リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A comprehensive study on seasonal variations of low-level clouds and associated air-sea interactions in the South Indian Ocean」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A comprehensive study on seasonal variations of low-level clouds and associated air-sea interactions in the South Indian Ocean

宮本, 歩 東京大学 DOI:10.15083/0002004723

2022.06.22

概要

Low-level clouds strongly cool the earth as they reflect a large fraction of insolation while emitting longwave radiation nearly as much as the earth’s surface. Since their formation is governed by small-scale turbulent processes and microphysics, however, low-level clouds are not well represented in global climate models, introducing uncertainties into future climate projections. Climatologically, low-level clouds prevail over the eastern portion of the basins, and several studies suggested the active roles of such low-level clouds on the maintenance of subtropical highs through their albedo effect and/or longwave radiative cooling from their cloud-top.

 The present study focuses on the South Indian Ocean. The subtropical high resides over the eastern portion of the basin in summer, while it strengthens and shifts westward in winter. Correspondingly, the area of large low-cloud fraction (LCF) over the South Indian Ocean also shows westward extension from summer. Such distinct seasonality of the subtropical high and low-level clouds cannot be seen in the other subtropical ocean basins. In addition, there is a prominent sea surface temperature (SST) front along the Agulhas Return Current in the South Indian Ocean (thus referred to as the Agulhas SST front). The associated cross-frontal gradient of surface sensible heat flux (SHF) maintains a surface baroclinic zone, forming a storm track. Thus the storm- track activity in the South Indian Ocean is active throughout the year, and maximized in winter. Furthermore, the Asian summer monsoon located to the north, which is one of the strongest seasonal variations in the Earth, may affect the subtropical high in the South Indian Ocean remotely in austral winter. Considering those intriguing points, however, the coupling between the subtropical high and low-level clouds via SST as well as its modulation by the storm-track activity maintained by the Agulhas SST front and the Asian summer monsoon in austral summer have not been assessed yet. This study elucidate those using satellite observations and a series of dynamical and general circulation model experiments.

 In summer, we have found that low-level clouds are essential for the maintenance of the subtropical high. Our sensitivity experiments with a coupled general circulation model (CM2.1) confirmed that low-level clouds reinforce the summertime subtropical high (∼+5 hPa) so that the high as the planetary wave component would almost vanish without the radiative effects of the subtropical low-level clouds. During the warm season, the albedo effect of low-level clouds strongly lowers SST under the strong summertime insolation, especially in the eastern portion of the basin (∼−4 ∘C in the CM2.1 experiments). The lowered SST hinders the southward displacement (or expansion) of the ITCZ, reducing precipitation from deep clouds in the equatorward portion of the subtropical South Indian Ocean. The anomalous diabatic cooling associated with the reduced precipitation induces an anticyclonic response to its southwest, reinforcing the surface subtropical high. Our dynamical model experiments have elucidated that the reinforcement through the anomalous condensation heating is predominant in the feedback from low-level clouds. The high is also modestly reinforced by the augmented in-atmosphere radiative cooling, which is attributable to the reduced longwave radiative heating by high-level clouds associated with the reduced deep convection as well as the cloud-top longwave cooling from low-level clouds. The dynamical model experiments with individual diabatic heating component taken from an atmospheric reanalysis data (JRA-55) have also confirmed the predominance of the reduced precipitation for the maintenance of the high as the planetary wave component. Still, the shallow cooling-heating couplet between the cool South Indian Ocean and the heated Australian continent acts to suppress deep convection by invoking surface divergence and alongshore winds, which act to lower SST by enhanced evaporation, upper- ocean mixing, coastal upwelling and weakening of the Leeuwin Current, off the west coast of Australia. The analysis has also revealed that forcing from sub-monthly eddies as well as remote influences from the tropics is negligible for the maintenance of the summertime subtropical high over the South Indian Ocean.

 In winter, the westward-shifted subtropical high contributes to the wintertime enhancement and westward expansion of low-cloud cover by invoking the mid-tropospheric subsidence, which enhances lower- tropospheric stability, and the southeasterly Trades that enhance upward SHF, both across the entire subtropical basin. Our sensitivity experiments with CM2.1 have elucidated that those low-level clouds feed back onto the equatorward portion of the subtropical high (∼+1.5 hPa) through augmenting cloud-top longwave cooling. They also reinforce the high modestly through the reduced turbulent heating associated with the lowered SST. In contrast to the summertime case, suppression of deep convection by low-level clouds is weak, leading to a smaller contribution to the maintenance of the high. This is probably because the reduced lowering of SST due to the weaker cloud radiative forcing under reduced wintertime insolation along with climatologically low SST and the enhanced winter-hemisphere Hadley cell, suppressing precipitation even in the absence of low-level clouds. Nevertheless, it has been demonstrated that there exists a coupling between the subtropical high and low-level clouds also in winter.

 This study has also revealed the modulations of the aforementioned coupling by the seasonally enhanced storm-track activity maintained by the Agulhas SST front. We have shown that the enhanced storm-track activity maintained by the Agulhas SST front is also important for the enhanced LCF, because migratory synoptic-scale eddies along the storm track augment upward SHF by enhancing cold advection over the warmer side of the wintertime subtropical SST front located at ∼30∘S and increasing the climatological-mean scalar wind speed where climatological-mean southerlies are weak (25∘S-30∘S). This is presumably one of the reasons why SHF emerges as an important cloud-controlling factor for the seasonal cycle of LCF in the subtropical South Indian Ocean. The storm-track activity is even more important for the maintenance of the poleward portion of the subtropical high through the convergences of eddy heat and vorticity fluxes and the resultant acceleration of the climatological-mean westerlies on the poleward side of the high, as shown by the dynamical model experiments. The atmospheric general circulation model experiments further indicate that the Agulhas SST front acts to reinforce the high by energizing the storm-track activity.

 The dynamical model experiments have also revealed that unlike in austral summer, the coupled system can be modulated by the remote influence from the tropics, especially the Asian summer monsoon region. The enhanced deep convection over the Asian summer monsoon regions as well as the equatorial eastern Indian Ocean and western Pacific acts not only to shift the subtropical high westward but also to enhance mid- tropospheric subsidence and equatorward surface winds over the central and western portions of the subtropical South Indian Ocean. The induced subsidence acts to stabilize and dry the free troposphere and the equatorward surface winds yield near-surface cold advection, both of which are favorable for the low-level cloud formation but unfavorable for the development of deep precipitating clouds. The resultant enhanced radiative cooling and reduced deep condensation heating can further reinforce the surface subtropical high.

