リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development and Application of a Numerical Method for Two-Way Fluid-Structure Interactions of Flow-Induced Deformable Fibrous Porous Media」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development and Application of a Numerical Method for Two-Way Fluid-Structure Interactions of Flow-Induced Deformable Fibrous Porous Media

安藤 駿 大阪府立大学 DOI:info:doi/10.24729/00017754

2022.07.21

概要

This thesis presents a numerical method for the simulation of two-way fluid-structure interaction (twFSI) problems on high-performance computing. The proposed method specifically focuses on interactions between Newtonian fluids and a large number of slender flexible structures. Such twFSI problems play important roles in various industrial applications and one of the related essential research topics in the textile engineering is seen in the filtration process of nonwoven fabrics. Since interactions between fluids and fibers during the filtration process are extremely complicated due to their non-linear nature and mesoscopic geometry, it is difficult to conduct accurate and reproducible experiments of flow-induced deformation behaviors of each fiber. Thus, numerical methods are preferable alternatives to experimental methods to overcome the above limitations.

From a numerical point of view, the fluids and the fibers are strongly coupled to each other due to large deformations of flexible fibers under the influence of fluid forces. Generally, special techniques are required to handle such a strong coupling stably and efficiently. In this study, the lattice Boltzmann method (LBM) as a fluid solver and the Cosserat rod model (CRM) as a structure solver are coupled via a partitioned approach. The fluid-structure interactions are calculated by the simple explicit coupling scheme combined with the collision detection algorithm and the fluid-structure boundary reconstruction (fsBR) scheme. In addition, the collision/contact models for the fluid and structure solvers are implemented to capture multiple simultaneous fiber-fiber interactions. The thesis presents the underlying methodology and its algorithms, including evaluation of accuracy and convergence by various verification and validation.

First, individual solvers utilized in the twFSI scheme are validated. For the fluid solver, the LBM with the fsBR scheme is applied to calculate the permeability of two well-known geometries of circular cylinder arrays and six types of nonwoven fabric produced by the industrial hydroentanglement process. The prediction results are compared with the analytical/empirical models in the literature and the experimental data. It is confirmed that the present method is accurate enough to calculate fluid flows through fibrous porous media with relatively coarse lattice resolution. The applicability of the present method to calculate hydrodynamic forces acting on fibers is also evaluated by computing flows around a circular cylinder. The drag and lift coefficients are compared between the prediction and literature values to confirm that the present method accurately calculates the hydrodynamic forces acting on the cylindrical structure. For the structure solver, the CRM is applied to calculate a cantilever beam with circular cross sections horizontally clamped at one end and subjected to the downward uniform force. The predicted deformation of the beam is compared with the analytical solution of the Timoshenko cantilever beam theory. The results show good agreement and that the CRM well represents the cylindrical structure deformation.

Then, the proposed twFSI scheme coupling the LBM and the CRM (LBM-CRM-twFSI scheme) is successfully validated in three wind tunnel experimental benchmarks. Flow- induced deformations of a single flexible fiber and collision/contact behaviors of multiple filaments in a wind tunnel are experimentally measured to evaluate the numerical results by the LBM-CRM-twFSI scheme. The results confirm that the proposed scheme is capable of accurately calculating the equilibrium and dynamic motions, including simultaneous collision/contact behaviors, of flexible fibers in fluid flows.

Finally, the LBM-CRM-twFSI scheme is employed to simulate the fluid flows through deformable nonwoven fabric geometry. In nonwoven fabric filtration processes such as face mask applications, the fluid flows through layers of fibrous materials are characterized by flow-induced deformations and collision/contact behaviors of individual fibers. The effect of such flow-induced deformations and collision/contact behaviors on the filtration performance in the actual filtration environment of coughing is investigated. The surrogate nonwoven fabric model is employed to obtain fiber structures of spunbonded lay-down nonwoven fabrics often utilized for face masks. The simulation data of the porosity-permeability relationship are analyzed to obtain a deep understanding of the physics of the filtration performance in deformable nonwoven fabrics. The analysis indicates that to accurately predict the filtration performance and design efficient fiber structures, it is necessary to take into account the dynamic flow-induced deformations and collision/contact behaviors of the fiber structures. Thus, the LBM-CRM-twFSI scheme is practically useful for evaluating and designing nonwoven fabric filtration products.

この論文で使われている画像

参考文献

Abdi, R., Rezazadeh, N., Abdi, M., 2019. Investigation of passive oscillations of flexible splitter plates attached to a circular cylinder. J. Fluids Struct. 84, 302–317. https://doi.org/10.1016/j.jfluidstructs.2018.11.001

Agarwal, A., Gupta, S., Prakash, A., 2020. A comparative study of bounce-back and immersed boundary method in LBM for turbulent flow simulation. Mater. Today Proc. 28, 2387–2392. https://doi.org/10.1016/j.matpr.2020.04.713

Aidun, C.K., Clausen, J.R., 2010. Lattice-Boltzmann Method for Complex Flows. Annu. Rev. Fluid Mech. 42, 439–472. https://doi.org/10.1146/annurev-fluid- 121108-145519

Akaydin, H.D., Pierides, A., Weinbaum, S., Andreopoulos, Y., 2011. Permeability of soft porous media under one-dimensional compaction. Chem. Eng. Sci. 66, 1–14. https://doi.org/10.1016/j.ces.2010.09.017

Alenezi, H., Cam, M.E., Edirisinghe, M., 2021. A novel reusable anti-COVID-19 transparent face respirator with optimized airflow. Bio-Design Manuf. 4, 1–9. https://doi.org/10.1007/s42242-020-00097-1

Ando, S., Kaneda, M., Suga, K., 2020. Permeability prediction of fibrous porous media by the lattice Boltzmann method with a fluid-structure boundary reconstruction scheme. J. Ind. Text. 1–22. https://doi.org/10.1177/1528083720978913

Bavo, A.M., Rocatello, G., Iannaccone, F., Degroote, J., Vierendeels, J., Segers, P., 2016. Fluid-Structure Interaction Simulation of Prosthetic Aortic Valves: Comparison between Immersed Boundary and Arbitrary Lagrangian-Eulerian Techniques for the Mesh Representation. PLoS One 11, 1–17. https://doi.org/10.1371/journal.pone.0154517

Beavers, G.S., Hajji, A., Sparrow, E.M., 1981. Fluid Flow Through a Class of Highly- Deformable Porous Media. Part I: Experiments With Air. J. Fluids Eng. Trans. ASME 103, 438–439. https://doi.org/10.1115/1.3240808

Benzi, R., Succi, S., Vergassola, M., 1992. The lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 145–197. https://doi.org/10.1016/0370- 1573(92)90090-M

