リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「BROMI/TBC1D32 together with CCRK/CDK20 and FAM149B1/JBTS36 contributes to intraflagellar transport turnaround involving ICK/CILK1」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

BROMI/TBC1D32 together with CCRK/CDK20 and FAM149B1/JBTS36 contributes to intraflagellar transport turnaround involving ICK/CILK1

Satoda, Yuuki Noguchi, Tatsuro Fujii, Taiju Taniguchi, Aoi Katoh, Yohei Nakayama, Kazuhisa 京都大学 DOI:10.1091/mbc.E22-03-0089

2022.08

概要

Primary cilia are antenna-like organelles that contain specific proteins, and are crucial for tissue morphogenesis. Anterograde and retrograde trafficking of ciliary proteins are mediated by the intraflagellar transport (IFT) machinery. BROMI/TBC1D32 interacts with CCRK/CDK20, which phosphorylates and activates the ICK/CILK1 kinase, to regulate the change in direction of the IFT machinery at the ciliary tip. Mutations in BROMI, CCRK, and ICK in humans cause ciliopathies, and mice defective in these genes are also known to demonstrate ciliopathy phenotypes. We here show that BROMI interacts not only with CCRK but also with CFAP20, an evolutionarily conserved ciliary protein, and with FAM149B1/JBTS36, a protein in which mutations cause Joubert syndrome. In addition, we show that FAM149B1 interacts directly with CCRK as well as with BROMI. Ciliary defects observed in CCRK-knockout (KO), BROMI-KO, and FAM149B1-KO cells, including abnormally long cilia and accumulation of the IFT machinery and ICK at the ciliary tip, resembled one another, and BROMI mutants that are defective in binding to CCRK and CFAP20 were unable to rescue the ciliary defects of BROMI-KO cells. These data indicate that CCRK, BROMI, FAM149B1, and probably CFAP20, all together regulate the IFT turnaround process under the control of ICK.

この論文で使われている画像

参考文献

Adly N, Alhashem A, Ammari A, Alkuraya FS (2014). Ciliary genes TBC1D32/C6orf170 and SCLT1 are mutated in patients with OFD type IX. Hum Mut 35, 36–40.

Alsahan N, Alkuraya FS (2020). Confirming TBC1D32-related ciliopathy in humans. Am J Med Genet 182, 1985–1987.

Anvarian Z, Mykytyn K, Mukhopadhyay S, Pedersen LB, Christensen ST (2019). Cellular signaling by primary cilia in development, organ function and disease. Nat Rev Nephrol 15, 199–219.

Asleson CM, Lefebvre PA (1998). Genetic analysis of flagellar length control in Chlamydomonas reinhardtii: a new long-flagella locus and extragenic suppressor mutations. Genetics 148, 693–702.

Badgandi HB, Hwang S, Shimada IS, Loriot E, Mukhopadhyay S (2017). Tubby family proteins are adaptors for ciliary trafficking of integral mem- brane proteins. J Cell Biol 216, 743–760.

Bengs F, Scholz A, Kuhn D, Wiese M (2005). LmxMPK9, a mitogen-activated protein kinase homologue affects flagellar length in Leishmania mexi- cana. Mol Microbiol 55, 1606–1615.

Berman SA, Wilson NF, Haas NA, Lefebvre PA (2003). A novel MAP kinase regulates flagellar length in Chlamydomonas. Curr Biol 13, 1145–1149.

Bertiaux E, Mallet A, Fort C, Blisnick T, Bonnefoy S, Jung J, Lemos M, Marco S, Vaughan S, Trépout S, et al. (2018). Bidirectional intraflagellar trans- port is restricted to two sets of microtubule doublets in the trypanosome flagellum. J Cell Biol 217, 4284–4297.

Blomen VA, Májek P, Jae LT, Bigenzahn JW, Nieuwenhuis J, Staring J, Sacco R, van Diemen FR, Olk N, Stukalov A, et al. (2015). Gene essentiality and synthetic lethality in haploid human cells. Science 350, 1092–1096.

