リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Estimating the seepage effect of SC-CO2 and water fracturing with a steady-state flow model considering capillary and viscous forces at the pore scale」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Estimating the seepage effect of SC-CO2 and water fracturing with a steady-state flow model considering capillary and viscous forces at the pore scale

Bailong Liu Anna Suzuki Takatoshi Ito 東北大学 DOI:10.1016/j.petrol.2019.106483

2020.01

概要

Supercritical carbon dioxide (SC-CO2) fracturing is a promising technology for unconventional energy development and carbon capture and storage. Experimental studies have shown that SC-CO2 fracturing can form complex fracture networks and reduce crack initiation pressure, which are different results from those when fracturing with aqueous fluids. The complex fracture networks that form from SC-CO2 fracturing may be the result of the strong seepage effect (i.e., low capillary and viscous forces). To understand the different injection behaviors induced by SC- CO2 and aqueous fluids in low-permeability rocks, this study develops a new two-phase steady-state model based on the pore-scale network method. Although other models consider the viscous force, our model implements the capillary and viscous forces to reproduce the seepage effect. Because of the capillary force, the flow model is nonlinear and solved by iteratively solving matrix equations until a conservation of volumetric flux is satisfied. Simulation results show that the capillary force in a two-phase flow is not negligible on pressure distribution in small pore spaces. This leads to discontinuous pressure drops. This study shows that the seepage effect of SC-CO2 is stronger than that of aqueous fluids.

この論文で使われている画像

参考文献

Aker, E., JØrgen MÅlØy, K., Hansen, A., Batrouni, G.G., 1998. A two-dimensional network simulator for two-phase flow in porous media. Transp. Porous Media 32, 163–186. https://doi.org/10.1023/A:1006510106194

Al-Gharbi, M.S., 2004. Dynamic pore-scale modelling of two-phase flow. Imperial College London.

Al-Gharbi, M.S., Blunt, M.J., 2005. Dynamic network modeling of two-phase drainage in porous media. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 71, 1–16. https://doi.org/10.1103/PhysRevE.71.016308

Bakke, S., Øren, P.-E., 1997. 3-D Pore-scale modelling of sandstones and flow simulations in the pore networks. SPE J. https://doi.org/10.2118/35479-PA

Belytschko, T., Organ, D., Gerlach, C., 2000. Element-free galerkin methods for dynamic fracture in concrete. Comput. Methods Appl. Mech. Eng. 187, 385–399. https://doi.org/10.1016/S0045-7825(00)80002-X

Bennour, Z., Ishida, T., Nagaya, Y., Chen, Y., Nara, Y., Chen, Q., Sekine, K., Nagano, Y., 2015. Crack extension in hydraulic fracturing of shale cores using viscous oil, water, and liquid carbon dioxide. Rock Mech. Rock Eng. 48, 1463–1473. https://doi.org/10.1007/s00603-015-0774-2

Blunt, M.J., 2001. Flow in porous media - pore-network models and multiphase flow. Curr. Opin. Colloid Interface Sci. https://doi.org/10.1016/S1359-0294(01)00084-X

Buckley, S.E., Leverett, M.C., 1942. Mechanism of fluid displacement in sands. Trans. AIME. https://doi.org/10.2118/942107-G

Choo, L.Q., Zhao, Z., Chen, H., Tian, Q., 2016. Hydraulic fracturing modeling using the discontinuous deformation analysis (DDA) method. Comput. Geotech. 76, 12–22. https://doi.org/10.1016/j.compgeo.2016.02.011

Economides, M.J., Boney, C., 2000. Reservoir stimulation. Reserv. Stimul. https://doi.org/10.1017/CBO9781107415324.004

Higdon, J.J.L., 2013. Multiphase flow in porous media. J. Fluid Mech. https://doi.org/10.1017/jfm.2013.296

Hughes, R.G., Blunt, M.J., 2000. Pore scale modeling of rate effects in imbibition. Transp. Porous Media 40, 295–322. https://doi.org/10.1023/A:1006629019153

Idowu, N.A., Blunt, M.J., 2010. Pore-scale modelling of rate effects in waterflooding. Transp. Porous Media 83, 151–169. https://doi.org/10.1007/s11242-009-9468-0

Ishida, T., Chen, Y., Bennour, Z., Yamashita, H., Inui, S., Nagaya, Y., Naoi, M., Chen, Q., Nakayama, Y., Nagano, Y., 2016a. Features of CO2 fracturing deduced from acoustic emission and microscopy in laboratory experiments. J. Geophys. Res. Solid Earth 121, 8080–8098. https://doi.org/10.1002/2016JB013365

Ishida, T., Chen, Y., Bennour, Z., Yamashita, H., Inui, S., Nagaya, Y., Naoi, M., Chen, Q., Nakayama, Y., Nagano, Y., 2016b. Features of CO2 fracturing deduced from acoustic emission and microscopy in laboratory experiments. J. Geophys. Res. Solid Earth. https://doi.org/10.1002/2016JB013365

Joekar-Niasar, V., Hassanizadeh, S.M., 2012. Analysis of fundamentals of two-phase flow in porous media using dynamic pore-network models: A review. Crit. Rev. Environ. Sci. Technol. 42, 1895–1976. https://doi.org/10.1080/10643389.2011.574101

Kantzas, Apostolos; Bryan Jonathan; Taheri, S., 2015. Fundamentals of fluid flow in porous media 336.