Boiger, G., Mataln, M., Brandstätter, W., 2009a. Simulation of filtration processes in deformable media Part 3.1: Basic concepts and particle-fluid force implementation of a non-spherical dirt particle solver. Int. J. Multiphys. 3, 407–432. https://doi.org/10.1260/1750-9548.3.4.407

Boiger, G., Mataln, M., Brandstätter, W., 2009b. Simulation of filtration processes in deformable media: Part 3.2: Interaction modelling and verification of a non- spherical dirt particle solver. Int. J. Multiphys. 3, 433–454. https://doi.org/10.1260/1750-9548.3.4.433

Boiger, G., Mataln, M., Gschaider, B., Brandstätter, W., 2008. Part 2: Large Particle Modelling Simulation of particle filtration processes in deformable media. Int. J. Multiphys. 2, 191–206. https://doi.org/10.1260/175095408785416938

Bourguet, R., Triantafyllou, M.S., 2016. The onset of vortex-induced vibrations of a flexible cylinder at large inclination angle. J. Fluid Mech. 809, 111–134. https://doi.org/10.1017/jfm.2016.657

Bouzidi, M., Firdaouss, M., Lallemand, P., 2001. Momentum transfer of a Boltzmann- lattice fluid with boundaries. Phys. Fluids 13, 3452–3459. https://doi.org/10.1063/1.1399290

Bréard, J., Henzel, Y., Trochu, F., Gauvin, R., 2003. Analysis of dynamic flows through porous media. Part I: Comparison between saturated and unsaturated flows in fibrous reinforcements. Polym. Compos. 24, 391–408. https://doi.org/10.1002/pc.10038

Brinkman, H.C., 1949. On the permeability of media consisting of closely packed porous particles. Appl. Sci. Res. 1, 81–86. https://doi.org/10.1007/BF02120318

Brown, G.O., 2002. Henry Darcy and the making of a law. Water Resour. Res. 38, 11- 1-11–12. https://doi.org/10.1029/2001wr000727

Cai, Y., Wang, S., Lu, J., Li, S., Zhang, G., 2019. Efficient immersed-boundary lattice Boltzmann scheme for fluid-structure interaction problems involving large solid deformation. Phys. Rev. E 99, 1–19. https://doi.org/10.1103/PhysRevE.99.023310

Caiazzo, A., 2008. Analysis of lattice Boltzmann nodes initialisation in moving boundary problems. Prog. Comput. Fluid Dyn. 8, 3–10. https://doi.org/10.1504/PCFD.2008.018074

Calderer, A., Kang, S., Sotiropoulos, F., 2014. Level set immersed boundary method for coupled simulation of air/water interaction with complex floating structures. J. Comput. Phys. 277, 201–227. https://doi.org/10.1016/j.jcp.2014.08.010

Cao, D.Q., Liu, D., Wang, C.H.T., 2006. Three-dimensional nonlinear dynamics of slender structures: Cosserat rod element approach. Int. J. Solids Struct. 43, 760– 783. https://doi.org/10.1016/j.ijsolstr.2005.03.059

Cao, D.Q., Tucker, R.W., 2008. Nonlinear dynamics of elastic rods using the Cosserat theory: Modelling and simulation. Int. J. Solids Struct. 45, 460–477. https://doi.org/10.1016/j.ijsolstr.2007.08.016

Cerroni, D., Da Vià, R., Manservisi, S., 2018. A projection method for coupling two- phase VOF and fluid structure interaction simulations. J. Comput. Phys. 354, 646– 671. https://doi.org/10.1016/j.jcp.2017.10.055

Chao, C.Y.H., Wan, M.P., Morawska, L., Johnson, G.R., Ristovski, Z.D., Hargreaves, M., Mengersen, K., Corbett, S., Li, Y., Xie, X., Katoshevski, D., 2009.

Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. J. Aerosol Sci. 40, 122–133. https://doi.org/10.1016/j.jaerosci.2008.10.003

Chen, L., Yu, Y., Lu, J., Hou, G., 2014. A comparative study of lattice Boltzmann methods using bounce-back schemes and immersed boundary ones for flow acoustic problems. Int. J. Numer. Methods Fluids 74, 439–167. https://doi.org/10.1002/fld

Chen, S., Doolen, G.D., 1998. Lattice Boltzmann Method for Fluid Flows. Annu. Rev. Fluid Mech. 30, 329–364. https://doi.org/10.1146/annurev.fluid.30.1.329

Chen, X., Papathanasiou, T.D., 2007. Micro-scale modeling of axial flow through unidirectional disordered fiber arrays. Compos. Sci. Technol. 67, 1286–1293. https://doi.org/10.1016/j.compscitech.2006.10.011

Choong, L.T. (Simon), Khan, Z., Rutledge, G.C., 2014. Permeability of electrospun fiber mats under hydraulic flow. J. Memb. Sci. 451, 111–116. https://doi.org/10.1016/j.memsci.2013.09.051

Chun, B., Ladd, A.J.C., 2007. Interpolated boundary condition for lattice Boltzmann simulations of flows in narrow gaps. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 75, 1–12. https://doi.org/10.1103/PhysRevE.75.066705

Clague, D.S., Kandhai, B.D., Zhang, R., Sloot, P.M.A., 2000. Hydraulic permeability of (un)bounded fibrous media using the lattice Boltzmann method. Phys. Rev. E 61, 616–625. https://doi.org/10.1103/PhysRevE.61.616

Coleman, B.D., Dill, E.H., Lembo, M., Lu, Z., Tobias, I., 1993. On the dynamics of rods in the theory of Kirchhoff and Clebsch. Arch. Ration. Mech. Anal. 121, 339–359. https://doi.org/10.1007/BF00375625

Cosserat, E., Cosserat, F., 1909. Theory of deformable bodies. Cornell Univ. Libr. 1–246. https://doi.org/10.1201/b18213-12

Crawford, R., Jones, G.F., You, L., Wu, Q., 2011. Compression-dependent permeability measurement for random soft porous media and its implications to lift generation. Chem. Eng. Sci. 66, 294–302. https://doi.org/10.1016/j.ces.2010.10.037

Crawford, R., Nathan, R., Wang, L., Wu, Q., 2012. Experimental study on the lift generation inside a random synthetic porous layer under rapid compaction. Exp. Therm. Fluid Sci. 36, 205–216. https://doi.org/10.1016/j.expthermflusci.2011.09.014

D’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P., Luo, L.S., 2002. Multiple- relaxation-time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 360, 437–451. https://doi.org/10.1098/rsta.2001.0955

Das, A., Alagirusamy, R., Nagendra, K.R., 2009. Filtration characteristics of spun-laid nonwoven fabrics. Indian J. Fibre Text. Res. 34, 253–257.

