リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Enhancement of sensitivity of Pd-based hydrogen-gas sensor by plasma exposure studied by wireless quartz resonator」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Enhancement of sensitivity of Pd-based hydrogen-gas sensor by plasma exposure studied by wireless quartz resonator

Zhou, Lianjie 大阪大学

2020.07

概要

Sensitivity of a hydrogen-gas sensor based on lattice expansion of palladium highly depends on the surface morphology of palladium. We find that the sensitivity can be significantly improved by exposing the as-deposited palladium film to low-power plasma. The hydrogen-gas detection was performed by a wireless-electrodeless AT-cut quartz-crystal resonator with 125 MHz fundamental resonance frequency. It detects hydrogen gas through bending deformation of the resonator caused by the volume expansion of palladium. The surface morphology of palladium film before and after the plasma treatment were analyzed using atomic force microscopy. The plasma treated palladium film exhibits a rougher surface, finer grains, voids, and grain boundary extension. Such morphology and structure changes along with defects induced by the ion bombardment during the plasma treatment strongly contribute to increase in hydrogen absorption rate and then the sensor sensitivity. We further investigate the thickness dependence of the sensitivity, revealing an optimum palladium film thickness of 300 nm.

参考文献

1) K. Yamanaka, S. Akao, N.Takeda, T.Tsuji, T. Oizumi, and Y. Tsukahara, Jpn. J. Appl. Phys. 56, 07JC04 (2017).

2) K. Yamanaka, S. Akao, N.Takeda, T.Tsuji, T. Oizumi, H. Fukushi, T. Okano, and Y. Tsukahara, Jpn. J. Appl. Phys. 58, SGGB04 (2019).

3) K. Yu, X. Tian, X. Wang, F. Yang, T. Qi, and J. Zuo, Sens. Actuat. B, Chem. 299, 126989 (2019).

4) T. Abe, N. Iwata, T. Tsuji, T. Mihara, S. Akao, K. Noguchi, N. Nakaso, D. Sim, Y. Ebi, T. Fukiura, H. Tanaka, and K. Yamanaka, Jpn. J. Appl. Phys. 46, 4726 (2007).

5) S. Okuyama, Y. Mitobe, K. Okuyama, and K. Matsushita, Jpn. J. Appl. Phys. 39, 3584 (2000).

6) B. Sharma and J. Kim, Int. J. Hydrog. Energy 42, 25446 (2017).

7) N. Nakamura, T. Ueno, and H. Ogi, Appl. Phys. Lett. 114, 201901 (2019).

8) K. Yoshimura, Y. Yamada, M. Okada, M. Tazawa, and P. Jin, Jpn. J. Appl. Phys. 43, L507 (2004).

9) K. Yamanaka, S. Ishikawa, N. Nakaso, N. Takeda, D. Y. Sim, T. Mihara, A. Mizukami, I. Satoh, S. Akao, and Y. Tsukahara, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 793 (2006).

10) J. F. Patton, S. R. Hunter, M. J. Sepaniak, P. G. Daskos, and D. B. Smith, Sens. Actuat. A, Phys. 163, 464 (2010).

11) R. Gremaud, M. Slaman, H. Schreuders, B. Dam, and R. Griessen, Appl. Phys. Lett. 91, 231916 (2007).

12) A.V. Panin, M.S. Kazachenok, O.M. Kretova, O.B. Perevalova, Y.F. Ivanov, A.M. Lider, O.M. Stepanova, M.H. Kroening, Appl. Surf. Sci. 284, 750 (2013).

13) F.D. McDaniel, F.U. Naab, O.W. Holland, M. Dhoubhadel, L.J. Mitchell, and J.L. Duggan, Surf. Coat. Technol. 201, 8564 (2007).

14) H. Abe, H. Uchida, Y. Azuma, A. Uedono, Z.Q. Chen, and H. Itoh, Nucl. Instrum. Meth. Phys. Res. B 206, 224 (2003).

15) Deepti, H. Kumar, A. Tripathi, A.B. Dey, M. Gupta, R. Krishna, and D.K. Avasthi, Sens. Actuat. B, Chem. 301, 127006 (2019).

16) J-H. Kim, A. Mirzaei, H.W. Kim, P. Wu, and S.S. Kim, Sens. Actuat. B, Chem. 293, 210 (2019).

17) P.K. Chu, J.Y. Chen, L.P. Wang, and N. Huang, Mater. Sci. Eng. R-Rep. 36, 143 (2002).

18) D. Wandke, M. Schulze, S. Klingner, A. Helmke, and W. Vio¨l, Surf. Coat. Technol. 200, 700 (2005).

19) D.N. Tran, V.P. Nguyen, T. Sakaki, T. Kikuchi, and N. Harada, Jpn. J. Appl. Phys. 50, 036202 (2011).

20) H. Ogi, Proc. Jpn. Acad., Ser. B 89, 401 (2013).

21) H. Ogi, K. Motohisa, T. Matsumoto, K. Hatanaka, and M. Hirao, Anal. Chem. 78, 6903 (2006).

22) H. Ogi, H. Nagai, Y. Fukunishi, M. Hirao, and M. Nishiyama, Anal. Chem. 81, 8068 (2009).

23) K. Noi, M. Iijima, S. Kuroda, and H. Ogi, Sens. Actuat. B, Chem. 293, 59 (2019).

24) K. Noi, A. Iwata, F. Kato, and H. Ogi, Anal. Chem. 91, 9398 (2019).

25) F. Kato, H. Noguchi, Y. Kodaka, N. Oshida, and H. Ogi, Jpn. J. Appl. Phys. 57, 07LD14 (2018).

26) H. Ogi, M. Fujii, N. Nakamura, T. Shagawa, and M. Hirao, Appl. Phys. Lett. 90, 191906 (2007).

27) L. Zhou, N. Nakamura, A. Nagakubo, and H. Ogi, Proc. 40th Symp. Ul- trason. Electron. 40, 2P2-13 (2019).

28) L. Zhou, N. Nakamura, A. Nagakubo, and H. Ogi, Appl. Phys. Lett. 115, 171901 (2019).

29) H. Natter, B. Wettmann, B. Heisel, and R. Hempelmann, J. Alloys Compd. 253-254, 84 (1997).

30) U. Stuhr, H. Wipf, T.J. Udovic, J. Weissmuller, and H. Gleiter, J. Phys.: Condens. Matter 7, 219 (1995).

31) R. Nowakowski and R. Dus´, Langmuir 19, 6750 (2003).

32) M. Y. Um, I. S. Jeon, D. I. Eom, and H. J. Kim, Jpn. J. Appl. Phys. 43, 4114 (2004).

33) V. I. Lavrent’ev, A. D. Pogrebnyak, A. D. Mikhalev, N. A. Pogrebnyak, R. Shandrik, Z. Zecca, and Y. V. Tsvintarnaya, Tech. Phys. Lett. 24, 334 (1998).

34) D.R. Baselt, B. Fruhberger, E. Klaassen, S. Cemalovic, C.L. Britton, S.V. Patel, T.E. Mlsna, D. McCorkle, and B. Warmack, Sens. Actuat. B, Chem. 88, 120 (2003).

35) Z. Hu, T. Thundat, and R. J. Warmack, J. Appl. Phys. 90, 427 (2001).

36) M-W. Lee and R. Glosser, J. Appl. Phys. 57, 5236 (1985).

37) W. M. Mueller, J. P. Blackledge, and G. G. Libowitz, Metal Hydrides (Academic, New York, 1968), Chap. 12.

38) A. Sieverts and W. Krumbhaar, Ber. Dtsch Chem. Ges. 43, 893 (1910).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る