 Thus the present study has assessed the impacts of low-level clouds on the subtropical high and their seasonality in the South Indian Ocean quantitatively, deepening the understanding of the coupling between the subtropical high and low-level clouds. The present study has also indicated that the storm-track activity energized by the Agulhas SST front contributes to the maintenance of the wintertime subtropical high and low- level clouds, and that the deep convection around the Asian summer monsoon region as well as the equatorial Indian Ocean and western Pacific facilitates the westward shift and strengthening of the wintertime subtropical high in the South Indian Ocean, elucidating the mechanisms for the distinct seasonality of the subtropical high and low-level clouds in the South Indian Ocean.

この論文で使われている画像

参考文献

Albern, N., A. Voigt, S. A. Buehler, and V. Gru¨tzun, 2018: Robust and nonrobust impacts of atmospheric cloud-radiative interactions on the tropical circulation and its response to surface warming. Geophys. Res. Lett., 45, 8577–8585, doi:10.1029/2018GL079599.

Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 1132–1161, doi:10. 1002/qj.2063.

Beal, L. M., W. P. M. de Ruijter, A. Biastoch, R. Zahn, and SCOR/WCRP/IAPSO Working Group 136, 2011: On the role of the Agulhas system in ocean circulation and climate. Nature, 472, 429–436, doi:10.1038/nature09983.

Behera, S. K., and T. Yamagata, 2001: Subtropical SST dipole events in the southern Indian Ocean. Geophys. Res. Lett., 28, 327–330, doi:10.1029/2000GL011451.

Bellomo, K., A. Clement, T. Mauritsen, G. Ra¨del, and B. Stevens, 2014: Simulating the role of subtropical stratocumulus clouds in driving Pacific climate variability. J. Climate, 27, 5119–5131, doi:10.1175/JCLI-D-13-00548.1.

Bellomo, K., A. Clement, T. Mauritsen, G. Ra¨del, and B. Stevens, 2015: The influence of cloud feedbacks on equatorial Atlantic variability. J. Climate, 28, 2725–2744, doi:10. 1175/JCLI-D-14-00495.1.

Bennartz, R., 2007: Global assessment of marine boundary layer cloud droplet number concentration from satellite. J. Geophys. Res., 112, D02201, doi:10.1029/ 2006JD007547.

Bodas-Salcedo, A., P. G. Hill, K. Furtado, K. D. Williams, P. R. Field, J. C. Manners, P. Hyder, and S. Kado, 2016: Large contribution of supercooled liquid clouds to the solar radiation budget of the Southern Ocean. J. Climate, 29, 4213–4228, doi:10.1175/ jcli-d-15-0564.1.

Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

Brenguier, J. L., H. Pawlowska, L. Schuller, R. Preusker, J. Fischer, and Y. Fouquart, 2000: Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration. J. Atmos. Sci., 57, 803–821, doi:10.1175/1520-0469(2000) 057⟨0803:RPOBLC⟩2.0.CO;2.

Bretherton, C. S., and P. N. Blossey, 2014: Low cloud reduction in a greenhouse-warmed climate: Results from Lagrangian LES of a subtropical marine cloudiness transition. J. Adv. Model. Earth Syst., 6, 91–114, doi:10.1002/2013MS000250.

Bretherton, C. S., P. N. Blossey, and C. R. Jones, 2013: Mechanisms of marine low cloud sensitivity to idealized climate perturbations: A single-LES exploration extending the CGILS cases. J. Adv. Model. Earth Syst., 5, 316–337, doi:10.1002/jame.20019.

Brient, F., and S. Bony, 2013: Interpretation of the positive low cloud feedback predicted by a climate model under global warming. Climate Dyn., 40, 2415–2431, doi:10.1007/ s00382-011-1279-7.

Ceppi, P., and D. L. Hartmann, 2015: Connections between clouds, radiation, and midlatitude dynamics: A review. Curr. Clim. Change Rep., 1, 94–102, doi:10.1007/ s40641-015-0010-x.

Ceppi, P., D. L. Hartmann, and M. J. Webb, 2016a: Mechanisms of the negative shortwave cloud feedback in middle to high latitudes. J. Climate, 29, 139–157, doi:10.1175/ JCLI-D-15-0327.1.

Ceppi, P., D. T. McCoy, and D. L. Hartmann, 2016b: Observational evidence for a negative shortwave cloud feedback in middle to high latitudes. Geophys. Res. Lett., 43, 1331–1339, doi:10.1002/2015GL067499.

Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978–983, doi:10.1126/science.1091901.

Chepfer, H., S. Bony, D. M. Winker, G. Cesana, J. Dufresne, P. Minnis, C. Stubenrauch, and S. Zeng, 2010: The GCM Oriented CALIPSO Cloud Product (CALIPSO-GOCCP). J. Geophys. Res., 115, D00H16, doi:10.1029/2009JD012251.

Clement, A. C., R. Burgman, and J. R. Norris, 2009: Observational and model evidence for positive low-level cloud feedback. Science, 325, 460–464, doi:10.1126/science. 1171255.

Crueger, T., and B. stevens, 2015: The effect of atmospheric radiative heating by clouds on the Madden-Julian oscillation. J. Adv. Model. Earth Syst., 6, 854–864, doi:10.1002/ 2015MS000434.

de Boyer Monte´gut, C., J. Vialard, S. S. C. Shenoi, D. Shankar, F. Durand, C. Ethe´, and G. Madec, 2007: Simulated seasonal and interannual variability of the mixed layer heat budget in the northern Indian Ocean. J. Climate, 20, 3249–3268, doi:10.1175/ JCLI4148.1.

Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/qj.828.

Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643–674, doi:10.1175/ JCLI3629.1.

Durgadoo, J. V., B. R. Loveday, C. J. C. Reason, P. Penven, and A. Biastoch, 2013: Agulhas leakage predominantly responds to the Southern Hemisphere westerlies. J. Phys. Oceanogr., 43, 2113–2131, doi:10.1175/JPO-D-13-047.1.

Enomoto, T., A. Kuwano-Yoshida, N. Komori, and W. Ohfuchi, 2008: Description of AFES 2: Improvements for high-resolution and coupled simulations. High Resolution Numerical Modelling of the Atmosphere and Ocean, H. Kevin and O. Wataru, Eds., Springer, 77–97.

Fermepin, S., and S. Bony, 2014: Influence of low-cloud radiative effects on tropical circulation and precipitation. J. Adv. Model. Earth Syst., 6, 513–526, doi:10.1002/ 2013MS000288.

Frenger, I., N. Gruber, and M. Mu¨nnich, 2013: Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci., 6, 608–612, doi:10.1038/NGEO1863.

Frierson, D. M. W., and Y.-T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate, 25, 720–733, doi:10.1175/ JCLI-D-11-00116.1.

Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462, doi:10.1002/qj.49710644905.