Dbouk, T., Drikakis, D., 2020. On respiratory droplets and face masks. Phys. Fluids 32, 1–11. https://doi.org/10.1063/5.0015044

De Rosis, A., Ubertini, S., Ubertini, F., 2014. A Comparison Between the Interpolated Bounce-Back Scheme and the Immersed Boundary Method to Treat Solid Boundary Conditions for Laminar Flows in the Lattice Boltzmann Framework. J. Sci. Comput. 61, 477–489. https://doi.org/10.1007/s10915-014-9834-0

Degroote, J., Bathe, K.J., Vierendeels, J., 2009. Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Comput. Struct. 87, 793–801. https://doi.org/10.1016/j.compstruc.2008.11.013

Deng, Z., Chen, Q., 2021. What is suitable social distancing for people wearing face masks during the COVID-19 pandemic? Indoor Air 1–15.https://doi.org/10.1111/ina.12935

Dennis, S.C.R., Chang, G.-Z., 1970. Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100. J. Fluid Mech. 42, 471–489. https://doi.org/10.1017/S0022112070001428

Dey, A.A., Modarres-Sadeghi, Y., Rothstein, J.P., 2018. Viscoelastic fluid-structure interactions between a flexible cylinder and wormlike micelle solution. Phys. Rev. Fluids 3, 1–22. https://doi.org/10.1103/PhysRevFluids.3.063301

Dill, E.H., 1906. Kirchhoff’s theory of rods. Arch. Hist. Exact Sci. 44, 1–23.

Ding, Z., Babar, A.A., Wang, C., Zhang, P., Wang, X., Yu, J., Ding, B., 2021.

Spunbonded needle-punched nonwoven geotextiles for filtration and drainage applications: Manufacturing and structural design. Compos. Commun. 25, 1–11. https://doi.org/10.1016/j.coco.2020.100481

Drummond, J., Tahir, M., 1984. Laminar viscous flow through regular arrays of parallel solid cylinders. Int. J. Multiph. Flow 10, 515–540.

Du, W., Iacoviello, F., Fernandez, T., Loureiro, R., Brett, D.J.L., Shearing, P.R., 2021. Microstructure analysis and image-based modelling of face masks for COVID-19 virus protection. Commun. Mater. 2, 1–10. https://doi.org/10.1038/s43246-021- 00160-z

Du, Z., Xu, B., Yu, W., 2010. Theoretical study on the bending rigidity of filament yarns with an elliptical cross-section using energy method. I. Theoretical modeling. Fibers Polym. 11, 883–890. https://doi.org/10.1007/s12221-010-0883-1

Dukowicz, J.K., Kodis, J.W., 1987. Accurate Conservative Remapping (Rezoning) for Arbitrary Lagrangian-Eulerian Computations. SIAM J. Sci. Stat. Comput. 8, 305–321. https://doi.org/10.1137/0908037

Ðurickovic, B., Goriely, A., Maddocks, J.H., 2013. Twist and stretch of helices explained via the kirchhoff-love rod model of elastic filaments. Phys. Rev. Lett. 111, 1–5. https://doi.org/10.1103/PhysRevLett.111.108103

Eshghinejadfard, A., Daróczy, L., Janiga, G., Thévenin, D., 2016. Calculation of the permeability in porous media using the lattice Boltzmann method. Int. J. Heat Fluid Flow 62, 93–103. https://doi.org/10.1016/j.ijheatfluidflow.2016.05.010

Farhat, C., Lesoinne, M., 2000. Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. Comput. Methods Appl. Mech. Eng. 182, 499–515. https://doi.org/10.1016/S0045- 7825(99)00206-6

Favier, J., Revell, A., Pinelli, A., 2014. A Lattice Boltzmann - Immersed Boundary method to simulate the fluid interaction with moving and slender flexible objects. J. Comput. Phys. 261, 145–161.

Felippa, C.A., Park, K.C., Farhat, C., 2001. Partitioned analysis of coupled mechanical systems. Comput. Methods Appl. Mech. Eng. 190, 3247–3270. https://doi.org/10.1016/S0045-7825(00)00391-1

Fernández, M.A., 2011. Coupling schemes for incompressible fluid-structure interaction: implicit, semi-implicit and explicit. SeMA J. 55, 59–108. https://doi.org/10.1007/bf03322593

Frisch, U., Hasslacher, B., Pomeau, Y., 1986. Lattice-Gas Automata for the Navier- Stokes Equation. Phys. Rev. Lett. 56, 1505–1508.

Fujimoto, S., 1969. Some Aspects on Shear Modulus of Textile Fibers, in: Journal of the Textile Machinery of Japan. pp. P369–P376. https://doi.org/10.4188/transjtmsj1965a.22.p369

Fukasawa, T., Kanaoka, C., Kimura, I., Bao, L., Ishigami, T., Fukui, K., 2021.

Distributions of Fiber Mass, Air Permeability, and Filter Efficiency in Nonwoven Fabric Bag Filters. Chem. Eng. Technol. 44, 535–541. https://doi.org/10.1002/ceat.202000472

Gaiselmann, G., Manke, I., Lehnert, W., Schmidt, V., 2013. Extraction of curved fibers from 3D data. Image Anal. Stereol. 32, 57–63. https://doi.org/10.5566/ias.v32.p57- 63

Gaiselmann, G., Thiedmann, R., Manke, I., Lehnert, W., Schmidt, V., 2012. Stochastic 3D modeling of fiber-based materials. Comput. Mater. Sci. 59, 75–86. https://doi.org/10.1016/j.commatsci.2012.02.038

Gaiselmann, G., Tötzke, C., Manke, I., Lehnert, W., Schmidt, V., 2014. 3D microstructure modeling of compressed fiber-based materials. J. Power Sources 257, 52–64. https://doi.org/10.1016/j.jpowsour.2014.01.095

Gao, B., Hu, K., Guo, S., 2014. Collision Detection Algorithm Based on AABB for Minimally Invasive Surgery, in: Proceedings of 2014 IEEE International Conference on Mechatronics and Automation. pp. 315–320. https://doi.org/10.1109/ICMA.2014.6885715

Gao, H., Li, H., Wang, L.P., 2013. Lattice Boltzmann simulation of turbulent flow laden with finite-size particles. Comput. Math. with Appl. 65, 194–210. https://doi.org/10.1016/j.camwa.2011.06.028

Gao, Y., Zhang, X., Rama, P., Liu, Y., Chen, R., Ostadi, H., Jiang, K., 2012.

