リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ARL3 and ARL13B GTPases participate in distinct steps of INPP5E targeting to the ciliary membrane」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ARL3 and ARL13B GTPases participate in distinct steps of INPP5E targeting to the ciliary membrane

Fujisawa, Sayaka Qiu, Hantian Nozaki, Shohei Chiba, Shuhei Katoh, Yohei Nakayama, Kazuhisa 京都大学 DOI:10.1242/bio.058843

2021.09

概要

INPP5E, a phosphoinositide 5-phosphatase, localizes on the ciliary membrane via its C-terminal prenyl moiety, and maintains the distinct ciliary phosphoinositide composition. The ARL3 GTPase contributes to the ciliary membrane localization of INPP5E by stimulating the release of PDE6D bound to prenylated INPP5E. Another GTPase, ARL13B, which is localized on the ciliary membrane, contributes to the ciliary membrane retention of INPP5E by directly binding to its ciliary targeting sequence. However, as ARL13B was shown to act as a guanine nucleotide exchange factor (GEF) for ARL3, it is also possible that ARL13B indirectly mediates the ciliary INPP5E localization via activating ARL3. We here show that INPP5E is delocalized from cilia in both ARL3-knockout (KO) and ARL13B-KO cells. However, some of the abnormal phenotypes were different between these KO cells, whereas others were found to be common, indicating the parallel roles of ARL3 and ARL13B at least concerning some cellular functions. For several variants of ARL13B, their ability to interact with INPP5E, rather than their ability as an ARL3-GEF, were associated with whether they could rescue the ciliary localization of INPP5E in ARL13B-KO cells. These observations together indicate that ARL13B determines the ciliary localization of INPP5E, mainly by its direct binding to INPP5E.

この論文で使われている画像

参考文献

Alkanderi, S., Molinari, E., Shaheen, R., Elmaghloob, Y., Stephen, L. A.,

Sammut, V., Ramsbottom, S. A., Srivastava, S., Cairns, G., Edwards, N. et al.

(2018). ARL3 mutations cause Joubert syndrome by disrupting ciliary protein

composition. Am. J. Hum. Genet. 103, 612-620. doi:10.1016/j.ajhg.2018.08.015

Badgandi, H. B., Hwang, S., Shimada, I. S., Loriot, E. and Mukhopadhyay, S.

(2017). Tubby family proteins are adaptors for ciliary trafficking of integral

membrane proteins. J. Cell Biol. 216, 743-760. doi:10.1083/jcb.201607095

Bangs, F. and Anderson, K. V. (2017). Primary cilia and mammalian hedgehog

signaling. Cold Spring Harb. Perspect. Biol. 9, a028175. doi:10.1101/

cshperspect.a028175

Bielas, S. L., Silhavy, J. L., Brancati, F., Kisseleva, M. V., Al-Gazali, L., Sztriha, L.,

Bayoumi, R. A., Zaki, M. S., Abdel-Aleem, A., Rosti, R. O. et al. (2009). Mutations

in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl

inositol signaling to the ciliopathies. Nat. Genet. 41, 1032-1036. doi:10.1038/ng.423

Braun, D. A. and Hildebrandt, F. (2017). Ciliopathies. Cold Spring Harb. Perspect.

Biol. 9, a028191. doi:10.1101/cshperspect.a028191

Cantagrel, V., Silhavy, J. L., Bielas, S. L., Swistun, D., Marsh, S. E.,

Bertrand, J. Y., Audollent, S., Attié -Bitach, T., Holden, K. R., Dobyns, W. B.

et al. (2008). Mutations in the cilia gene ARL13B lead to the classical

form of Joubert syndrome. Am. J. Hum. Genet. 83, 170-179. doi:10.1016/j.ajhg.

2008.06.023

Chá vez, M., Ena, S., Van Sande, J., de Kerchove d’Exaerde, A., Schurmans, S.

and Schiffmann, S. N. (2015). Modulation of ciliary phosphoinositide content

regulates trafficking and sonic hedgehog signaling output. Dev. Cell 34, 338-350.

doi:10.1016/j.devcel.2015.06.016

Conduit, S. E. and Vanhaesebroeck, B. (2020). Phosphoinositide lipids in primary

cilia biology. Biochem. J. 477, 3541-3565. doi:10.1042/BCJ20200277

Dateyama, I., Sugihara, Y., Chiba, S., Ota, R., Nakagawa, R., Kobayashi, T. and

Itoh, H. (2019). RABL2 positively controls localization of GPCRs in mammalian

primary cilia. J. Cell Sci. 132, jcs224428. doi:10.1242/jcs.224428

Eguether, T., San Agustin, J. T., Keady, B. T., Jonassen, J. A., Liang, Y.,

Francis, R., Tobita, K., Johnson, C. A., Abdelhamed, Z. A., Lo, C. W. et al.