Boldt K, van Reeuwijk J, Lu Q, Koutroumpas K, Nguyen TM, Texier Y, van Beersum SEC, Horn N, Willer JR, Mans D, et al. (2016). An organelle- specific protein landscape identifies novel diseases and molecular mechanisms. Nat Commun 7, 11491.

Braun DA, Hildebrandt F (2017). Ciliopathies. Cold Spring Harb Perspect Biol 9, a028191.

Burghoorn J, Dekkers MPJ, Rademakers S, de Jong T, Willemsen R, Jansen G (2007). Mutation of the MAP kinase DYF-5 affects docking and undocking of kinesin-2 motors and reduces their speed in the cilia of Caenorhabditis elegans. Proc Natl Acad Sci USA 104, 7157–7162.

Chaya T, Furukawa T (2021). Post-translational modification enzymes as key regulators of ciliary protein trafficking. J Biochem 169, 633–642.

Chaya T, Omori Y, Kuwahara R, Furukawa T (2014). ICK is essential for cell type-specific ciliogenesis and the regulation of ciliary transport. EMBO J 33, 1227–1242.

Chien AS, Shih SM, Bower R, Tritschler D, Porter ME, Yildiz A. (2017). Dynamics of the IFT machinery at the ciliary tip. eLife 6, e28606.

Ding M, Jin L, Xie L, Park SH, Tong Y, Wu D, Chhabra AB, Fu Z, Li X (2018). A murine model for human ECO syndrome reveals a critical role of intes- tinal cell kinase in skeletal development. Calcif Tissue Int 102, 348–357.

Fu Z, Gailey CD, Wang EJ, Brautigan DL (2019). Ciliogenesis associated kinase 1 (CILK1): targets and functions in various organ systems. FEBS Lett 593, 2990–3002.

Fu Z, Larson KA, Chitta RK, Parker SA, Turk BE, Lawrence MW, Kaldis P, Galaktionov K, Cohn SM, Shabanowitz J, et al. (2006). Identification of yin-yang regulators and a phosphorylation consensus for male germ cell- associated kinase (MAK)-related kinase. Mol Cell Biol 26, 8639–8654.

Fu Z, Schroeder MJ, Shabanowitz J, Kaldis P, Togawa K, Rustgi AK, Hunt DF, Sturgill TW (2005). Activation of a nuclear Cdc2-related kinase within a mitogen-activated protein kinase-like TDY motif by autophosphorylation and cyclin-dependent protein kinase-activating kinase. Mol Cell Biol 25, 6047–6064.

Fujisawa S, Qiu H, Nozaki S, Chiba S, Katoh Y, Nakayama K (2021). ARL3 and ARL13B GTPases participate in distinct steps of INPP5E targeting to the ciliary membrane. Biol Open 10, bio058843.

Gailey CD, Wang EJ, Jin L, Ahmadi S, Brautigan DL, Li X, Xu W, Scott MM, Fu Z (2021). Phosphosite T674A mutation in kinesin family member 3A fails to reproduce tissue and ciliary defects characteristic of CILK1 loss of function. Dev Dyn 250, 263–273.

Garcia-Gonzalo FR, Reiter JF (2017). Open sesame: how transition fibers and the transition zone control ciliary composition. Cold Spring Harb Perspect Biol 9, a028134.

Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud JB, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J, et al. (2016). Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17, 148.

Hamada Y, Tsurumi Y, Nozaki S, Katoh Y, Nakayama K (2018). Interac- tion of WDR60 intermediate chain with TCTEX1D2 light chain of the dynein-2 complex is crucial for ciliary protein trafficking. Mol Biol Cell 29, 1628–1639.

Han S, Miyoshi K, Shikada S, Amano G, Wang Y, Yoshimura T, Katayama T (2019). TULP3 is required for localization of membrane-associated proteins ARL13B and INPP5E to primary cilia. Biochem Biophys Res Commun 509, 227–234.