Calculating the Anisotropic Permeability of Porous Media Using the Lattice Boltzmann Method and X-ray Computed Tomography. Transp. Porous Media 92, 457–472. https://doi.org/10.1007/s11242-011-9914-7

Gazzola, M., Dudte, L.H., McCormick, A.G., Mahadevan, L., 2018. Forward and inverse problems in the mechanics of soft filaments. R. Soc. Open Sci. 5, 1–35. https://doi.org/10.1098/rsos.171628

Gebart, B.R., 1992. Permeability of Unidirectional Reinforcements for RTM. J. Compos. Mater. 26, 1100–1133. https://doi.org/10.1177/002199839202600802

Ghali, L., Halimi, M.T., Hassen, M. Ben, Sakli, F., 2014. Effect of Blending Ratio of Fibers on the Properties of Nonwoven Fabrics Based of Alfa Fibers. Adv. Mater. Phys. Chem. 4, 116–125. https://doi.org/10.4236/ampc.2014.46014

Ghassemieh, E., Acar, M., Versteeg, H.K., 2001. Improvement of the efficiency of energy transfer in the hydro-entanglement process. Compos. Sci. Technol. 61, 1681–1694. https://doi.org/10.1016/S0266-3538(01)00074-4

Gramsch, S., Klar, A., Leugering, G., Marheineke, N., Nessler, C., Strohmeyer, C., Wegener, R., 2016. Aerodynamic web forming: process simulation and material properties. J. Math. Ind. 6, 1–23. https://doi.org/10.1186/s13362-016-0034-4

Grothaus, M., Klar, A., Maringer, J., Stilgenbauer, P., Wegener, R., 2014. Application of a three-dimensional fiber lay-down model to non-woven production processes. J. Math. Ind. 4, 1–19. https://doi.org/10.1186/2190-5983-4-4

Grothaus, M., Stilgenbauer, P., 2013. Geometric Langevin equations on submanifolds and applications to the stochastic melt-spinning process of nonwovens and biology. Stochastics Dyn. 13, 1–29. https://doi.org/10.1142/S0219493713500019

Guendelman, E., Bridson, R., Fedkiw, R., 2003. Nonconvex rigid bodies with stacking.

ACM Trans. Graph. 22, 871–878. https://doi.org/10.1145/882262.882358

Guo, Z., Shi, B., Wang, N., 2000. Lattice BGK Model for Incompressible Navier- Stokes Equation. J. Comput. Phys. 165, 288–306. https://doi.org/10.1006/jcph.2000.6616

Guo, Z., Zheng, C., Shi, B., 2002. An extrapolation method for boundary conditions in lattice Boltzmann method. Phys. Fluids 14, 2007–2010. https://doi.org/10.1063/1.1471914

Ha, S.T., Ngo, L.C., Saeed, M., Jeon, B.J., Choi, H., 2017. A comparative study between partitioned and monolithic methods for the problems with 3D fluid- structure interaction of blood vessels. J. Mech. Sci. Technol. 31, 281–287. https://doi.org/10.1007/s12206-016-1230-2

Happel, J., 1959. Viscous flow relative to arrays of cylinders. Am. Inst. Chem. Eng. J.5, 174–177.

Hautefeuille, A., Comas-Cardona, S., Binetruy, C., 2020. Consolidation and compression of deformable impregnated fibrous reinforcements: Experimental study and modeling of flow-induced deformations. Compos. Part A Appl. Sci. Manuf. 131, 1–10. https://doi.org/10.1016/j.compositesa.2020.105768

Hautefeuille, A., Comas-Cardona, S., Binetruy, C., 2019. Mechanical signature and full- field measurement of flow-induced large in-plane deformation of fibrous reinforcements in composite processing. Compos. Part A Appl. Sci. Manuf. 118, 213–222. https://doi.org/10.1016/j.compositesa.2018.12.030

He, P., Qiao, R., 2011. A full-Eulerian solid level set method for simulation of fluid- structure interactions. Microfluid. Nanofluidics 11, 557–567. https://doi.org/10.1007/s10404-011-0821-6

He, Q., Li, Y., Huang, W., Hu, Y., Li, D., Wang, Y., 2020. Lattice Boltzmann model for dense suspended particles based on improved bounce-back method. Comput. Math. with Appl. 80, 552–567. https://doi.org/10.1016/j.camwa.2020.04.006

Hewitt, D.R., Paterson, D.T., Balmforth, N.J., Martinez, D.M., 2016. Dewatering of fibre suspensions by pressure filtration. Phys. Fluids 28, 1–22. https://doi.org/10.1063/1.4952582

Hubbert, M.K., 1957. Darcy’s law and the field equations of the flow of underground fluids. Hydrol. Sci. J. 2, 23–59. https://doi.org/10.1080/02626665709493062

Hutchinson, J.R., 2001. Shear Coefficients for Timoshenko Beam Theory. J. Appl. Mech. Trans. ASME 68, 87–92. https://doi.org/10.1115/1.1349417

Inamuro, T., Yoshino, M., Ogino, F., 1995. A non-slip boundary condition for lattice Boltzmann simulations. Phys. Fluids 7, 2928–2930. https://doi.org/10.1063/1.868766

Jackson, G.W., James, D.F., 1986. The permeability of fibrous porous media. Can. J. Chem. Eng. 64, 364–374. https://doi.org/10.1002/cjce.5450640302

Jaganathan, Sudhakar, Tafreshi, H.V., Pourdeyhimi, B., 2008. A Case Study of Realistic Two-Scale Modeling of Water Permeability in Fibrous Media. Sep. Sci. Technol.43, 1901–1916. https://doi.org/10.1080/01496390802063960

Jaganathan, S., Vahedi Tafreshi, H., Pourdeyhimi, B., 2008. A realistic approach for modeling permeability of fibrous media: 3-D imaging coupled with CFD simulation. Chem. Eng. Sci. 63, 244–252. https://doi.org/10.1016/j.ces.2007.09.020

Jayaweera, K.O.L.F., Mason, B.J., 1965. The behaviour of freely falling cylinders and cones in a viscous fluid. J. Fluid Mech. 22, 709–720. https://doi.org/10.1017/S002211206500109X

Jenkins, N., Maute, K., 2015. Level set topology optimization of stationary fluid- structure interaction problems. Struct. Multidiscip. Optim. 52, 179–195. https://doi.org/10.1007/s00158-015-1229-9

Jönsson, K.A., Jönsson, B.T.L., 1992. Fluid Flow in Compressible Porous Media: II: Dynamic Behavior. AIChE J. 38, 1349–1356. https://doi.org/10.1002/aic.690380904

Jung, P., Leyendecker, S., Linn, J., Ortiz, M., 2012. A discrete mechanics approach to the Cosserat rod theory—Part 1: static equilibria. Int. J. Numer. Methods Eng. 85, 31–60. https://doi.org/10.1002/nme

Jung, S.Y., Kim, J.J., Lee, S.J., 2019. Effect of material stiffness on the motion and flow near the free end of a finite cylinder surface. Exp. Therm. Fluid Sci. 102, 548–558. https://doi.org/10.1016/j.expthermflusci.2018.12.028

Jung, S.Y., Kim, J.J., Park, H.W., Lee, S.J., 2018. Comparison of flow structures behind rigid and flexible finite cylinders. Int. J. Mech. Sci. 142–143, 480–490. https://doi.org/10.1016/j.ijmecsci.2018.05.026

Karras, T., 2012. Maximizing Parallelism in the Construction of BVHs, Octrees, and k- d Trees, in: High-Performance Graphics 2012, HPG 2012 - ACM SIGGRAPH / Eurographics Symposium Proceedings. pp. 33–37. https://doi.org/10.2312/EGGH/HPG12/033-037

Kassiotis, C., Ibrahimbegovic, A., Matthies, H., 2010. Partitioned solution to fluidstructure interaction problem in application to free-surface flows. Eur. J. Mech. B/Fluids 29, 510–521. https://doi.org/10.1016/j.euromechflu.2010.07.003

Katja, S., Stefanie, P., Doris, R.-B., Andreas, W., Joachim, O., 2006. Design of acoustic trim based on geometric modeling and flow simulation for non-woven. Comput.