Gordon, C. T., A. Rosati, and R. Gudgel, 2000: Tropical sensitivity of a coupled model to specified ISCCP low clouds. J. Climate, 13, 2239–2260, doi:10.1175/1520-0442(2000) 013⟨2239:TSOACM⟩2.0.CO;2.

Graham, N. E., and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 30, 657–659, doi:10.1126/science.238. 4827.657.

Graham, R. M., and A. M. De Boer, 2013: The dynamical subtropical front. J. Geophys. Res., 118, 5676–5685, doi:10.1002/jgrc.20408.

Grise, K. M., B. Medeiros, J. J. Benedict, and J. G. Olson, 2019: Investigating the influence of cloud radiative effects on the extratropical storm tracks. Geophys. Res. Lett., 46, 7700–7707, doi:10.1029/2019GL083542.

Grise, K. M., L. M. Polvani, and J. T. Fasullo, 2015: Reexamining the relationship between climate sensitivity and the southern hemisphere radiation budget in CMIP models. J. Climate, 28, 9298–9312, doi:10.1175/JCLI-D-15-0031.1.

Grosvenor, D. P., and R. Wood, 2014: The effect of solar zenith angle on MODIS cloud optical and microphysical retrievals within marine liquid water clouds. Atmos. Chem. Phys., 14, 7291–7321, doi:10.5194/acp-14-7291-2014.

Hair Jr., J. F., W. C. Black, B. J. Babin, and R. E. Anderson, 2010: Multivariate Data Analysis. Pearson, 734 pp.

Harada, Y., and Coauthors, 2016: The JRA-55 reanalysis: Representation of atmospheric circulation and climate variability. J. Meteor. Soc. Japan, 94, 269–302, doi:10.2151/ jmsj.2016-015.

Hartmann, D. L., and D. A. Short, 1980: On the use of earth radiation budget statistics for studies of clouds and climate. J. Atmos. Sci., 37, 1233–1250, doi:10.1175/ 1520-0469(1980)037⟨1233:OTUOER⟩2.0.CO;2.

Holton, J. R., and G. J. Hakim, 2012: An Introduction to Dynamic Meteorology. Academic Press, 552 pp.

Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. J. Meteor. Soc. Japan, 111, 877–946, doi:10. 1002/qj.49711147002.

Hosoda, S., T. Ohira, K. Sato, and T. Suga, 2010: Improved description of global mixed-layer depth using Argo profiling floats. J. Oceanogr., 66, 773–787, doi:10.1007/ s10872-010-0063-3.

Hotta, D., and H. Nakamura, 2011: On the significance of sensible heat supply from the ocean in the maintenance of the mean baroclinicity along storm tracks. J. Climate, 24, 3377–3401, doi:10.1175/2010JCLI3910.1.

Huang, B., and Z. Z. Hu, 2007: Cloud-SST feedback in southeastern tropical Atlantic anomalous events. Geophys. Res. Lett., 112, C03015, doi:10.1029/2006JC003626.

Hubanks, P., S. Platnick, M. King, and B. Ridgway, 2016: MODIS Atmosphere L3 Gridded Product Algorithm Theoretical Basis Document (ATBD) and Users Guide. [Available online at https://modis-images.gsfc.nasa.gov/ docs/L3 ATBD C6.pdf.], 122 pp.

Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 77, 38–55, doi:10.1175/JHM560.1.

Hwang, Y.-T., and D. M. W. Frierson, 2013: Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. (USA), 110, 4935–4940, doi:10.1073/pnas.1213302110.

Inatsu, M., and B. Hoskins, 2004: The zonal asymmetry of the Southern Hemisphere winter storm track. J. Climate, 17, 4882–4892, doi:10.1175/JCLI-3232.1.

Izumo, T., C. de Boyer Monte´gut, J. Luo, S. K. Behera, S. Masson, and T. Yamagata, 2008: The role of the western Arabian Sea upwelling in Indian monsoon rainfall variability. J. Climate, 21, 5603–5623, doi:10.1175/2008JCLI2158.1.

Johnson, N. C., and S.-P. Xie, 2010: Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci., 3, 842–845, doi:10.1038/ngeo1008.

Kamae, Y., T. Ogura, H. Shiogama, and M. Watanabe, 2016: Recent progress toward reducing the uncertainty in tropical low cloud feedback and climate sensitivity: A review. Geosci. Lett., 3, 17, doi:10.1186/s40562-016-0053-4.

Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643, doi:10.1175/BAMS-83-11-1631.

Karlsson, J., G. Svensson, and H. Rodhe, 2008: Cloud radiative forcing of subtropical low level clouds in global models. Climate Dyn., 30, 779–788, doi:10.1007/ s00382-007-0322-1.

Kataoka, T., T. Tozuka, S. Behera, and T. Yamagata, 2014: On the Ningaloo Nin˜o/Nin˜a. Climate Dyn., 43, 1463–1482, doi:10.1007/s00382-013-1961-z.

Kawai, H., T. Koshiro, and M. J. Webb, 2017: Interpretation of factors controlling low cloud cover and low cloud feedback using a unified predictive index. J. Climate, 30, 9119–9131, doi:10.1175/JCLI-D-16-0825.1.

Kawamura, R., T. Matsuura, and S. Iizuka, 1988: Role of equatorially asymmetric sea surface temperature anomalies in the Indian Ocean in the Asian summer monsoon and El Nin˜o-Southern Oscillation coupling. J. Geophys. Res., 106, 4681–4693, doi:10. 1029/2000JD900610.

King, M. D., S. Platnick, P. A. Hubanks, G. T. Arnold, E. G. Moody, G. Wind, and B. Wind, 2006: Collection 005 change summary for the MODIS cloud optical property (06 OD) algorithm. NASA Rep., Version 3.1 23pp.

Klein, S., and C. Jakob, 1999: Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127, 2514–2531, doi:10.1175/1520-0493(1999) 127⟨2514:VASOFC⟩2.0.CO;2.

Klein, S. A., A. Hall, J. R. Norris, and R. Pincus, 2017: Low-cloud feedbacks from cloud-controlling factors: A review. Surv. Geophys., 38, 1307–1329, doi:10.1007/ s10712-017-9433-3.

Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 1587–1606, doi:10.1175/1520-0442(1993)006⟨1587:TSCOLS⟩2.0.CO;2.

Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5–48, doi:10.2151/jmsj.2015-001.

Koike, M., N. Asano, H. Nakamura, S. Sakai, T. M. Nagao, and T. Y. Nakajima, 2016: Modulations of aerosol impacts on cloud microphysics induced by the warm kuroshio current under the East Asian winter monsoon. J. Geophys. Res., 121, 282–297, doi:10. 1002/2016JD025375.

Koike, M., and Coauthors, 2012: Measurements of regional-scale aerosol impacts on cloud microphysics over the East China Sea: Possible influences of warm sea surface temperature over the Kuroshio Ocean Current. J. Geophys. Res., 117, D17205, doi:10. 1029/2011JD017324.