Hietamäki J, Gregory LC, Ayoub S, Livonen T, Vaaralahti K, Liu X, Brand- stack N, Buckton AJ, Laire T, Känsäkoski J, et al. (2020). Loss-of-function variants in TBC1D32 underlie syndromic hypopituitarism. J Clin Endocri- nol Metab 105, 1748–1758.

Hirano T, Katoh Y, Nakayama K (2017). Intraflagellar transport-A complex mediates ciliary entry as well as retrograde trafficking of ciliary G protein-coupled receptors. Mol Biol Cell 28, 429–439.

Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, Baltier K, Colby G, Gebreab F, Gygi MP, Parzen H, et al. (2017). Architecture of the human interactome defines protein communities and disease networks. Nature 545, 505–509.

Ishida Y, Kobayashi T, Chiba S, Katoh Y, Nakayama K (2021). Molecular basis of ciliary defects caused by compound heterozygous IFT144/WDR19 mutations found in cranioectodermal dysplasia. Hum Mol Genet 30, 213–225.

Ishikawa H, Thompson J, Yates JR III, Marshall WF (2012). Proteomic analysis of mammalian primary cilia. Curr Biol 22, 414–419.

Jiang Y-Y, Maier W, Baumeister R, Minevich G, Joachimiak E, Wloga D, Ruan Z, Kannan N, Bocarro S, Bahraini A, et al. (2019). LF4/MOK and a CDK- related kinase regulate the number and length of cilia in Tetrahymena. PLoS Genet 15, e1008099.

Jordan MA, Diener DR, Stepanek L, Pigino G (2018). The cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia. Nat Cell Biol 20, 1250–1255.

Katoh Y, Michisaka S, Nozaki S, Funabashi T, Hirano T, Takei R, Nakayama K (2017). Practical method for targeted disruption of cilia-related genes by using CRISPR/Cas9-mediated homology-independent knock-in system. Mol Biol Cell 28, 898–906.

Katoh Y, Nakamura K, Nakayama K (2018). Visible immunoprecipitation (VIP) assay: a simple and versatile method for visual detection of protein- protein interactions. Bio-protocol 8, e2687.

Katoh Y, Nozaki S, Hartanto D, Miyano R, Nakayama K (2015). Architectures of multisubunit complexes revealed by a visible immunoprecipitation assay using fluorescent fusion proteins. J Cell Sci 128, 2351–2362.

Khalifa AAZ, Ichikawa M, Dai D, Kubo S, Black CS, Peri K, McAlear TS, Veyron S, Yang SK, Vargas J, et al. (2020). The inner junction complex of the cilia is an interaction hub that involves tubulin post-translational modifications. eLife 9, e52760.

Ko HW, Norman RX, Tran J, Fuller KP, Fukuda M, Eggenschwiler JT (2010). Broad-minded links cell cycle-related kinase to cilia assembly and Hedgehog signal transduction. Dev Cell 18, 237–247.

Kobayashi T, Ishida Y, Hirano T, Katoh Y, Nakayama K (2021). Cooperation of the IFT-A complex with the IFT-B complex is required for ciliary retro- grade protein trafficking and GPCR import. Mol Biol Cell 32, 45–56.

Kopinke D, Norris AM, Mukhopadhyay S (2021). Developmental and regen- erative paradigms of cilia regulated hedgehog signaling. Sem Cell Dev Biol 110, 89–103.

Lahiry P, Wang B, Robinson JF, Turowec JP, Litchfield DW, Lanktree MB, Gloor GB, Puffenberger EG, Strauss KA, Martens MB, et al. (2009). A multiplex human syndrome implicates a key role for intestinal cell kinase in development of central nervous, skeletal, and endocrine systems. Am J Hum Genet 84, 134–147.

Laligné C, Klotz C, de Loubresse NG, Lemullois M, Hori M, Laurent FX, Papon JF, Louis B, Cohen J, Koll F (2010). Bug22p, a conserved cen- trosomal/ciliary protein also present in higher plants, is required for an effective ciliary stroke in Paramecium. Euk Cell 9, 645–655.