Mater. Sci. 38, 56–66. https://doi.org/10.1016/j.commatsci.2006.01.018

Keller, H.B., Takami, H., 1966. Numerical studies of viscous flow about cylinders, Numerical Solutions of Non-linear Differential Equations.

Ketchel, J., Larochelle, P., 2006. Collision Detection of Cylindrical Rigid Bodies for Motion Planning, in: Proceedings of the 2006 IEEE International Conference on Robotics and Automation. pp. 1530–1535. https://doi.org/10.1109/ROBOT.2006.1641925

Khan, I., Aidun, C.K., 2017. Investigating the effect of micro-structure on the deformation of saturated fibrous media using direct numerical simulations. Comput. Fluids 143, 48–58. https://doi.org/10.1016/j.compfluid.2016.10.030

Klar, A., Maringer, J., Wegener, R., 2012a. A 3D model for fiber lay-down in nonwoven production processes. Math. Model. Methods Appl. Sci. 22, 1–15. https://doi.org/10.1142/S0218202512500200

Klar, A., Maringer, J., Wegener, R., 2012b. A smooth 3D model for fiber lay-down in nonwoven production processes. Kinet. Relat. Model. 5, 97–112. https://doi.org/10.3934/krm.2012.5.97

Kothari, V.K., Das, A., Sarkar, A., 2007a. Effect of processing parameters on properties of layered composite needle-punched nonwoven air filters. Indian J. Fibre Text. Res. 32, 196–201.

Kothari, V.K., Das, A., Singh, S., 2007b. Filtration behaviour of woven and nonwoven fabrics. Indian J. Fibre Text. Res. 32, 214–220.

Krithivasan, S., Wahal, S., Ansumali, S., 2014. Diffused bounce-back condition and refill algorithm for the lattice Boltzmann method. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 89, 1–15. https://doi.org/10.1103/PhysRevE.89.033313

Lallemand, P., Luo, L.S., 2003. Lattice Boltzmann method for moving boundaries. J. Comput. Phys. 184, 406–421. https://doi.org/10.1016/S0021-9991(02)00022-0

Lee, K., Oh, J., Kim, D., Yoo, J., Yun, G.J., Kim, J., 2021. Effects of the filter microstructure and ambient air condition on the aerodynamic dispersion of sneezing droplets: A multiscale and multiphysics simulation study. Phys. Fluids 33, 15. https://doi.org/10.1063/5.0053449

Legay, A., Chessa, J., Belytschko, T., 2006. An Eulerian-Lagrangian method for fluid- structure interaction based on level sets. Comput. Methods Appl. Mech. Eng. 195, 2070–2087. https://doi.org/10.1016/j.cma.2005.02.025

Levinson, M., 1981. A new rectangular beam theory. J. Sound Vib. 74, 81–87. https://doi.org/10.1016/0022-460X(81)90493-4

Li, G., Staszel, C., Yarin, A.L., Pourdeyhimi, B., 2019. Hydroentanglement of polymer nonwovens. 1: Experimental and theoretical/numerical framework. Polymer (Guildf). 164, 191–204. https://doi.org/10.1016/j.polymer.2018.11.059

Li, W., Wang, W.Q., Yan, Y., Yu, Z.F., 2020. A strong-coupled method combined finite element method and lattice Boltzmann method via an implicit immersed boundary scheme for fluid structure interaction. Ocean Eng. 214, 107779. https://doi.org/10.1016/j.oceaneng.2020.107779

Li, Y., Shock, R., Zhang, R., Chen, H., 2004. Numerical study of flow past an impulsively started cylinder by the lattice-Boltzmann method. J. Fluid Mech. 519, 273–300. https://doi.org/10.1017/S0022112004001272

Liao, M., Liu, H., Wang, X., Hu, X., Huang, Y., Liu, X., Brenan, K., Mecha, J., Nirmalan, M., Lu, J.R., 2021. A technical review of face mask wearing in preventing respiratory COVID-19 transmission. Curr. Opin. Colloid Interface Sci. 52, 1–19. https://doi.org/10.1016/j.cocis.2021.101417

Lim, S., Peskin, C.S., 2012. Fluid-mechanical interaction of flexible bacterial flagella by the immersed boundary method. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 85, 1–9. https://doi.org/10.1103/PhysRevE.85.036307

Lin, M., Gottschalk, S., 1998. Collision detection between geometric models: A survey. Proc. IMA Conf. Math. Surfaces 1–20. https://doi.org/10.1.1.45.3926

Liu, C., Zheng, X., Sung, C.H., 1998. Preconditioned Multigrid Methods for Unsteady Incompressible Flows. J. Comput. Phys. 139, 35–57. https://doi.org/10.1006/jcph.1997.5859

Liu, H.L., Hwang, W.R., 2012. Permeability prediction of fibrous porous media with complex 3D architectures. Compos. Part A Appl. Sci. Manuf. 43, 2030–2038. https://doi.org/10.1016/j.compositesa.2012.07.024

López-Rebollar, B.M., Díaz-Delgado, C., Posadas-Bejarano, A., García-Pulido, D., Torres-Maya, A., 2021. Proposal of a mask and its performance analysis with cfd for an enhanced aerodynamic geometry that facilitates filtering and breathing against covid-19. Fluids 6, 1–22. https://doi.org/10.3390/fluids6110408

Lorbach, C., Fischer, W.J., Gregorova, A., Hirn, U., Bauer, W., 2014. Pulp Fiber Bending Stiffness in Wet and Dry State Measured from Moment of Inertia and Modulus of Elasticity. BioResources 9, 5511–5528. https://doi.org/10.15376/biores.9.3.5511-5528

Lorenz, E., Sivadasan, V., Bonn, D., Hoekstra, A.G., 2018. Combined Lattice– Boltzmann and rigid-body method for simulations of shear-thickening dense suspensions of hard particles. Comput. Fluids 172, 474–482. https://doi.org/10.1016/j.compfluid.2018.03.056