Komurcu, M., and Coauthors, 2014: Intercomparison of the cloud water phase among global climate models. J. Geophys. Res., 119, 3372–3400, doi:10.1002/2013JD021119.

Koseki, S., T. Nakamura, H. Mitsudera, and Y. Wang, 2012: Modeling low-level clouds over the Okhotsk Sea in summer: Cloud formation and its effects on the Okhotsk high. J. Geophys. Res., 117, D05208, doi:10.1029/2011JD016462.

Koshiro, T., and M. Shiotani, 2014: Relationship between low stratiform cloud amount and estimated inversion strength in the lower troposphere over the global ocean in terms of cloud types. J. Meteor. Soc. Japan, 92, 107–120, doi:10.2151/jmsj.2014-107.

Koshiro, T., S. Yukimoto, and M. Shiotani, 2017: Interannual variability in low stratiform cloud amount over the summertime North Pacific in terms of cloud types. J. Climate, 30, 6107–6121, doi:10.1175/JCLI-D-16-0898.1.

Kraucunas, I., and D. L. Hartmann, 2007: Tropical stationary waves in a nonlinear shallow-water model with realistic basic states. J. Atmos. Sci., 64, 2540–2557, doi:10. 1175/JAS3920.1.

Kraus, E. B., and J. S. Turner, 1967: A one-dimensional model of the seasonal thermocline II. Tellus, 19, 98–106, doi:10.3402/tellusa.v19i1.9753.

Kuwano-Yoshida, A., T. Enomoto, and W. Ohfuchi, 2010: An improved PDF cloud scheme for climate simulations. Quart. J. Roy. Meteor. Soc., 136, 1583–1597, doi:10. 1002/qj.660.

Kwon, Y.-O., M. A. Alexander, N. A. Bond, C. Frankignoul, H. Nakamura, B. Qiu, and L. Thompson, 2010: Role of the Gulf Stream and Kuroshio-Oyashio systems in large-scale atmosphere-ocean interaction: A review. J. Climate, 23, 3249–3281, doi:10.1175/2010JCLI3343.1.

Lana, A., and Coauthors, 2011: An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean. Global Biogeochemical Cycles, 25, GB1004, doi:10.1029/2010GB003850.

Lee, S.-K., C. R. Mechoso, C. Wang, and J. D. Neelin, 2013: Interhemispheric influence of the northern summer monsoons on southern subtropical anticyclones. J. Climate, 26, 10 193–10 204, doi:10.1175/JCLI-D-13-00106.1.

Levitus, S., 1987: Meridional Ekman heat fluxes for the world ocean and individual ocean basins. J. Phys. Oceanogr., 17, 1484–1492, doi:10.1175/1520-0485(1987)017⟨1484: MEHFFT⟩2.0.CO;2.

Li, J., J. Huang, K. Stamnes, T. Wang, Q. Lv, and H. Jin, 2015a: A global survey of cloud overlap based on CALIPSO and CloudSat measurements. Atmos. Chem. Phys., 10, 519–536, doi:10.5194/acp-15-519-2015.

Li, W., L. Li, M. Ting, and Y. Liu, 2012: Intensification of Northern Hemisphere subtropical highs in a warming climate. Nat. Geosci., 5, 830–834, doi:10.1038/ NGEO1590.

Li, W., and Coauthors, 2013: Intensification of the Southern Hemisphere summertime subtropical anticyclones in a warming climate. Geophys. Res. Lett., 40, 5959–5964, doi:10.1002/2013GL058124.

Li, Y., D. W. J. Thompson, and S. Bony, 2015b: The influence of atmospheric cloud radiative effects on the large-scale atmospheric circulation. J. Climate, 28, 7263–7278, doi:10.1175/JCLI-D-14-00825.1.

Li, Y., D. W. J. Thompson, S. Bony, and T. M. Merlis, 2019: Thermodynamic control on the poleward shift of the extratropical jet in climate change simulations: The role of rising high clouds and their radiative effects. J. Climate, 32, 917–934, doi:10.1175/ JCLI-D-18-0417.1.

Li, Y., D. W. J. Thompson, and Y. Huang, 2017: The influence of atmospheric cloud radiative effects on the large-scale stratospheric circulation. J. Climate, 30, 5621–5635, doi:10.1175/JCLI-D-16-0643.1.

Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292–309, doi:10.1002/qj.49709440106.

Lindzen, R. S., and A. V. Hou, 1988: Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci., 45, 2416–2427, doi:10.1175/1520-0469(1988) 045⟨2416:HCFZAH⟩2.0.CO;2.

Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 2418–2436, doi:10.1175/1520-0469(1987)044⟨2418:OTROSS⟩2.0.CO;2.

Liu, J., T. Xiao, and L. Chen, 2011: Intercomparisons of air-sea heat fluxes over the Southern Ocean. J. Climate, 24, 1198–1211, doi:10.1175/2010JCLI3699.1.

Liu, J.-W., S.-P. Xie, J. R. Norris, and S.-P. Zhang, 2014: Low-level cloud response to the Gulf Stream front in winter using CALIPSO. J. Climate, 27, 4421–4432, doi:10.1175/ JCLI-D-13-00469.1.

Loveday, B. R., J. V. Durgadoo, C. J. C. Reason, A. Biastoch, and P. Penven, 2014: Decoupling of the Agulhas leakage from the Agulhas Current. J. Phys. Oceanogr., 44, 1776–1797, doi:10.1175/JPO-D-13-093.1.

Ma, C.-C., C. R. Mechoso, W. A. Robertson, and A. Arakawa, 1996: Peruvian stratus clouds and the tropical Pacific circulation: A coupled ocean-atmosphere GCM study. J. Climate, 9, 1635–1645, doi:10.1175/1520-0442(1996)009⟨1635:PSCATT⟩2.0.CO;2.

Marchand, R., T. Ackerman, M. Smyth, and W. B. Rossow, 2010: A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS. J. Geophys. Res., 115, D16206, doi:10.1029/2009JD013422.

Masunaga, R., H. Nakamura, T. Miyasaka, K. Nishii, and Y. Tanimoto, 2015: Separation of climatological imprints of the Kuroshio Extension and Oyashio fronts on the wintertime atmospheric boundary layer: Their sensitivity to SST resolution prescribed for atmospheric reanalysis. J. Climate, 28, 1764–1787, doi:10.1175/JCLI-D-14-00314. 1.

Masunaga, R., H. Nakamura, B. Taguchi, and T. Miyasaka, 2020: Processes shaping the frontal-scale time-mean surface wind convergence patterns around the Kuroshio Extension in winter. J. Climate, 33, 3–25, doi:10.1175/JCLI-D-19-0097.1.

Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 25–43, doi:10.2151/jmsj1965.44.1 25.

Mauger, G. S., and J. R. Norris, 2010: Assessing the impact of meteorological history on subtropical cloud fraction. J. Climate, 23, 2926–2940, doi:10.1175/2010JCLI3272.1.

McCoy, D. T., S. M. Burrows, R. Wood, D. P. Grosvenor, S. M. Elliott, P.-L. Ma, P. J. Rasch, and D. L. Hartmann, 2015a: Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo. Sci. Adv., 1, e1500157, doi:10.1126/sciadv. 1500157.

McCoy, D. T., R. Eastman, D. L. Hartmann, and R. Wood, 2017: The change in low cloud cover in a warmed climate inferred from AIRS, MODIS, and ERA-Interim. J. Climate, 30, 3609–3620, doi:10.1175/JCLI-D-15-0734.1.

McCoy, D. T., D. L. Hartmann, and D. P. Grosvenor, 2014: Observed Southern Ocean cloud properties and shortwave reflection. Part I: Calculation of SW flux from observed cloud properties. J. Climate, 27, 8836–8857, doi:10.1175/JCLI-D-14-00287.1.

McCoy, D. T., D. L. Hartmann, M. D. Zelinka, P. Ceppi, and D. P. Grosvenor, 2015b: Mixed-phase cloud physics and Southern Ocean cloud feedback in climate models. J. Geophys. Res., 120, 9539–9554, doi:10.1002/2015JD023603.

McCoy, D. T., I. Tan, D. L. Hartmann, M. D. Zelinka, and T. Storelvmo, 2016: On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs. J. Adv. Model. Earth Syst., 8, 650–668, doi:10.1002/2015MS000589.

Merlis, T. M., 2015: Direct weakening of tropical circulations from masked CO2 radiative forcing. Proc. Natl. Acad. Sci. (USA), 112, 13 167–13 171, doi:10.1173/pnas. 1508268112.

Miyamoto, A., H. Nakamura, and T. Miyasaka, 2018: Influence of the subtropical high and storm track on low-cloud fraction and its seasonality over the south Indian Ocean. J. Climate, 31, 4017–4039, doi:10.1175/JCLI-D-17-0229.1.

Miyasaka, T., and H. Nakamura, 2005: Structure and formation mechanisms of the Northern Hemisphere summertime subtropical highs. J. Climate, 18, 5046–5065, doi:10.1175/JCLI3599.1.

Miyasaka, T., and H. Nakamura, 2010: Structure and mechanisms of the Southern Hemisphere summertime subtropical anticyclones. J. Climate, 23, 2115–2130, doi:10. 1175/2009JCLI3008.1.

Morioka, Y., J. V. Ratnam, W. Sasaki, and Y. Masumoto, 2013: Generation mechanism of the South Pacific subtropical dipole. J. Climate, 26, 6033–6045, doi:10.1175/ JCLI-D-12-00648.1.

Morioka, Y., T. Tozuka, and T. Yamagata, 2010: Climate variability in the southern Indian Ocean as revealed by self-organizing maps. Climate Dyn., 35, 1059–1072, doi:10.1007/ s00382-010-0843-x.

Morioka, Y., T. Tozuka, and T. Yamagata, 2011: On the growth and decay of the subtropical dipole mode in the South Atlantic. J. Climate, 24, 5538–5554, doi:10.1175/ 2011JCLI4010.1.

Myers, T. A., C. R. Mechoso, and M. J. DeFlorio, 2018: Coupling between marine boundary layer clouds and summer-to-summer sea surface temperature variability over the North Atlantic and Pacific. Climate Dyn., 50, 955–969, doi:10.1007/ s00382-017-3651-8.

Myers, T. A., and J. R. Norris, 2013: Observational evidence that enhanced subsidence reduces subtropical marine boundary layer cloudiness. J. Climate, 26, 7507–7524, doi:10.1175/JCLI-D-12-00736.1.

Myers, T. A., and J. R. Norris, 2015: On the relationships between subtropical clouds and meteorology in observations and CMIP3 and CMIP5 models. J. Climate, 28, 2945–2967, doi:10.1175/JCLI-D-14-00475.1.

Myers, T. A., and J. R. Norris, 2016: Reducing the uncertainty in subtropical cloud feedback. Geophys. Res. Lett., 43, 2144–2148, doi:10.1002/2015GL067416.

Nakamura, H., 1992: Midwinter suppression of baroclinic wave activity in the Pacific. J. Atmos. Sci., 49, 1629–1642, doi:10.1175/1520-0469(1992)049⟨1629:MSOBWA⟩2. 0.CO;2.

Nakamura, H., 2012: Atmospheric science: Future oceans under pressure. Nat. Geosci., 5, 768–769, doi:10.1038/ngeo1623.

Nakamura, H., T. Miyasaka, Y. Kosaka, and K. T. M. Honda, 2010: Northern Hemisphere extratropical tropospheric planetary waves and their low-frequency variability: Their vertical structure and interaction with transient eddies and surface thermal contrasts. Climate Dynamics: Why Does Climate Vary?, Geophys. Monogr., Vol. 189, Amer. Geophys.Union, 149–179, doi:10.1029/2008GM000789.

Nakamura, H., T. Sampe, A. Goto, W. Ohfuchi, and S.-P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35, L15709, doi:10. 1029/2008GL034010.

Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo, 2004: Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Earth’s Climate The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys.Union, 329–345.

Nakamura, H., and A. Shimpo, 2004: Seasonal variations in the Southern Hemisphere storm tracks and jet streams as revealed in a reanalysis dataset. J. Climate, 17, 1828–1844, doi:10.1175/1520-0442(2004)017⟨1828:SVITSH⟩2.0.CO;2.

Nam, C., S. Bony, J.-L and Dufresne, and H. Chepfer, 2012: The ’too few, too bright’ tropical low-cloud problem in CMIP5 models. Geophys. Res. Lett., 39, L21801, doi:10. 1029/2012GL053421.

Nigam, S., 1997: The annual warm to cold phase transition in the eastern equatorial Pacific: Diagnosis of the role of stratus cloud-top cooling. J. Climate, 10, 2447–2467, doi:10.1175/1520-0442(1997)010⟨2447:TAWTCP⟩2.0.CO;2.

Nonaka, M., H. Nakamura, B. Taguchi, N. Komori, A. Kuwano-Yoshida, and K. Takaya, 2009: Air-sea heat exchanges characteristic of a prominent midlatitude oceanic front in the South Indian Ocean as simulated in a high-resolution coupled GCM. J. Climate, 22, 6515–6535, doi:10.1175/2009JCLI2960.1.