Li D, Liu Y, Yi P, Zhu Z, Li W, Zhang QC, Li JB, Ou G (2021). RNA editing restricts hyper active ciliary kinases. Science 373, 984–991.

Li X, Wang W, Wang J, Malovannaya A, Xi Y, Li W, Guerra R, Hawke DH, Qin J, Chen J (2015). Proteomic analyses reveal distinct chromatin-associ- ated and soluble transcription factor complexes. Mol Syst Biol 11, 775.

Liu P, Lechtreck KF (2018). The Bardet-Biedl syndrome protein complex is an adaptor expanding the cargo of range of intraflagellar transport trains for ciliary export. Proc Natl Acad Sci USA 115, E934–E943.

Liu Y-X, Xue B, Sun W-Y, Wingfield JL, Sun J, Wu M, Lechtreck KF, Wu Z, Fan Z-C (2021). Bardet-Biedl syndrome 3 protein promotes ciliary exit of the signaling protein phospholipase D via the BBSome. eLife 10, e59119.

Ma M, Stoyanova M, Rademacher G, Dutcher SK, Brown A, Zhang R (2019). Structure of the decorated ciliary doublet microtubule. Cell 179, 909–922.

Maia TM, Gogendeau D, Pennetier C, Janke C, Basto R (2014). Bug22 influences cilium morphology and the post-translational modification of ciliary microtubules. Biol Open 3, 138–151.

Malumbres M (2014). Cyclin-dependent kinases. Genome Biol 15, 122. Maurya AK, Rogers T, Sengupta P (2019). A CCRK and a MAK kinase modu-late cilia branching and length via regulation of axonemal microtubule dynamics in Caenorhabditis elegans. Curr Biol 29, 1286–1300.

Maurya AK, Sengupta P (2021). xbx-4, a homolog of the Joubert syndrome gene FAM149B1, acts via the CCRK and RCK kinase cascade to regulate cilia morphology. Curr Biol 31, 5642–5649.

Meng D, Cao M, Oda T, Pan J (2014). The conserved ciliary protein Bug22 controls planar beating of Chlamydomonas flagella. J Cell Sci 127, 281–287.

Mijalkovic J, van Krugten J, Oswald F, Acar S, Peterman EJG (2018). Single- molecule turnarounds of intraflagellar transport at the C. elegans ciliary tip. Cell Rep 25, 1701–1707.

Moon H, Song J, Shin J-O, Lee H, Kim H-K, Eggenschwiler JT, Bok J, Ko HW (2014). Intestinal cell kinase, a protein associated with endocrine- cerebro-osteodysplasia syndrome, is a key regulator of cilia length and Hedgehog signaling. Proc Natl Acad Sci USA 111, 8541–8546.

Mukhopadhyay S, Wen X, Chih B, Nelson CD, Lane WS, Scales SJ, Jackson PK. (2010). TULP3 bridges the IFT-A complex and membrane phos- phoinositides to promote trafficking of G protein-coupled receptors into primary cilia. Genes Dev 24, 2180–2193.

Nachury MV, Mick DU. (2019). Establishing and regulating the composition of cilia for signal transduction. Nat Rev Mol Cell Biol 20, 389–405.

Nakamura K, Noguchi T, Takahara M, Omori Y, Furukawa T, Katoh Y, Na- kayama K (2020). Anterograde trafficking of ciliary MAP kinase-like ICK/ CILK1 by the intraflagellar transport machinery is required for intraciliary retrograde protein trafficking. J Biol Chem 295, 13363–13376.

Nakayama K, Katoh Y (2020). Architecture of the IFT ciliary trafficking machinery and interplay between its components. Crit Rev Biochem Mol Biol 55, 179–196.