Love, A., 1892. A treatise on the mathematical theory of elasticity. Cambridge Univ. Press 1, 1–368. https://doi.org/10.1038/105511a0

Lv, X., Zhao, Y., Huang, X.Y., Xia, G.H., Wang, Z.J., 2006. An efficient parallel/unstructured-multigrid preconditioned implicit method for simulating 3D unsteady compressible flows with moving objects. J. Comput. Phys. 215, 661–690. https://doi.org/10.1016/j.jcp.2005.11.012

Mao, N., Russell, S.J., 2006. A framework for determining the bonding intensity in hydroentangled nonwoven fabrics. Compos. Sci. Technol. 66, 80–91. https://doi.org/10.1016/j.compscitech.2005.05.030

Margolin, L.G., Shashkov, M., 2003. Second-order sign-preserving conservative

interpolation (remapping) on general grids. J. Comput. Phys. 184, 266–298. https://doi.org/10.1016/S0021-9991(02)00033-5

Massey, B.S., 1989. Mechanics of Fluids, Van Nostrand Reinhold.

Mataln, M., Boiger, G., Gschaider, B., Brandstätter, W., 2008. Part 1: Fluid-Structure Interaction Simulation of particle filtration processes in deformable media. Int. J. Multiphys. 2, 179–189. https://doi.org/10.1260/175095408785416983

Matsumoto, M., Nishimura, T., 1998. Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator. ACM Trans. Model. Comput. Simul. 8, 3–30. https://doi.org/10.1145/272991.272995

Mattis, S.A., Dawson, C.N., Kees, C.E., Farthing, M.W., 2015. An immersed structure approach for fluid-vegetation interaction. Adv. Water Resour. 80, 1–16. https://doi.org/10.1016/j.advwatres.2015.02.014

McNamara, G.R., Zanetti, G., 1988. Use of the Boltzmann Equation to Simulate Lattice-Gas Automata. Phys. Rev. Lett. 61, 2332–2335. https://doi.org/10.1103/PhysRevLett.61.2332

Meier, C., Popp, A., Wall, W.A., 2019. Geometrically Exact Finite Element Formulations for Slender Beams: Kirchhoff–Love Theory Versus Simo–Reissner Theory, Archives of Computational Methods in Engineering. Springer Netherlands. https://doi.org/10.1007/s11831-017-9232-5

Mirtich, B., Canny, J., 1995. Impulse-based Simulation of Rigid Bodies of California, in: Symposium on Interactive 3DGraphics. pp. 181–188.

Misnon, M.I., Islam, M.M., Epaarachchi, J.A., Lau, K. tak, 2014. Potentiality of utilising natural textile materials for engineering composites applications. Mater. Des. 59, 359–368. https://doi.org/10.1016/j.matdes.2014.03.022

Mittal, R., Ni, R., Seo, J.H., 2020. The flow physics of COVID-19. J. Fluid Mech. 894, 1–14. https://doi.org/10.1017/jfm.2020.330

Miyake, H., Gotoh, Y., Ohkoshi, Y., Nagura, M., 2000. Tensile properties of wet cellulose. Polym. J. 32, 29–32. https://doi.org/10.1295/polymj.32.29

Mokbel, D., Abels, H., Aland, S., 2018. A phase-field model for fluid–structure interaction. J. Comput. Phys. 372, 823–840. https://doi.org/10.1016/j.jcp.2018.06.063

Neunzert, H., Prätzel-Wolters, D., 2015. Currents in Industrial Mathematics: From Concepts to Research to Education, Currents in Industrial Mathematics: From Concepts to Research to Education. https://doi.org/10.1007/978-3-662-48258-2

Niu, X.D., Chew, Y.T., Shu, C., 2003. Simulation of flows around an impulsively started circular cylinder by Taylor series expansion- and least squares-based lattice Boltzmann method. J. Comput. Phys. 188, 176–193. https://doi.org/10.1016/S0021-9991(03)00161-X

Niu, X.D., Shu, C., Chew, Y.T., Peng, Y., 2006. A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows. Phys. Lett. Sect. A Gen. At. Solid State Phys. 354, 173–182. https://doi.org/10.1016/j.physleta.2006.01.060

Obrecht, C., Kuznik, F., Tourancheau, B., Roux, J.J., 2013. Efficient GPU implementation of the linearly interpolated bounce-back boundary condition. Comput. Math. with Appl. 65, 936–944. https://doi.org/10.1016/j.camwa.2012.05.014

Otsu, N., 1979. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man. Cybern. 9, 62–66. https://doi.org/10.1109/TSMC.1979.4310076

Owen, J.D., 1965. 26—The Application of Searle’s Single and Double Pendulum Methods to Single Fibre Rigidity Measurements. J. Text. Inst. Trans. 56, 329–339.

Pan, C., Luo, L.S., Miller, C.T., 2006. An evaluation of lattice Boltzmann schemes for porous medium flow simulation. Comput. Fluids 35, 898–909. https://doi.org/10.1016/j.compfluid.2005.03.008

Park, K.C., Felippa, C.A., DeRuntz, J.A., 1977. Stabilization of staggered solution procedures for fluid-structure interaction analysis, in: American Society of Mechanical Engineers, Applied Mechanics Division, AMD. pp. 95–124.

Patanaik, A., Anandjiwala, R.D., 2010. Hydroentanglement Nonwoven Filters for Air Filtration and Its Performance Evaluation. J. Appl. Polym. Sci. 117, 1325–1331. https://doi.org/10.1002/app

Patel, H. V., Das, S., Kuipers, J.A.M., Padding, J.T., Peters, E.A.J.F., 2017. A coupled Volume of Fluid and Immersed Boundary Method for simulating 3D multiphase flows with contact line dynamics in complex geometries. Chem. Eng. Sci. 166, 28–41. https://doi.org/10.1016/j.ces.2017.03.012

Paterson, D.T., Eaves, T.S., Hewitt, D.R., Balmforth, N.J., Martinez, D.M., 2019. Flow- driven compaction of a fibrous porous medium. Phys. Rev. Fluids 4, 1–28. https://doi.org/10.1103/PhysRevFluids.4.074306

Peng, C., Teng, Y., Hwang, B., Guo, Z., Wang, L.P., 2016. Implementation issues and benchmarking of lattice Boltzmann method for moving rigid particle simulations in a viscous flow. Comput. Math. with Appl. 72, 349–374. https://doi.org/10.1016/j.camwa.2015.08.027

Pourdeyhimi, B., Minton, A., Putnam, M., 2004. Structure-Process-Property Relationships In Hydroentangled Nonwovens-Part 1: Preliminary Experimental Observations. Int. Nonwovens J. 13, 15–21.

