リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Sensitive label-free immunoglobulin G detection using a MEMS quartz crystal microbalance biosensor with a 125 MHz wireless quartz resonator」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Sensitive label-free immunoglobulin G detection using a MEMS quartz crystal microbalance biosensor with a 125 MHz wireless quartz resonator

Zhou, Lianjie 大阪大学

2021.03.29

概要

We present a wireless quartz crystal microbalance (QCM) biosensor fabricated using MEMS technology. The MEMS QCM biosensor contains a 125 MHz AT-cut quartz resonator embedded in the microchannel. Because of the compact design, the MEMS QCM biosensor is suitable for mass production and device miniaturization. We performed immunoglobulin G (IgG) detection measurements with different concentrations of IgG. The detection limit was 1 ng ml-1 or less, which is superior to that of the gold-standard surface plasma resonance method. Furthermore, we studied the binding affinity between protein A and IgG by studying the frequency response of the QCM biosensor. We found good agreement with reported values. Therefore, the presented MEMS QCM biosensor has the advantages of compactness, low cost, low power consumption, high sensitivity, and reliability.

参考文献

1) Y. Watanabe, Y. Xin, and K. Sakamoto, Jpn. J. Appl. Phys. 58, SGGC01 (2019).

2) P.C. Si, J. Mortensen, A. Komolov, J. Denborg, and P.J. Møller, Anal. Chim. Acta 597, 223 (2007).

3) M. Vagra, A. Laposa, P. Kulha, J. Kroutil, M. Husak, and A. Kromka, Phys. Status Solidi B 252, 2591 (2015).

4) L. Zhou, N. Nakamura, A. Nagakubo, and H. Ogi, Jpn. J. Appl. Phys. 59, SKKB02 (2020).

5) K.W. Liu, and C. Zhang, Food Chem. 334, 127615 (2021).

6) H.J. Lim, T. Saha, B.T. Tey, W. S. Tan, and C.W. Ooi, Biosens. Bioelec- tron. 168, 112513 (2020).

7) D. Milioni, P. Mateos-Gil, G. Papadakis, A. Tsortos, O. Sarlidou, and E. Gizeli, Anal. Chem. 92, 8186 (2020).

8) D. Chen, H. Li, X. Su, N. Li, Y. Wang, A. C. Stevenson, R. Hu, and G. Li, Sens. Actuat. B, Chem. 287, 35 (2019).

9) K. Noi, A. Iwata, F. Kato, and H. Ogi, Anal. Chem. 91, 9398 (2019).

10) N. Asai, H. Terasawa, T. Shimizu, S. Shingubara, and T. Ito, Jpn. J. Appl. Phys. 57, 02CD01 (2018).

11) S. Lee, B.Choi, J. Kim, S. Woo, Y. Kim, J. Yoo, and Y. Seo, Sens. Actuat. B, Chem. 284, 386 (2019).

12) Y. Yao, X. Chen, W. Ma, and W. Ling, IEEE trans. Nanotechnol. 13, 386 (2014).

13) D. Zhang , H. Chen, P. Li, D. Wang, and Z. Yang, IEEE Sensors J. 19, 2909 (2019).

14) N. Gao, H.Y. Li, W. Zhang, Y. Zhang, Y. Zeng, Z. Hu, J. Liu, J. Jiang, L. Miao, F. Yi, and H. Liu, Sens. Actuat. B, Chem. 293, 129 (2019).

15) D. Zhang, X. Song, Z. Wang, and H. Chen, Appl. Surf. Sci. 538, 147816 (2021).

16) N. Horzum, D. Tascioqlu, C. Ozbek, S. O¨ kur, and M. M. Demir, New J. Chem. 38, 5761 (2014).

17) V.V. Quang, V.N. Hung, L.A. Tuan, V.N. Phan, Q. Huy, and N.V. Quy, Thin Solid Films 568, 6 (2014).

18) Y. Tokura, G. Nakada, Y. Moriyama, Y.Oaki, H. Imai, and S. Shiratori, Anal. Chem. 89, 12123 (2017).