Nievergelt AP, Zykov I, Diener D, Buchholz T-O, Delling M, Diez S, Jug F, Šte˘ pánek L, Pigino G (2021). Intraflagellar transport trains can turn

around without the ciliary tip complex. bioRxiv doi: https://doi.org/10.11 01/2021.1103.1119.436138.

Nishijima Y, Hagiya Y, Kubo T, Takei R, Katoh Y, Nakayama K (2017). RABL2 interacts with the intraflagellar transport B complex and CEP19 and participates in ciliary assembly. Mol Biol Cell 28, 1652–1666.

Noguchi T, Nakamura K, Satoda Y, Katoh Y, Nakayama K (2021). CCRK/ CDK20 regulates ciliary retrograde protein trafficking via interacting with BROMI/TBC1D32. PLoS ONE 16, e0258497.

Nozaki S, Castro Araya RF, Katoh Y, Nakayama K (2019). Requirement of IFT-B–BBSome complex interaction in export of GPR161 from cilia. Biol Open 8, bio043786.

Nozaki S, Katoh Y, Kobayashi T, Nakayama K (2018). BBS1 is involved in retrograde trafficking of ciliary GPCRs in the context of the BBSome complex. PLoS ONE 13, e0195005.

Oh YS, Wang EJ, Gailey CD, Brautigan DL, Allen BL, Fu Z (2019). Ciliopathy- associated protein kinase ICK requires its non-catalytic carboxyl-terminal domain for regulation of ciliogenesis. Cells 8, 677.

Okamoto S, Chaya T, Omori Y, Kuwahara R, Kubo S, Sakaguchi H, Furukawa T (2017). Ick ciliary kinase is essential for planar cell polarity formation in inner ear hair cells and hearing function. J Neurosci 37, 2073–2085.

Okazaki M, Kobayashi T, Chiba S, Takei R, Liang L, Nakayama K, Katoh Y (2020). Formation of the B9-domain protein complex MKS1–B9D2– B9D1 is essential as a diffusion barrier for ciliary membrane proteins. Mol Biol Cell 31, 2259–2268.

Omori Y, Chaya T, Katoh K, Sato S, Muraoka K, Ueno S, Koyasu T, Kondo M, Furukawa T (2010). Negative regulation of ciliary length by ciliary male germ cell-assoaciated kinase (Mak) is required for retinal photoreceptor survival. Proc Natl Acad Sci USA 107, 22671–22676.

Oud M, Bonnard C, Mans D, Altunoglu U, Tohari S, Ng A, Eskin A, Lee H, Rupar C, de Wagenaar N, et al. (2016). A novel ICK mutation causes cili- ary disruption and lethal endocrine-cerebro-osteodysplasia syndrome. Cilia 5, 8.

Picariello T, Brown JM, Hou Y, Swank G, Cochran DA, King OD, Lechtreck K, Pazour GJ, Witman GB (2019). A global analysis of IFT-A function reveals specialization for transport of membrane-associated proteins into cilia. J Cell Sci 132, jcs220749.

Reiter JF, Leroux MR (2017). Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol 18, 533–547.

Shaheen R, Jiang N, Alzahrani F, Ewida N, Al-Sheddi T, Alobeid E, Musaev D, Stanley V, Hashem M, Ibrahim N, et al. (2019). Bi-allelic mutations in FAM149B1 cause abnormal primary cilium and a range of ciliopathy phenotypes in humans. Am J Hum Genet 104, 731–737.

Siegert S, Mindler GT, Brücke C, Kranzl A, Patsch J, Ritter M, Janecke AR, Vodopiutz J (2021). Expanding the phenotype of the FAM149B1-related ciliopathy and identification of three neurogenetic disorders in a single family. Genes 12, 1648.

Snouffer A, Brown D, Lee H, Walsh J, Lupu F, Norman R, Lechtreck K, Ko HW, Eggenschwiler J (2017). Cell cycle-related kinase (CCRK) regu- lates ciliogenesis and Hedgehog signaling in mice. PLoS Genet 13, e1006912.