Rawal, A., Moyo, D., Soukupova, V., Anandjiwala, R., 2007. Optimization of parameters in hydroentanglement process. J. Ind. Text. 36, 207–220. https://doi.org/10.1177/1528083707069509

Redon, S., Kheddar, A., Coquillart, S., 2002. Fast Continuous Collision Detection between Rigid Bodies. Comput. Graph. Forum 21, 279–287. https://doi.org/10.1111/1467-8659.t01-1-00587

Rinaldi, P.R., Dari, E.A., Vénere, M.J., Clausse, A., 2012. A Lattice-Boltzmann solver for 3D fluid simulation on GPU. Simul. Model. Pract. Theory 25, 163–171. https://doi.org/10.1016/j.simpat.2012.03.004

Roy, R., Chatterjee, S., 2018. Development of a Multi-component Air Filter by Incorporating the Density Gradient Structure in Needle Punched Nonwoven. Fibers Polym. 19, 2597–2603. https://doi.org/10.1007/s12221-018-8497-0

Rubin, M.B., 2000. Cosserat Theories: Shells, Rods and Points, Kluwer Academic Publishers.

Sakthivel, S., Ezhil Anban, J.J., Ramachandran, T., 2014. Development of needle- punched nonwoven fabrics from reclaimed fibers for air filtration applications. J. Eng. Fiber. Fabr. 9, 149–154. https://doi.org/10.1177/155892501400900117

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A., 2012. Fiji: An open- source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019

Schneider, P., Eberly, D., 2003. Geometric Tools for Computer Graphics.

Sethian, J.A., 2001. Evolution, Implementation, and Application of Level Set and Fast Marching Methods for Advancing Fronts. J. Comput. Phys. 169, 503–555. https://doi.org/10.1006/jcph.2000.6657

Shen, L., Chan, E.S., 2008. Numerical simulation of fluid-structure interaction using a combined volume of fluid and immersed boundary method. Ocean Eng. 35, 939– 952. https://doi.org/10.1016/j.oceaneng.2008.01.013

Shiue, A., Kang, Y.H., Hu, S.C., Jou, G. tsuen, Lin, C.H., Hu, M.C., Lin, S.I., 2010.

Vapor adsorption characteristics of toluene in an activated carbon adsorbent-loaded nonwoven fabric media for chemical filters applied to cleanrooms. Build. Environ. 45, 2123–2131. https://doi.org/10.1016/j.buildenv.2010.03.008

Shul’chishin, V.A., 1993. Hydraulic Resistance of a Deformable Layer of Fibrous Material. Fibre Chem. 25, 17–20.

Silva-Leon, J., Cioncolini, A., Filippone, A., 2018. Determination of the normal fluid load on inclined cylinders from optical measurements of the reconfiguration of flexible filaments in flow. J. Fluids Struct. 76, 488–505. https://doi.org/10.1016/j.jfluidstructs.2017.10.009

Skordos, P.A., 1993. Initial and boundary conditions for the lattice Boltzmann method. Phys. Rev. 48, 4823–4842.

Soltani, P., Johari, M.S., Zarrebini, M., 2014. Effect of 3D fiber orientation on permeability of realistic fibrous porous networks. Powder Technol. 254, 44–56. https://doi.org/10.1016/j.powtec.2014.01.001

Spillmann, J., Teschner, M., 2007. CORDE: Cosserat Rod Elements for the Dynamic Simulation of One-Dimensional Elastic Objects, in: Eurographics/ ACM SIGGRAPH Symposium on Computer Animation. pp. 1–10.

Spoon, C., Grant, W., 2011. Biomechanics of hair cell kinocilia: Experimental measurement of kinocilium shaft stiffness and base rotational stiffness with Euler- Bernoulli and Timoshenko beam analysis. J. Exp. Biol. 214, 862–870. https://doi.org/10.1242/jeb.051151

Stojković, D., Breuer, M., Durst, F., 2002. Effect of high rotation rates on the laminar

flow around a circular cylinder. Phys. Fluids 14, 3160–3178.https://doi.org/10.1063/1.1492811

Suga, K., Kuwata, Y., Takashima, K., Chikasue, R., 2015. A D3Q27 multiple- relaxation-time lattice Boltzmann method for turbulent flows. Comput. Math. with Appl. 69, 518–529. https://doi.org/10.1016/j.camwa.2015.01.010

Suga, K., Tanaka, T., Nishio, Y., Murata, M., 2009. A Boundary Reconstruction Scheme for Lattice Boltzmann Flow Simulation in Porous Media. Prog. Comput. Fluid Dyn. 9, 201–207.

Sun, P., Xu, J., Zhang, L., 2014. Full Eulerian finite element method of a phase field model for fluid-structure interaction problem. Comput. Fluids 90, 1–8. https://doi.org/10.1016/j.compfluid.2013.11.010

Sussman, M., Almgren, A.S., Bell, J.B., Colella, P., Howell, L.H., Welcome, M., 1996.

An adaptive level set approach for incompressible two-phase flows. Am. Soc. Mech. Eng. Fluids Eng. Div. FED 238, 355–360.

Sussman, M., Fatemi, E., Smereka, P., Osher, S., 1998. An improved level set method for incompressible two-phase flows. Comput. Fluids 27, 663–680. https://doi.org/10.1016/S0045-7930(97)00053-4

Suzuki, K., Inamuro, T., 2011. Effect of internal mass in the simulation of a moving body by the immersed boundary method. Comput. Fluids 49, 173–187. https://doi.org/10.1016/j.compfluid.2011.05.011

Tai, C.H., Zhao, Y., 2003. Parallel unsteady incompressible viscous flow computations using an unstructured multigrid method. J. Comput. Phys. 192, 277–311. https://doi.org/10.1016/j.jcp.2003.07.005

Takami, H., Keller, H.B., 1969. Steady two-dimensional viscous flow of an incompressible fluid past a circular cylinder. Phys. Fluids 12, 51–56. https://doi.org/10.1063/1.1692469

Tan, W., Wu, H., Zhu, G., 2018. Fluid-structure interaction using lattice Boltzmann method: Moving boundary treatment and discussion of compressible effect. Chem. Eng. Sci. 184, 273–284. https://doi.org/10.1016/j.ces.2018.03.042

Tao, S., Hu, J., Guo, Z., 2016. An investigation on momentum exchange methods and refilling algorithms for lattice Boltzmann simulation of particulate flows. Comput. Fluids 133, 1–14. https://doi.org/10.1016/j.compfluid.2016.04.009

Tcharkhtchi, A., Abbasnezhad, N., Zarbini Seydani, M., Zirak, N., Farzaneh, S., Shirinbayan, M., 2021. An overview of filtration efficiency through the masks: Mechanisms of the aerosols penetration. Bioact. Mater. 6, 106–122. https://doi.org/10.1016/j.bioactmat.2020.08.002

Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann, G., Raghupathi, L., Fuhrmann, A., Cani, M.-P., Faure, F., Magnenat-Thalmann, N., Strasser, W., Volino, P., 2005. Collision Detection for Deformable Objects. Comput. Graph. Forum 24, 61–81.