Norris, J. R., 1998: Low cloud type over the ocean from surface observations. Part II: Geographical and seasonal variations. J. Climate, 11, 383–403, doi:10.1175/ 1520-0442(1998)011⟨0383:LCTOTO⟩2.0.CO;2.

Norris, J. R., and S. F. Iacobellis, 2005: North Pacific cloud feedbacks inferred from synoptic-scale dynamic and thermodynamic relationships. J. Climate, 18, 4862–4878, doi:10.1175/JCLI3558.1.

Norris, J. R., and S. A. Klein, 2000: Low cloud type over the ocean from surface observations. Part III: Relationship to vertical motion and the regional surface synoptic environment. J. Climate, 13, 245–256, doi:10.1175/1520-0442(2000) 013⟨0245:LCTOTO⟩2.0.CO;2.

Norris, J. R., and C. B. Leovy, 1994: Interannual variability in stratiform cloudiness and sea surface temperature. J. Climate, 7, 1915–1925, doi:10.1175/1520-0442(1994) 007⟨1915:IVISCA⟩2.0.CO;2.

Oettli, P., Y. Morioka, and T. Yamagata, 2016: A regional climate mode discovered in the North Atlantic: Dakar Nin˜o/Nin˜a. Sci. Rep., 6, doi:10.1038/srep18782.

Ogawa, F., H. Nakamura, K. Nishii, and T. M. A. Kuwano-Yoshida, 2012: Dependence of the climatological axial latitudes of the tropospheric westerlies and storm tracks on the latitude of an extratropical oceanic front. Geophys. Res. Lett., 39, L05804, doi:10. 1029/2011GL049922.

Ogawa, F., and T. Spengler, 2019: Prevailing surface wind direction during air-sea heat exchange. J. Climate, 32, 5601–5617, doi:10.1175/JCLI-D-18-0752.1.

Ohfuchi, W., and Coauthors, 2004: 10-km mesh meso-scale resolving simulations of the global atmosphere on the Earth Simulator - preliminary outcomes of AFES (AGCM for the Earth Simulator). J. Earth SImul., 1, 8–34.

Ohfuchi, W., H. Sasaki, Y. Masumoto, and H. Nakamura, 2007: ”virtual” atmospheric and oceanic circulations in the Earth Simulator. Bull. Amer. Meteor. Soc., 88, 861–866, doi:10.1175/BAMS-88-6-861.

Ohishi, S., T. Tozuka, and N. Komori, 2016: Frontolysis by surface heat flux in the Agulhas Return Current region with a focus on mixed layer processes: Observation and a high-resolution CGCM. Climate Dyn., 47, 3993–4007, doi:10.1007/ s00382-016-3056-0.

O’Neill, L. W., S. K. Esbensen, N. Thum, R. M. Samelson, and D. B. Chelton, 2010: Dynamical analysis of the boundary layer and surface wind responses to mesoscale SST perturbations. J. Climate, 23, 559–581, doi:10.1175/2009JCLI2662.1.

Onogi, K., and Coauthors, 2007: The JRA-25 reanalysis. J. Meteor. Soc. Japan, 85, 369–432, doi:10.2151/jmsj.85.369.

O’Reilly, C. H., S. Minobe, A. Kuwano-Yoshida, and T. Woollings, 2017: The Gulf Stream influence on wintertime North Atlantic jet variability. Quart. J. Roy. Meteor. Soc., 143, 173–183, doi:10.1002/qj.2907.

Paulson, C. A., and J. J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7, 952–956, doi:10.1175/1520-0485(1977)007⟨0952:IMITUO⟩2. 0.CO;2.

Philander, S. C., H. D. Gu, D. Halpern, G. Lambert, N.-C. Lau, T. Li, and R. C. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9, 2958–2972, doi:10.1175/1520-0442(1996)009⟨2958:WTIIMN⟩2.0.CO;2.

Pincus, R., S. Platnick, S. A. Ackerman, R. S. Hemler, and R. J. P. Hofmann, 2012: Reconciling simulated and observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators. J. Climate, 25, 4699–4720, doi:10.1175/JCLI-D-11-00267.1.

Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217–229, doi:10.1175/1520-0469(1985)042⟨0217:OTTDPO⟩2.0.CO;2.

Qiu, B., and K. A. Kelly, 1993: Upper-ocean heat balance in the Kuroshio Extension region. J. Phys. Oceanogr., 23, 2027–2041, doi:10.1175/1520-0485(1993)023⟨2027: UOHBIT⟩2.0.CO;2.

Qu, X., A. Hall, S. A. Klein, and P. M. Caldwell, 2014: On the spread of changes in marine low cloud cover in climate model simulations of the 21st century. Climate Dyn., 42, 2603–2626, doi:10.1007/s00382-013-1945-z.

Qu, X., A. Hall, S. A. Klein, and A. M. DeAngelis, 2015: Positive tropical marine low-cloud cover feedback inferred from cloud-controlling factors. Geophys. Res. Lett., 42, 7767–7775, doi:10.1002/2015GL065627.

Ra¨del, G., T. Mauritsen, B. Stevens, D. Dommenget, D. Matei, K. Bellomo, and A. Clement, 2016: Amplification of El Nin˜o by cloud longwave coupling to atmospheric circulation. Nat. Geosci., 9, 106–111, doi:10.1038/NGEO2630.

Randall, D. A., J. A. Coakley Jr., C. W. Fairall, R. A. Kropfli, and D. H. Lenschow, 1984: Outlook for research on subtropical marine stratification clouds. Bull. Amer. Meteor. Soc., 65, 1290–1301, doi:10.1175/1520-0477(1984)065⟨1290:OFROSM⟩2.0.CO;2.

Randall, D. A., Harshvardhan, D. A. Dazlich, and T. G. Corsett, 1989: Interactions among radiation, convection, and large-scale dynamics in a general circulation model. J. Atmos. Sci., 46, 1943–1970, doi:10.1175/1520-0469(1989)046⟨1943:IARCAL⟩2.0. CO;2.

Reynolds, R. W., C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473–5496, doi:10.1175/2007JCLI1824.1.

Richter, I., and C. R. Mechoso, 2004: Orographic influences on the annual cycle of Namibian stratocumulus clouds. Geophys. Res. Lett., 31, L24108, doi:10.1029/ 2004GL020814.

Richter, I., and C. R. Mechoso, 2006: Orographic influences on subtropical stratocumulus. J. Atmos. Sci., 63, 2585–2601, doi:10.1175/JAS3756.1.

Richter, I., and C. R. Mechoso, 2008: What determines the position and intensity of the South Atlantic anticyclone in austral winter?—An AGCM study. J. Climate, 21, 214–229, doi:10.1175/2007JCLI1802.1.