Stepanek L, Pigino G (2016). Microtubule doublets are double-track railways for intraflagellar transport trains. Science 352, 721–724.

Takahashi S, Kubo K, Waguri S, Yabashi A, Shin H-W, Katoh Y, Nakayama K (2012). Rab11 regulates exocytosis of recycling vesicles at the plasma membrane. J Cell Sci 125, 4049–4057.

Tam L-W, Wilson NF, Lefebvre PA (2007). A CDK-related kinase regulates the length and assembly of flagella in Chlamydomonas. J Cell Biol 176, 819–829.

Taschner M, Lorentzen E (2016). The intraflagellar transport machinery. Cold Spring Harb Perspect Biol 8, a028092.

Taylor SP, Bosakova MK, Varecha M, Balek L, Barta T, Trantirek L, Jelinkova I, Duran I, Vesela I, Forlenza KN, et al. (2016). An inactivating mutation in intestinal cell kinase, ICK, impairs hedgehog signalling and causes short rib-polydactyly syndrome. Hum Mol Genet 25, 3998–4011.

Thomas S, Ritter B, Verbich D, Sanson C, Bourbonnière L, McKinney RA, McPherson PS (2009). Intersectin regulates dendritic spine development and somatodendritic endocytosis but not synaptic vesicle recycling in hippocampal neurons. J Biol Chem 284, 12410–12419.

Toropova K, Zalyte R, Mukhopadhyay AG, Mladenov M, Carter AP, Roberts AJ (2019). Structure of the dynein-2 complex and its assembly with intraflagellar transport trains. Nat Struct Mol Biol 26, 823–829.

Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, Bridgland A, Cowie A, Meyer C, Laydon A, et al. (2021). Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596.

Wang C, Li J, Takemaru K, Jiang X, Xu G, Wang B. (2018). Centrosomal protein Dzip1l binds Cby, promotes ciliary bud formation, and acts redundantly with Bromi to regulate ciliogenesis in the mouse. Develop- ment 145, dev164236.

Wang T, Birsoy K, Hughes NW, Krupczak KM, Post Y, Wei JJ, Lander ES, Sa- batini DM (2015). Identification and characterization of essential genes in the human genome. Science 350, 1096–1101.

Wang Y, Ren Y, Pan J (2019). Regulation of flagellar assembly and length in Chlamydomonas by LF4, a MAPK-related kinase. FASEB J 33, 6431–6441.

Wingfield JL, Mekonnen B, Mengoni I, Liu P, Jordan M, Diener D, Pigino G, Lechtreck K (2021). In vivo imaging shows continued association of several IFT A, B and dynein complexes while IFT trains U-turn at the tip. J Cell Sci 134, jcs259010.

Yanagisawa H, Mathis G, Oda T, Hirono M, Richey EA, Ishikawa H, Marshall WF, Kikkawa M, Qin H (2014). FAP20 is an inner junction protein

of doublet microtubules essential for both the planar asymmetrical waveform and stability of flagella in Chlamydomonas. Mol Biol Cell 25, 1472–1483.

Yang Y, Roine N, Mäkelä TP (2013). CCRK depletion inhibits glioblas- toma cell proliferation in a cilium-dependent manner. EMBO Rep 14, 741–747.

Ye F, Nager AR, Nachury MV (2018). BBSome trains remove activated GPCRs from cilia by enabling passage through the transition zone. J Cell Biol 217, 1847–1868.

Yi P, Xie C, Ou G (2018). The kinases male germ cell-associated kinase and cell cycle-related kinase regulate kinesin-2 motility in Caenorhabditis elegans neuronal cilia. Traffic 19, 522–535.

Zhou Z, Qiu H, Castro-Araya R-F, Takei R, Nakayama K, Katoh Y (2022). Impaired cooperation between IFT74/BBS22–IFT81 and IFT25–IFT27/ BBS19 in the IFT-B complex causes ciliary defects in Bardet-Biedl syn- drome. Hum Mol Genet 31, ddab354.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る