(2014). IFT27 links the BBSome to IFT for maintenance of the ciliary signaling

compartment. Dev. Cell 31, 279-290. doi:10.1016/j.devcel.2014.09.011

11

Biology Open

MATERIALS AND METHODS

Biology Open (2021) 10, bio058843. doi:10.1242/bio.058843

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

El Maghloob, Y., Sot, B., Mcllwraith, M. J., Garcia, E., Yelland, T. and Ismail, S.

(2021). ARL3 activation requires the co-GEF BART and effector-mediated

turnover. eLife 10, e64624. doi:10.7554/eLife.64624

Fansa, E. K. and Wittinghofer, A. (2016). Sorting of lipidated cargo by the Arl2/Arl3

system. Small GTPases 7, 222-230. doi:10.1080/21541248.2016.1224454

Fansa, E. K., Kö sling, S. K., Zent, E., Wittinghofer, A. and Ismail, S. (2016).

PDE6δ-mediated sorting of INPP5E into the cilium is determined by cargo-carrier

affinity. Nat. Commun. 7, 1-19. doi:10.1038/ncomms11366

Fisher, S., Kuna, D., Caspary, T., Kahn, R. A. and Sztul, E. (2020). ARF family

GTPases with links to cilia. Am. J. Physiol. Cell Physiol. 319, C404-C418. doi:10.

1152/ajpcell.00188.2020

Garcia-Gonzalo, F. R. and Reiter, J. F. (2017). Open sesame: how transition fibers

and the transition zone control ciliary composition. Cold Spring Harb. Perspect.

Biol. 9, a028134. doi:10.1101/cshperspect.a028134

Garcia-Gonzalo, F. R., Phua, S. C., Roberson, E. C., Garcia, G., III, Abedin, M.,

Schurmans, S., Inoue, T. and Reiter, J. F. (2015). Phosphoinositides regulate

ciliary protein trafficking to modulate Hedgehog signaling. Dev. Cell 34, 400-409.

doi:10.1016/j.devcel.2015.08.001

Gigante, E. D. and Caspary, T. (2020). Signaling in the primary cilum through the

lens of the Hedgehog pathway. Wiley Interdiscip. Rev. Dev. Biol. 9, e377. doi:10.

1002/wdev.377

Gonçalves, J. and Pelletier, L. (2017). The ciliary transition zone: finding the pieces

and assembling the gate. Mol. Cells 40, 243-253. doi:10.14348/molcells.2017.

0054

Gotthardt, K., Lokaj, M., Koerner, C., Falk, N., Gießl, A. and Wittinghofer, A.

(2015). A G-protein activation cascade from Arl13B to Arl3 and implications for

ciliary targeting of lipidated proteins. eLife 4, e11859. doi:10.7554/eLife.11859

Haeussler, M., Schö nig, K., Eckert, H., Eschstruth, A., Mianné , J., Renaud, J.B., Schneider-Maunoury, S., Shkumatava, A., Teboul, L., Kent, J. et al. (2016).

Evaluation of off-target and on-target scoring algorithms and integration into the

guide RNA selection tool CRISPOR. Genome Biol. 17, 148. doi:10.1186/s13059016-1012-2

Han, S., Miyoshi, K., Shikada, S., Amano, G., Wang, Y., Yoshimura, T. and

Katayama, T. (2019). TULP3 is required for localization of membrane-associated

proteins ARL13B and INPP5E to primary cilia. Biochem. Biophys. Res. Commun.

509, 227-234. doi:10.1016/j.bbrc.2018.12.109

Hanke-Gogokhia, C., Wu, Z., Gerstner, C. D., Frederick, J. M., Zhang, H. and

Baehr, W. (2016). Arf-like protein 3 (ARL3) regulates protein trafficking and

ciliogenesis in mouse photoreceptors. J. Biol. Chem. 290, 7142-7155. doi:10.

1074/jbc.M115.710954

Higginbotham, H., Eom, T.-Y., Mariani, L. E., Bachleda, A., Hirt, J., Gukassyan, V.,

Cusack, C. L., Lai, C., Caspary, T. and Anton, E. S. (2012). Arl13b in primary cilia

regulates the migration and placement of interneurons in the developing cerebral

cortex. Dev. Cell 23, 925-938. doi:10.1016/j.devcel.2012.09.019

Hirano, T., Katoh, Y. and Nakayama, K. (2017). Intraflagellar transport-A complex

mediates ciliary entry as well as retrograde trafficking of ciliary G protein-coupled

receptors. Mol. Biol. Cell 28, 429-439. doi:10.1091/mbc.e16-11-0813

Humbert, M. C., Weihbrecht, K., Searby, C. C., Li, Y., Pope, R. M., Sheffield, V. C.

and Seo, S. (2012). ARL13B, PDE6D, and CEP164 form a functional network for

INPP5E ciliary targeting. Proc. Natl. Acad. Sci. USA 109, 19691-19696. doi:10.