Rieck, M., L. Nuijens, and B. Stevens, 2012: Marine boundary layer cloud feedbacks in a constant relative humidity atmosphere. J. Atmos. Sci., 69, 2538–2550, doi:10.1175/ JAS-D-11-0203.1.

Rodwell, M. J., and B. J. Hoskins, 1995: A model of the Asian summer monsoon. Part II: Cross-equatorial flow and PV behavior. J. Atmos. Sci., 52, 1341–1356, doi:10.1175/ 1520-0469(1995)052⟨1341:AMOTAS⟩2.0.CO;2.

Rodwell, M. J., and B. J. Hoskins, 1996: Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc., 122, 1385–1404, doi:10.1002/qj.49712253408.

Rodwell, M. J., and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 3192–3211, doi:10.1175/1520-0442(2001)014⟨3192:SAASM⟩2.0.CO; 2.

Schott, F. A., and J. P. McCreary Jr., 2001: The monsoon circulation of the Indian Ocean. Prog. Oceanogr., 51, 1–123.

Schott, F. A., S.-P. Xie, and J. P. McCreary Jr., 2009: Indian ocean circulation and climate variablity. Rev. Geophys., 47, RG1002, doi:10.1029/2007RG000245.

Seager, R., R. Murtugudde, N. Naik, A. Clement, N. Gordon, and J. Miller, 2003: Air-sea interaction and the seasonal cycle of the subtropical anticyclones. J. Climate, 16, 1948–1966, doi:10.1175/1520-0442(2003)016⟨1948:AIATSC⟩2.0.CO;2.

Seethala, C., J. R. Norris, and T. A. Myers, 2015: How has subtropical stratocumulus and associated meteorology changed since the 1980s? J. Climate, 28, 8396–8410, doi:10. 1175/JCLI-D-15-0120.1.

Senior, C. A., and J. F. B. Mitchell, 1993: Carbon dioxide and climate: The impact of cloud parameterization. J. Climate, 6, 393–418, doi:10.1175/1520-0442(1993) 006⟨0393:cdacti⟩2.0.co;2.

Shannon, L. V., A. J. Boyd, G. B. Bundrit, and J. Taunton-Clark, 1986: On the existence of an El nin˜o type phenomenon in the Benguela system. J. Mar. Sci., 44, 495–520, doi:10.1357/002224086788403105.

Shimada, T., and S. Minobe, 2011: Global analysis of the pressure adjustment mechanism over sea surface temperature fronts using AIRS/Aqua data. Geophys. Res. Lett., 38, L06704, doi:10.1029/2010GL046625.

Slingo, A., and J. M. Slingo, 1988: The response of a general circulation model to cloud longwave radiative forcing. I:Introduction and initial experiments. Quart. J. Roy. Meteor. Soc., 114, 1027–1062, doi:10.1002/qj.49711448209.

Slingo, A., and J. M. Slingo, 1991: The response of a general circulation model to cloud longwave radiative forcing. II:Further studies. Quart. J. Roy. Meteor. Soc., 117, 333–364, doi:10.1002/qj.49711749805.

Smith, R. L., A. Huyer, J. S. Godfrey, and J. A. Church, 1991: The Leeuwin Current off Western Australia, 1986-1987. J. Phys. Oceanogr., 21, 323–345, doi:10.1175/ 1520-0485(1991)021⟨0323:TLCOWA⟩2.0.CO;2.

Smith, S. R., P. J. Hughes, and M. A. Bourassa, 2011: A comparison of nine monthly air-sea flux products. Int. J. Climatol., 31, 1002–1027, doi:10.1002/joc.2225.

Stevens, B., S. Bony, and M. J. Webb, 2012: Clouds On-Off Klimate Intercomparison Experiment (COOKIE). [Available online at http://www.euclipse.eu/downloads/ Cookie.pdf.], 12 pp.

Szczodrak, M., P. H. Austin, , and P. B. Krummel, 2001: Variability of optical depth and effective radius in marine stratocumulus clouds. J. Atmos. Sci., 58, 2912–2926, doi:10.1175/1520-0469(2001)058⟨2912:VOODAE⟩2.0.CO;2.

Taguchi, B., H. Nakamura, M. Nonaka, and S.-P. Xie, 2009: Influences of the Kuroshio/Oyashio Extensions on air–sea heat exchanges and storm-track activity as revealed in regional atmospheric model simulations for the 2003/4 cold season. J. Climate, 22, 6536–6560, doi:10.1175/2009JCLI2910.1.

Takayabu, Y. N., S. Shige, W. Tao, and N. Hirota, 2010: Shallow and deep latent heating modes over tropical oceans observed with TRMM PR spectral latent heating data. J. Climate, 23, 2030–2046, doi:10.1175/2009JCLI3110.1.

Tan, I., T. Storelvmo, and M. D. Zelinka, 2016: Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science, 352, 224–227, doi:10.1126/science. aad5300.

Tanimoto, Y., and S.-P. Xie, 2002: Inter-hemispheric decadal variations in SST, surface wind, heat flux and cloud cover over the Atlantic Ocean. J. Meteor. Soc. Japan, 80, 1199–1219, doi:10.2151/jmsj.80.1199.

Tanimoto, Y., S.-P. Xie, K. Kai, H. Okajima, H. Tokinaga, T. Murayama, M. Nonaka, and H. Nakamura, 2009: Observations of marine atmospheric boundary layer transitions across the summer Kuroshio Extension. J. Climate, 22, 1360–1374, doi:10.1175/ 2008JCLI2420.1.

Terai, C. R., S. A. Klein, and M. D. Zelinka, 2016: Constraining the low-cloud optical depth feedback at middle and high latitudes using satellite observations. J. Geophys. Res., 121, 9696–9716, doi:10.1002/2016JD025233.

Tokinaga, H., Y. Tanimoto, and S.-P. Xie, 2005: SST-induced surface wind variations over the Brazil-Malvinas confluence: Satellite and in situ observations. J. Climate, 18, 3470–3482, doi:10.1175/JCLI3485.1.

Tokinaga, H., Y. Tanimoto, S.-P. Xie, T. Sampe, H. Tomita, and H. Ichikawa, 2009: Ocean frontal effects on the vertical development of clouds over the western North Pacific: In situ and satellite observations. J. Climate, 22, 4241–4260, doi:10.1175/2009JCLI2763. 1.

Tomita, H., T. Hihara, S. Kako, M. Kubota, and K. Kutsuwada, 2019: An introduction to J-OFURO3, a third-generation Japanese ocean flux data set using remote-sensing observations. J. Oceanogr., 75, 171–194, doi:10.1007/s10872-018-0493-x.

Tozuka, T., and M. F. Cronin, 2014: Role of mixed layer depth in surface frontogenesis: The Agulhas Return Current front. Geophys. Res. Lett., 41, 2447–2453, doi:10.1002/ 2014GL059624.

