リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Automated amplification-free digital RNA detection platform for rapid and sensitive SARS-CoV-2 diagnosis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Automated amplification-free digital RNA detection platform for rapid and sensitive SARS-CoV-2 diagnosis

Shinoda, Hajime Iida, Tatsuya Makino, Asami Yoshimura, Mami Ishikawa, Junichiro Ando, Jun Murai, Kazue Sugiyama, Katsumi Muramoto, Yukiko Nakano, Masahiro Kiga, Kotaro Cui, Longzhu Nureki, Osamu Takeuchi, Hiroaki Noda, Takeshi Nishimasu, Hiroshi Watanabe, Rikiya 京都大学 DOI:10.1038/s42003-022-03433-6

2022

概要

In the ongoing COVID-19 pandemic, rapid and sensitive diagnosis of viral infection is a critical deterrent to the spread of SARS-CoV-2. To this end, we developed an automated amplification-free digital RNA detection platform using CRISPR-Cas13a and microchamber device (opn-SATORI), which automatically completes a detection process from sample mixing to RNA quantification in clinical specimens within ~9 min. Using the optimal Cas13a enzyme and magnetic beads technology, opn-SATORI detected SARS-CoV-2 genomic RNA with a LoD of < 6.5 aM (3.9 copies μL⁻¹), comparable to RT-qPCR. Additionally, opn-SATORI discriminated between SARS-CoV-2 variants of concern, including alpha, delta, and omicron, with 98% accuracy. Thus, opn-SATORI can serve as a rapid and convenient diagnostic platform for identifying several types of viral infections.

参考文献

1. Gao, S. J., Guo, H. & Luo, G. Omicron variant (B.1.1.529) of SARS-CoV-2, a global urgent public health alert! J Med Virol, https://doi.org/10.1002/jmv. 27491 (2021).

2. Larremore, D. B. et al. Test sensitivity is secondary to frequency and turnaround time for COVID-19 screening. Sci Adv 7, https://doi.org/10.1126/ sciadv.abd5393 (2021).

3. Vogels, C. B. F. et al. Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT-qPCR primer-probe sets. Nat. Microbiol 5, 1299–1305 (2020).

4. Gootenberg, J. S. et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356, 438–442 (2017).

5. Gootenberg, J. S. et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360, 439–444 (2018).

6. Broughton, J. P. et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol, https://doi.org/10.1038/s41587-020-0513-4 (2020).

7. Li, Y., Li, S., Wang, J. & Liu, G. CRISPR/Cas systems towards next-generation biosensing. Trends Biotechnol. 37, 730–743 (2019).

8. Myhrvold, C. et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science 360, 444–448 (2018).

9. Fozouni, P. et al. Amplification-free detection of SARS-CoV-2 with CRISPR- Cas13a and mobile phone microscopy. Cell https://doi.org/10.1016/j.cell.2020. 12.001 (2020).

10. de Puig, H. et al. Minimally instrumented SHERLOCK (miSHERLOCK) for CRISPR-based point-of-care diagnosis of SARS-CoV-2 and emerging variants. Sci Adv 7, https://doi.org/10.1126/sciadv.abh2944 (2021).

11. Shinoda, H. et al. Amplification-free RNA detection with CRISPR-Cas13. Commun. Biol. 4, 476 (2021).

12. Wölfel, R. et al. Virological assessment of hospitalized patients with COVID- 2019. Nature 581, 465–469 (2020).

13. Jacot, D., Greub, G., Jaton, K. & Opota, O. Viral load of SARS-CoV-2 across patients and compared to other respiratory viruses. Microbes Infect. 22, 617–621 (2020).

14. Kim, S. H. et al. Large-scale femtoliter droplet array for digital counting of single biomolecules. Lab Chip 12, 4986–4991 (2012).

15. Rissin, D. M. et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 28, 595–599 (2010).

16. Ottesen, E. A., Hong, J. W., Quake, S. R. & Leadbetter, J. R. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314, 1464–1467 (2006).

17. East-Seletsky, A., O’Connell, M. R., Burstein, D., Knott, G. J. & Doudna, J. A. RNA targeting by functionally orthogonal type VI-A CRISPR-Cas enzymes. Mol. Cell 66, 373–383 e373 (2017).

18. Watanabe, S. et al. Composition and diversity of CRISPR-Cas13a systems in the genus leptotrichia. Front Microbiol 10, 2838 (2019).

19. Ramachandran, A. & Santiago, J. G. CRISPR enzyme kinetics for molecular diagnostics. Anal. Chem. 93, 7456–7464 (2021).

20. Planas, D. et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 596, 276–280 (2021).

21. Son, S. et al. Sensitive and multiplexed RNA detection with Cas13 droplets and kinetic barcoding. medRxiv, https://doi.org/10.1101/2021.08.02.21261509 (2021).

23. Xie, S. Single-molecule approach to enzymology. Single Molecules 2, 229–236 (2001).

24. Lindner, A. K. et al. Head-to-head comparison of SARS-CoV-2 antigen- detecting rapid test with self-collected anterior nasal swab versus professional- collected nasopharyngeal swab. Eur Respir J, https://doi.org/10.1183/ 13993003.03961-2020 (2020).

25. Vogels, C. B. et al. SalivaDirect: A simplified and flexible platform to enhance SARS-CoV-2 testing capacity. Med 2, 263–280 (2020).

26. Shan, Y., Zhou, X., Huang, R. & Xing, D. High-fidelity and rapid quantification of miRNA combining crRNA programmability and CRISPR/ Cas13a trans-cleavage activity. Anal. Chem. 91, 5278–5285 (2019).

27. Mu, X., Greenwald, E., Ahmad, S. & Hur, S. An origin of the immunogenicity of in vitro transcribed RNA. Nucleic Acids Res 46, 5239–5249 (2018).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る