1073/pnas.1210916109

Ishida, Y., Kobayashi, T., Chiba, S., Katoh, Y. and Nakayama, K. (2021).

Molecular basis of ciliary defects caused by compound heterozygous IFT144/

WDR19 mutations found in cranioectodermal dysplasia. Hum. Mol. Genet. 30,

213-225. doi:10.1093/hmg/ddab034

Ishikawa, H. and Marshall, W. F. (2011). Ciliogenesis: building the cell’s antenna.

Nat. Rev. Mol. Cell Biol. 12, 222-234. doi:10.1038/nrm3085

Ishikawa, H., Thompson, J., Yates, J. R., III and Marshall, W. F. (2012). Proteomic

analysis of mammalian primary cilia. Curr. Biol. 22, 414-419. doi:10.1016/j.cub.

2012.01.031

Ismail, S. A., Chen, Y.-X., Rusinova, A., Chandra, A., Bierbaum, M., Gremer, L.,

Triola, G., Waldmann, H., Bastiaens, P. I. and Wittinghofer, A. (2011). Arl2GTP and Arl3-GTP regulates a GDI-like transport system for farnesylated cargo.

Nat. Chem. Biol. 7, 942-949. doi:10.1038/nchembio.686

Ivanova, A. A., Caspary, T., Syfriend, N. T., Duong, D. M., West, A. B., Liu, Z. and

Kahn, R. A. (2017). Biochemical characterization of purified mammalian ARL13B

protein indicates that it is an atypical GTPase and ARL3 guanine nucleotide

exchange factor (GEF). J. Biol. Chem. 292, 11091-11108. doi:10.1074/jbc.M117.

784025

Jacoby, M., Cox, J. J., Gayral, S., Hampshire, D. J., Ayub, M., Blockmans, M.,

Pernot, E., Kisseleva, M. V., Compère, P., Schiffmann, S. N. et al. (2009).

INPP5E mutations cause primary cilium signaling defects, ciliary instability and

ciliopathies in human and mouse. Nat. Genet. 41, 1027-1031. doi:10.1038/ng.427

Jensen, V. L. and Leroux, M. R. (2017). Gates for solubule and membrane proteins,

and two trafficking systems (IFT and LIFT), establish a dynamic ciliary signaling

compartment. Curr. Opin. Cell Biol. 47, 83-91. doi:10.1016/j.ceb.2017.03.012

Kanie, T., Abbott, K. L., Mooney, N. A., Plowey, E. D., Demeter, J. and Jackson,

P. K. (2017). The CEP19-RABL2 GTPase complex binds to IFT-B to initiate

intraflagellar transport at the ciliary base. Dev. Cell 42, 22-36. doi:10.1016/

j.devcel.2017.05.016

Biology Open (2021) 10, bio058843. doi:10.1242/bio.058843

Katoh, Y., Nozaki, S., Hartanto, D., Miyano, R. and Nakayama, K. (2015).

Architectures of multisubunit complexes revealed by a visible immunoprecipitation

assay using fluorescent fusion proteins. J. Cell Sci. 128, 2351-2362. doi:10.1242/

jcs.168740

Katoh, Y., Terada, M., Nishijima, Y., Takei, R., Nozaki, S., Hamada, H. and

Nakayama, K. (2016). Overall architecture of the intraflagellar transport (IFT)-B

complex containing Cluap1/IFT38 as an essential component of the IFT-B

peripheral subcomplex. J. Biol. Chem. 291, 10962-10975. doi:10.1074/jbc.M116.

713883

Katoh, Y., Michisaka, S., Nozaki, S., Funabashi, T., Hirano, T., Takei, R. and

Nakayama, K. (2017). Practical method for targeted disruption of cilia-related

genes by using CRISPR/Cas9-mediated homology-independent knock-in

system. Mol. Biol. Cell 28, 898-906. doi:10.1091/mbc.e17-01-0051

Katoh, Y., Nakamura, K. and Nakayama, K. (2018). Visible immunoprecipitation

(VIP) assay: a simple and versatile method for visual detection of protein-protein

interactions. Bio-protocol 8, e2687. doi:10.21769/BioProtoc.2687

Katoh, Y., Chiba, S. and Nakayama, K. (2020). Practical method for

superresolution imaging of primary cilia and centrioles by expansion

microscopy using an amplibody for fluorescence signal amplification. Mol. Biol.