Trenberth, K. E., 1986: An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen-Palm flux diagnosis. J. Atmos. Sci., 43, 2070–2087, doi:10.1175/1520-0469(1986)043⟨2070:AAOTIO⟩2.0.CO;2.

Tsushima, Y., and Coauthors, 2006: Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: A multi-model study. Climate Dyn., 27, 113–126, doi:10.1007/s00382-006-0127-7.

van der Dussen, J. J., S. R. de Roode, S. D. Gesso, and A. P. Siebesma, 2015: An LES model study of the influence of the free tropospheric thermodynamic conditions on the stratocumulus response to a climate perturbation. J. Adv. Model. Earth Syst., 7, 670–691, doi:10.1002/2014MS000380.

Wallace, J. M., T. P. Mitchell, and C. Deser, 1989: The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Climate, 2, 1492–1499, doi:10.1175/1520-0442(1989) 002⟨1492:TIOSST⟩2.0.CO;2.

Wang, B., and Z. Fan, 1999: Choice of south Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629–638, doi:10.1175/1520-0477(1999)080⟨0629:COSASM⟩ 2.0.CO;2.

Wang, B., R. Wu, and K.-M. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the Western North Pacific-East Asian monsoons. J. Climate, 14, 4073–4090, doi:10.1175/1520-0442(2001)014⟨4073: IVOTAS⟩2.0.CO;2.

Wang, L., Y. Wang, A. Lauer, and S.-P. Xie, 2011: Simulation of seasonal variation of marine boundary layer clouds over the eastern Pacific with a regional climate model. J. Climate, 24, 3190–3210, doi:10.1175/2010JCLI3935.1.

Wang, Y., S.-P. Xie, B. Wang, and H. Xu, 2005: Large-scale atmospheric forcing by southeast Pacific boundary layer clouds: A regional model study. J. Climate, 18, 934–951, doi:10.1175/JCLI3302.1.

Watanabe, M., and M. Kimoto, 2000: Atmosphere‐ ocean thermal coupling in the North Atlantic: A positive feedback. Quart. J. Roy. Meteor. Soc., 126, 3343–3369, doi:10. 1002/qj.49712657017.

Watanabe, M., and M. Kimoto, 2001: Corrigendum. Quart. J. Roy. Meteor. Soc., 127, 733–734, doi:10.1002/qj.49712757223.

Watt-Meyer, O., and D. M. W. Frierson, 2017: Local and remote impacts of atmospheric cloud radiative effects onto the eddy‐ driven jet. Geophys. Res. Lett., 44, 10 036–10 044, doi:10.1002/2017GL074901.

Weare, B. C., 2000: Near-global observations of low clouds. J. Climate, 13, 1255–1268, doi:10.1175/1520-0442(2000)013⟨1255:NGOOLC⟩2.0.CO;2.

Webb, M., C. Senior, S. bony, and J. J. Morcrette, 2001: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Climate Dyn., 17, 905–922, doi:10.1007/s003820100.

Webster, P. J., 2006: The coupled monsoon system. The Asian Monsoon, B. Wang, Eds., Springer, 3–66, doi:10.1007/3-540-37722-0.

Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996a: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853–868, doi:10.1175/ 1520-0477(1996)077⟨0853:CATERE⟩2.0.CO;2.

Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996b: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853–868, doi:10.1175/ 1520-0477(1996)077⟨0853:CATERE⟩2.0.CO;2.

Williams, E., and N. Renno, 1993: An analysis of the conditional instability of the tropical atmosphere. Mon. Wea. Rev., 121, 21–36, doi:10.1175/1520-0493(1993)121⟨0021: AAOTCI⟩2.0.CO;2.

Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 2373–2423, doi:10.1175/ MWR-D-11-00121.1.

Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 6425–6432, doi:10.1175/ JCLI3988.1.

Wu, G., and Y. Liu, 2003: Summertime quadruplet heating pattern in the subtropics and the associated atmospheric circulation. Geophys. Res. Lett., 30, 1201, doi:10.1029/ 2002GL016209.

Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary Jr., 2002: Structure and mechanisms of South Indian Ocean climate variability. J. Climate, 15, 864–878, doi:10.1175/1520-0442(2002)015⟨0864:SAMOSI⟩2.0.CO;2.

Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern pacific. Tellus, 46A, 340–350, doi:10.3402/tellusa.v46i4. 15484.

Xu, H., S.-P. Xie, and Y. Wang, 2005: Subseasonal variability of the southeast Pacific stratus cloud deck. J. Climate, 18, 131–142, doi:10.1175/JCLI3250.1.

Xu, H., Y. Wang, and S. Xie, 2004: Effects of the Andes on eastern Pacific climate: A regional atmospheric model study. J. Climate, 17, 589–602, doi:10.1175/ 1520-0442(2004)017⟨0589:EOTAOE⟩2.0.CO;2.

Yokoi, T., T. Tozuka, and T. Yamagata, 2008: Seasonal variation of the Seychelles Dome. J. Climate, 21, 3740–3754, doi:10.1175/2008JCLI1957.1.

Yokoi, T., T. Tozuka, and T. Yamagata, 2009: Seasonal variations of the Seychelles Dome simulated in the CMIP3 models. J. Phys. Oceanogr., 39, 449–457, doi:10.1175/ 2008JPO3914.1.

Yu, L., Z. Zhang, S. Zhong, M. Zhou, Z. Gao, H. Wu, and B. Sun, 2011: An inter-comparison of six latent and sensible heat flux products over the Southern Ocean. Polar Research, 30, 10 167, doi:10.3402/polar.v30i0.10167.

Yu, J.-Y., and C. R. Mechoso, 1999: Links between annual variations of Peruvian stratocumulus clouds and of SST in the eastern equatorial Pacific. J. Climate, 12, 3305–3318, doi:10.1175/1520-0442(1999)012⟨3305:LBAVOP⟩2.0.CO;2.

Yuan, C., and T. Yamagata, 2014: California Nin˜o/Nin˜a. Sci. Rep., 4, doi:10.1038/ srep04801.

Yuan, T. L., L. Oreopoulos, M. Zelinka, H. Yu, J. R. Norris, M. Chin, S. Platnick, and K. Meyer, 2016: Positive low cloud and dust feedbacks amplify tropical North Atlantic Mutidecadal Oscillation. Geophys. Res. Lett., 43, 1349–1356, doi:10.1002/ 2016GL067679.

Zuidema, P., and Coauthors, 2016: Challenges and prospects for reducing coupled climate model SST biases in the eastern tropical Atlantic and Pacific Oceans: The U.S. CLIVAR Eastern Tropical Oceans Synthesis Working Group. Bull. Amer. Meteor. Soc., 97, 2305–2327, doi:10.1175/BAMS-D-15-00274.1.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る