Labuz, J.F., Zang, A., 2012. Mohr-Coulomb failure criterion. Rock Mech. Rock Eng. https://doi.org/10.1007/s00603-012-0281-7

Latham, J., Guo, L., Wang, X., Xiang, J., 2011. Modelling the evolution of fractures using a combined FEM-DEM numerical method. Harmon. Rock Eng. Environ. 449–454. https://doi.org/10.1201/b11646-77

Lecampion, B., Bunger, A., Zhang, X., 2017. Numerical methods for hydraulic fracture propagation: A review of recent trends. J. Nat. Gas Sci. Eng. https://doi.org/10.1016/j.jngse.2017.10.012

Liu, Q., Sun, L., Liu, P., Chen, L., 2018. Modeling simultaneous multiple fracturing using the combined finite-discrete element method. Geofluids 2018. https://doi.org/10.1155/2018/4252904

Lu, S., Li, J., Zhang, P., Xue, H., Wang, G., Zhang, J., Liu, H., Li, Z., 2018. Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs. Pet. Explor. Dev. 45, 452–460. https://doi.org/10.1016/S1876-3804(18)30050-8

Middleton, R., Viswanathan, H., Currier, R., Gupta, R., 2014. CO2as a fracturing fluid: Potential for commercial-scale shale gas production and CO2sequestration. Energy Procedia 63, 7780–7784. https://doi.org/10.1016/j.egypro.2014.11.812

Mogensen, K., Stenby, E.H., 1998. A dynamic two-phase pore-scale model of imbibition. Transp. Porous Media 32, 299–327. https://doi.org/10.1023/a:1006578721129

Nguyen, V.H., Sheppard, A.P., Knackstedt, M.A., Val Pinczewski, W., 2006. The effect of displacement rate on imbibition relative permeability and residual saturation. J. Pet. Sci. Eng. 52, 54–70. https://doi.org/10.1016/j.petrol.2006.03.020

Øren, P.E., Bakke, S., 2003. Reconstruction of Berea sandstone and pore-scale modelling of wettability effects. J. Pet. Sci. Eng. https://doi.org/10.1016/S0920-4105(03)00062-7

Øren, P.E., Bakke, S., 2002. Process based reconstruction of sandstones and prediction of transport properties. Transp. Porous Media. https://doi.org/10.1023/A:1015031122338

Patton, F.D., 1966. Multiple modes of shear failure in rock. 1st Int. Congr. Rock Mech.

Peng, P., Ju, Y., Wang, Y., Wang, S., Gao, F., 2017. Numerical analysis of the effect of natural microcracks on the supercritical CO2 fracturing crack network of shale rock based on bonded particle models. Int. J. Numer. Anal. Methods Geomech. https://doi.org/10.1002/nag.2712

Piri, M., Blunt, M.J., 2005. Three-dimensional mixed-wet random pore-scale network modeling of two- And three-phase flow in porous media. I. Model description.

Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 71, 1–30. https://doi.org/10.1103/PhysRevE.71.026301

Reynolds, C.A., Blunt, M.J., Krevor, S., 2018. Multiphase Flow Characteristics of Heterogeneous Rocks From CO 2 Storage Reservoirs in the United Kingdom. Water Resour. Res. https://doi.org/10.1002/2017WR021651

Shi, F., Wang, X.L., Liu, C., Liu, H., Wu, H.A., 2017. An XFEM-based method with reduction technique for modeling hydraulic fracture propagation in formations containing frictional natural fractures. Eng. Fract. Mech. 173, 64–90.

Shimizu, H., Murata, S., Ishida, T., 2011. The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution. Int. J. Rock Mech. Min. Sci. 48, 712–727. https://doi.org/10.1016/j.ijrmms.2011.04.013

Valvatne, H., 2004. Predictive pore-scale modelling of multiphase flow 146.

Vilarrasa, V., Bolster, D., Dentz, M., Olivella, S., Carrera, J., 2010. Effects of CO2 compressibility on CO2 storage in deep saline aquifers. Transp. Porous Media. https://doi.org/10.1007/s11242-010-9582-z

Wang, S., Feng, Q., Dong, Y., Han, X., Wang, S., 2015. A dynamic pore-scale network model for two-phase imbibition. J. Nat. Gas Sci. Eng. 26, 118–129. https://doi.org/10.1016/j.jngse.2015.06.005

Watanabe, N., Egawa, M., Sakaguchi, K., Ishibashi, T., Tsuchiya, N., 2017. Hydraulic fracturing and permeability enhancement in granite from subcritical/brittle to supercritical/ductile conditions. Geophys. Res. Lett. 44, 5468–5475. https://doi.org/10.1002/2017GL073898

Yan, C., Zheng, H., Sun, G., Ge, X., 2016. Combined finite-discrete element method for simulation of hydraulic fracturing. Rock Mech. Rock Eng. 49, 1389–1410. https://doi.org/10.1007/s00603-015-0816-9

Zhang, X., Lu, Y., Tang, J., Zhou, Z., Liao, Y., 2017. Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing. Fuel 190, 370–378. https://doi.org/10.1016/j.fuel.2016.10.120

Zhao, Q., Lisjak, A., Mahabadi, O., Liu, Q., Grasselli, G., 2014. Numerical simulation of hydraulic fracturing and associated microseismicity using finite-discrete element method. J. Rock Mech. Geotech. Eng. 6, 574–581. https://doi.org/10.1016/j.jrmge.2014.10.003

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る