Tian, F.B., Dai, H., Luo, H., Doyle, J.F., Rousseau, B., 2014. Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems. J. Comput. Phys. 258, 451–469. https://doi.org/10.1016/j.jcp.2013.10.047

Timoshenko, S.P., 1921. LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. London, Edinburgh, Dublin Philos. Mag. J. Sci. 41, 744–746. https://doi.org/10.1080/14786442108636264

Tomadakis, M.M., Robertson, T.J., 2005. Viscous permeability of random fiber structures: Comparison of electrical and diffusional estimates with experimental and analytical results. J. Compos. Mater. 39, 163–188. https://doi.org/10.1177/0021998305046438

Tonge, R., Benevolenski, F., Voroshilov, A., 2012. Mass splitting for jitter-free parallel rigid body simulation. ACM Trans. Graph. 31, 1–8. https://doi.org/10.1145/2185520.2185601

Tschisgale, S., Fröhlich, J., 2020. An immersed boundary method for the fluid-structure interaction of slender flexible structures in viscous fluid. J. Comput. Phys. 423, 1–33. https://doi.org/10.1016/j.jcp.2020.109801

Tschisgale, S., Thiry, L., Fröhlich, J., 2018. A constraint-based collision model for Cosserat rods. Arch. Appl. Mech. 89, 167–193. https://doi.org/10.1007/s00419- 018-1458-7

van den Bergen, G., 1997. Efficient Collision Detection of Complex Deformable Models using AABB Trees. J. Graph. Tools 2, 1–14. https://doi.org/10.1201/b10628-18

Wen, B., Zhang, C., Fang, H., 2015. Hydrodynamic force evaluation by momentum exchange method in lattice Boltzmann simulations. Entropy 17, 8240–8266.https://doi.org/10.3390/e17127876

Wen, B., Zhang, C., Tu, Y., Wang, C., Fang, H., 2014. Galilean invariant fluid-solid interfacial dynamics in lattice Boltzmann simulations. J. Comput. Phys. 266, 161–170. https://doi.org/10.1016/j.jcp.2014.02.018

Weyland, H.G., 1961. Measurement of the Modulus of Dynamic Elasticity of Staple Fibers. Text. Res. J. 31, 629–635. https://doi.org/10.1177/004051756103100708

Wick, T., 2016. Coupling fluid–structure interaction with phase-field fracture. J. Comput. Phys. 327, 67–96. https://doi.org/10.1016/j.jcp.2016.09.024

Wieselsberger, C., 1922. Further information on the laws of fluid resistance. Phys. Zeitschrift 23, 219–244.

Williamson, C.H.K., 1996. Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477–539. https://doi.org/10.1146/annurev.fl.28.010196.002401

Wolfram, S., 1986. Cellular Automaton Fluids 1: Basic Theory. J. Stat. Phys. 45, 471–526. https://doi.org/10.1007/BF01021083

Woudberg, S., 2017. Permeability prediction of an analytical pore-scale model for layered and isotropic fibrous porous media. Chem. Eng. Sci. 164, 232–245. https://doi.org/10.1016/j.ces.2017.01.061

Woulfe, M., Dingliana, J., Manzke, M., 2007. Hardware accelerated broad phase collision detection for realtime simulations. VRIPHYS 2007 - 4th Work. Virtual Real. Interact. Phys. Simulations 79–88.

Wu, J., Cheng, Y., Zhang, C., Diao, W., 2020. Simulating vortex induced vibration of an impulsively started flexible filament by an implicit IB-LB coupling scheme. Comput. Math. with Appl. 79, 159–173. https://doi.org/10.1016/j.camwa.2017.09.002

Wu, J., Qiu, Y.L., Shu, C., Zhao, N., 2014a. Flow control of a circular cylinder by using an attached flexible filament. Phys. Fluids 26, 1–22. https://doi.org/10.1063/1.4896942

Wu, J., Qiu, Y.L., Shu, C., Zhao, N., 2014b. Flow control of a circular cylinder by using an attached flexible filament. Phys. Fluids 26, 1–22. https://doi.org/10.1063/1.4896942

Xu, Q., Wang, G., Xiang, C., Cong, X., Gai, X., Zhang, S., Zhang, M., Zhang, H., Luan, J., 2020. Preparation of a novel poly (ether ether ketone) nonwoven filter and its application in harsh conditions for dust removal. Sep. Purif. Technol. 253, 1–11. https://doi.org/10.1016/j.seppur.2020.117555

Yin, X., Zhang, J., 2012. An improved bounce-back scheme for complex boundary conditions in lattice Boltzmann method. J. Comput. Phys. 231, 4295–4303. https://doi.org/10.1016/j.jcp.2012.02.014

Yuan, H.Z., Niu, X.D., Shu, S., Li, M., Yamaguchi, H., 2014. A momentum exchange- based immersed boundary-lattice Boltzmann method for simulating a flexible filament in an incompressible flow. Comput. Math. with Appl. 67, 1039–1056. https://doi.org/10.1016/j.camwa.2014.01.006

Zdravkovich, M.M., 1990. Conceptual overview of laminar and turbulent flows past smooth and rough circular cylinders. J. Wind Eng. Ind. Aerodyn. 33, 53–62. https://doi.org/10.1016/0167-6105(90)90020-D

Zhang, X., Kim, Y.J., 2007. Interactive Collision Detection for Deformable Models Using Streaming AABBs. IEEE Trans. Vis. Comput. Graph. 13, 318–329. https://doi.org/10.1109/TVCG.2007.42

Zhu, L., He, G., Wang, S., Miller, L., Zhang, X., You, Q., Fang, S., 2011. An immersed boundary method based on the lattice Boltzmann approach in three dimensions, with application. Comput. Math. with Appl. 61, 3506–3518. https://doi.org/10.1016/j.camwa.2010.03.022

Zhu, L., Peskin, C.S., 2003. Interaction of two flapping filaments in a flowing soap film. Phys. Fluids 15, 1954–1960. https://doi.org/10.1063/1.1582476

Zhu, S., Pelton, R.H., Collver, K., 1995. Mechanistic Modelling of Fluid Permeation Through Compressible Fiber Beds. Chem. Eng. Sci. 50, 3557–3572.

Zhu, Z., Wang, Q., Wu, Q., 2017. On the examination of the Darcy permeability of soft fibrous porous media; new correlations. Chem. Eng. Sci. 173, 525–536. https://doi.org/10.1016/j.ces.2017.08.021

Zou, Q., He, X., 1996. On pressure and velocity flow boundary conditions and bounceback for the lattice Boltzmann BGK model. arXiv:comp-gas/9611001 1–19. https://doi.org/10.1063/1.869307

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る