19) E.S. Manoso, R. Herrera-Basurto, B.M. Simonet, M. Valcarcel, Sens. Ac- tuat. B, Chem. 186, 811 (2013).

20) K. Tsugimura, H. Ohnuki1, H. Endo, D. Tsuya, and M. Izumi, Jpn. J. Appl. Phys. 55, 02BE06 (2016).

21) S. Kasturi, Y. Eom, S. R. Torati, and C. Kim, J. Ind. Eng. Chem. 93, 186 (2021).

22) T. Springer, M. Piliarik, and J. Homola, J. Anal. Bioanal. Chem. 398, 1955 (2010).

23) M. Piliarik, M. Bockova, and J. Homola, Biosens. Bioelectron. 26, 1656 (2010).

24) J. Homola, Anal. Bioanal. Chem. 377, 528 (2003).

25) J. Suthar, E. S. Parsons, B. W. Hoogenboom, G. R. Williams, and S. Guldin, Anal. Chem. 92, 4082 (2020).

26) Q. Chen, W. Tang, D. Wang, X. Wu, N. Li, and F. Liu, Biosens. Bioelec- tron. 26, 575 (2010).

27) A. Guha, O.S. Ahmad, A. Guerreiro, K. Karim, N. Sandstro¨m, V.P. Os- tanin, W. van der Wijngaart, S.A. Piletsky, and S.K. Ghosh, Biosens. Bio- electron. 158, 112176 (2020).

28) T. Shagawa, H. Torii, F. Kato, H. Ogi, and M. Hirao, Jpn. J. Appl. Phys. 54, 068001 (2015).

29) H. Ogi, M. Fukushima, H. Hamada, K. Noi, M. Hirao, H. Yagi, and Y. Goto, Sci. Rep. 4, 6960 (2015).

30) H. Hamada, H. Ogi, K. Noi, H. Yagi, Y. Goto, and M. Hirao, Jpn. J. Appl. Phys. 54, 07HE01 (2015).

31) S. Shoaib, and M. Tabrizian, Sens. Actuat. B, Chem. 293, 235 (2019).

32) H. Muramatsu, S. Ito, and A.H.A. Alsaleem, Anal. Chem. 92, 7907 (2020).

33) H. Ogi, K. Motohisa, T. Matsumoto, K. Hatanaka, and M. Hirao, Anal. Chem. 78, 6903 (2006).

34) H. Ogi, Proc. Jpn. Acad., Ser. B 89, 401 (2013).

35) K. Noi, M. Iijima, S. Kuroda, and H. Ogi, Sens. Actuat. B, Chem. 293, 59 (2019).

36) F. Kato, H. Ogi, T. Yanagida, S. Nishikawa, M. Hirao, and M. Nishiyama, Biosens. Bioelectron. 33, 139 (2012).

37) F. Kato, H. Noguchi, Y. Kodaka, N. Oshida, and H. Ogi, Jpn. J. Appl. Phys. 57, 07LD14 (2018).

38) H. Ogi, H. Nagai, Y. Fukunishi, M. Hirao, and M. Nishiyama, Anal. Chem. 81, 8068 (2009).

39) L. Zhou, F. Kato, and H. Ogi, Proc. 41th Symp. Ultrason. Electron. 41, 2E1-2 (2020).

40) Y. Liu, X. Yu, R. Zhao, D.H. Shangguan, Z. Bo, and G. Liu, Biosens. Bioelectron. 19, 9 (2003).

41) H. Ogi, K. Motohisa, K. Hatanaka, T. Ohmori, M. Hirao, and M. Nishiyama, Biosens. Bioelectron. 22, 3238 (2007).

42) S.C. Kuo, and D.A. Lauffenburger, Biophys. J 65, 2191 (1993).

43) H.G. Svensson, H.R. Hoogenboom, and U. Sjo¨bring, Eur. J. Biochem. 258, 890 (1998).

44) K. Noi, M. Iijima, S. Kuroda, F. Kato, and H. Ogi, Jpn. J. Appl. Phys. 59, SKKB03 (2020).

参考文献をもっと見る