4260. https://doi.org/10.1242/dev.151282.

Himpel, G., Kuhl, E., Menzel, A., Steinmann, P., 2005. Computational Modelling of

Isotropic Multiplicative Growth. J05-02.

Jamali, Y., Azimi, M., Mofrad, M.R.K., 2010. A sub-cellular viscoelastic model for cell

population mechanics. PLoS One 5, e12097. https://doi.org/10.1371/journal.

pone.0012097.

Katoh, H., Fujita, Y., 2012. Epithelial homeostasis: elimination by live cell extrusion.

Curr. Biol. 22, R453–R455. https://doi.org/10.1016/j.cub.2012.04.036.

Kim, J., Tomida, K., Matsumoto, T., Adachi, T., 2022. Spheroid culture for chondrocytes

triggers the initial stage of endochondral ossification. Biotech. Bioeng. ,119,

3311–3318. https://doi.org/10.1002/bit.28203.

Kronenberg, H.M., 2003. Developmental regulation of the growth plate. Nature 423,

332–336. https://doi.org/10.1038/nature01657.

Lipphaus, A., Witzel, U., 2019. Biomechanical study of the development of long bones:

finite element structure synthesis of the human second proximal phalanx under

growth conditions. Anat. Rec. 302, 1389–1398. https://doi.org/10.1002/ar.24006.

Liu, S., Ginzberg, M.B., Patel, N., Hild, M., Leung, B., Li, Z., Chen, Y.-C., Chang, N.,

Wang, Y., Tan, C., Diena, S., Trimble, W., Wasserman, L., Jenkins, J.L., Kirschner, M.

W., Kafri, R., 2018. Size uniformity of animal cells is actively maintained by a p38

MAPK-dependent regulation of G1-length. Elife 7, e26947. https://doi.org/10.7554/

eLife.26947.

Funding

This work was supported by Grant-in-Aid for Scientific Research (A)

(JP20H00659) and (C) (JP22K03827) from Japan Society for the Pro­

motion of Science (JSPS); JST-CREST (JPMJCR22L5); AMED-CREST

(Mechanobiology) (JP20gm0810003); and Mori Manufacturing

Research and Technology Foundation.

Y. Yokoyama et al.

Journal of the Mechanical Behavior of Biomedical Materials 142 (2023) 105828

Trickey, W.R., Baaijens, F.P.T., Laursen, T.A., Alexopoulos, L.G., Guilak, F., 2006.

Determination of the Poisson’s ratio of the cell: recovery properties of chondrocytes

after release from complete micropipette aspiration. J. Biomech. 39, 78–87. https://

doi.org/10.1016/j.jbiomech.2004.11.006.

Trubuil, E., D’Angelo, A., Solon, J., 2021. Tissue mechanics in morphogenesis: active

control of tissue material properties to shape living organisms. Cells Dev. 168,

203777 https://doi.org/10.1016/j.cdev.2022.203777.

Vaca-Gonz´

alez, J.J., Moncayo-Donoso, M., Guevara, J.M., Hata, Y., Shefelbine, S.J.,

Garz´

on-Alvarado, D.A., 2018. Mechanobiological modeling of endochondral

ossification: an experimental and computational analysis. Biomech. Model.

Mechanobiol. 17, 853–875. https://doi.org/10.1007/s10237-017-0997-0.

Vendra, B.B., Roan, E., Williams, J.L., 2018. Chondron curvature mapping in growth

plate cartilage under compressive loading. J. Mech. Behav. Biomed. Mater. 84,

168–177. https://doi.org/10.1016/j.jmbbm.2018.05.015.

Voss-B¨

ohme, A., 2012. Multi-scale modeling in morphogenesis: a critical analysis of the

cellular Potts model. PLoS One 7, e42852. https://doi.org/10.1371/journal.

pone.0042852.

Xie, S., Skotheim, J.M., 2020. A G1 sizer coordinates growth and division in the mouse

epidermis. Curr. Biol. 30, 916–924.e2. https://doi.org/10.1016/j.cub.2019.12.062.

Yamaguchi, Y., Moriguchi, S., Terada, K., 2021. Extended B-spline-based implicit

material point method. Int. J. Numer. Methods Eng. 122, 1746–1769. https://doi.

org/10.1002/nme.6598.

Yuan, J., Li, X., Yu, S., 2023. Cancer organoid co-culture model system: novel approach

to guide precision medicine. Front. Immunol. 13, 1061388. https://doi.org/10.3389

/fimmu.2022.1061388.

Zhang, Z., Pan, Y., Wang, J., Zhang, H., Chen, Z., Zheng, Y., Ye, H., 2021. A totalLagrangian material point method for coupled growth and massive deformation of

incompressible soft materials. Num. Meth Eng. 122, 6180–6202. https://doi.org/

10.1002/nme.6787.

Lloyd, A.C., 2013. The regulation of cell size. Cell 154, 1194–1205. https://doi.org/

10.1016/j.cell.2013.08.053.

Luo, Q., Kuang, D., Zhang, B., Song, G., 2016. Cell stiffness determined by atomic force

microscopy and its correlation with cell motility. Biochim. Biophys. Acta Gen. Subj.

1860, 1953–1960. https://doi.org/10.1016/j.bbagen.2016.06.010.

Matejˇci´c, M., Trepat, X., 2022. Mechanobiological approaches to synthetic

morphogenesis: learning by building. Trends Cell Biol. 33 (2), 95–111. https://doi.

org/10.1016/j.tcb.2022.06.013.

Montes-Olivas, S., Marucci, L., Homer, M., 2019. Mathematical models of organoid

cultures. Front. Genet. 10, 873. https://doi.org/10.3389/fgene.2019.00873.

Osborne, J.M., Fletcher, A.G., Pitt-Francis, J.M., Maini, P.K., Gavaghan, D.J., 2017.

Comparing individual-based approaches to modelling the self-organization of

multicellular tissues. PLoS Comput. Biol. 13, e1005387 https://doi.org/10.1371/

journal.pcbi.1005387.

Pan, S., Yamaguchi, Y., Suppasri, A., Moriguchi, S., Terada, K., 2021. MPM–FEM hybrid

method for granular mass–water interaction problems. Comput. Mech. 68, 155–173.

https://doi.org/10.1007/s00466-021-02024-2.

Shwartz, Y., Farkas, Z., Stern, T., Asz´

odi, A., Zelzer, E., 2012. Muscle contraction controls

skeletal morphogenesis through regulation of chondrocyte convergent extension.

Dev. Biol. 370, 154–163. https://doi.org/10.1016/j.ydbio.2012.07.026.

Stomakhin, A., Schroeder, C., Chai, L., Teran, J., Selle, A., 2013. A material point method

for snow simulation. ACM Trans. Graph. 32, 1–10. https://doi.org/10.1145/

2461912.2461948.

Takeda, H., Kameo, Y., Inoue, Y., Adachi, T., 2019. An energy landscape approach to

understanding variety and robustness in tissue morphogenesis. Biomech. Model.

Mechanobiol. 19, 471–479. https://doi.org/10.1007/s10237-019-01222-5.

Townes, P.L., Holtfreter, J., 1955. Directed movements and selective adhesion of

embryonic amphibian cells. J. Exp. Zool. 128, 53–120. https://doi.org/10.1002/

jez.1401280105.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る