Cell 31, 2195-2206. doi:10.1091/mbc.E20-04-0250

Kobayashi, T., Ishida, Y., Hirano, T., Katoh, Y. and Nakayama, K. (2021).

Cooperation of the IFT-A complex with the IFT-B complex is required for ciliary

retrograde protein trafficking and GPCR import. Mol. Biol. Cell 32, 45-56. doi:10.

1091/mbc.E20-08-0556

Lechtreck, K.-F., Brown, J. M., Sampaio, J. L., Craft, J. M., Shevchenko, A.,

Evans, J. E. and Witman, G. B. (2013). Cycling of the signaling protein

phospholipase D through cilia requires the BBSome only for the export phase.

J. Cell Biol. 201, 249-261. doi:10.1083/jcb.201207139

Li, Y., Wei, Q., Zhang, Y., Ling, K. and Hu, J. (2010). The small GTPase ARL-13

and ARL-3 coordinate intraflagellar transport and ciliogenesis. J. Cell Biol. 189,

1039-1051. doi:10.1083/jcb.200912001

Liew, G. M., Ye, F., Nager, A. R., Murphy, J. P., Lee, J. S. H., Aguiar, M.,

Breslow, D. K., Gygi, S. P. and Nachury, M. V. (2014). The intraflagellar transport

protein IFT27 promotes BBSome exit from cilia through the GTPase ARL6/BBS3.

Dev. Cell 31, 265-278. doi:10.1016/j.devcel.2014.09.004

Lim, Y. S., Chua, C. E. L. and Tang, B. L. (2011). Rabs and other small GTPases in

ciliary transport. Biol. Cell 103, 209-221. doi:10.1042/BC20100150

Lin, Y.-C., Niewiadomski, P., Lin, B., Nakamura, H., Phua, S. C., Jiao, J.,

Levchenko, A., Inoue, T., Rohatgi, R. and Inoue, T. (2013). Chemically inducible

diffusion trap at cilia reveals molecular sieve-like barrier. Nat. Chem. Biol. 9,

437-443. doi:10.1038/nchembio.1252

Liu, P. and Lechtreck, K. F. (2018). The Bardet-Biedl syndrome protein complex

is an adaptor expanding the cargo of range of intraflagellar transport trains

for ciliary export. Proc. Natl. Acad. Sci. USA 115, E934-E943. doi:10.1073/pnas.

1713226115

Mariani, L. E., Bijlsma, M. F., Ivanova, A. I., Suciu, S. K., Kahn, R. A. and

Caspary, T. (2016). Arl13b regulates Shh signaling from both inside and outside

the cilium. Mol. Biol. Cell 27, 3780-3790. doi:10.1091/mbc.E16-03-0189

Mick, D. U., Rodrigues, R. B., Leib, R. D., Adams, C. M., Chien, A. S., Gygi, S. P.

and Nachury, M. V. (2015). Proteomics of primary cilia by proximity labeling. Dev.

Cell 35, 497-512. doi:10.1016/j.devcel.2015.10.015

Mukhopadhyay, S. and Rohatgi, R. (2014). G-protein-coupled receptors,

Hedgehog signaling and primary cilia. Sem. Cell Dev. Biol. 33, 63-72. doi:10.

1016/j.semcdb.2014.05.002

Mukhopadhyay, S., Wen, X., Chih, B., Nelson, C. D., Lane, W. S., Scales, S. J.

and Jackson, P. K. (2010). TULP3 bridges the IFT-A complex and membrane

phosphoinositides to promote trafficking of G protein-coupled receptors into

primary cilia. Genes Dev. 24, 2180-2193. doi:10.1101/gad.1966210

Nachury, M. V. and Mick, D. U. (2019). Establishing and regulating the composition

of cilia for signal transduction. Nat. Rev. Mol. Cell Biol. 20, 389-405. doi:10.1038/

s41580-019-0116-4

Nakamura, K., Noguchi, T., Takahara, M., Omori, Y., Furukawa, T., Katoh, Y. and

Nakayama, K. (2020). Anterograde trafficking of ciliary MAP kinase-like ICK/

CILK1 by the intraflagellar transport machinery is required for intraciliary

retrograde protein trafficking. J. Biol. Chem. 295, 13363-13376. doi:10.1074/jbc.

RA120.014142

Nakatsu, F. (2015). A phosphoinositide code for primary cilia. Dev. Cell 34, 379-380.

doi:10.1016/j.devcel.2015.08.008

Nakayama, K. and Katoh, Y. (2018). Ciliary protein trafficking mediated by IFT and

BBSome complexes with the aid of kinesin-2 and dynein-2 motors. J. Biochem.

163, 155-164. doi:10.1093/jb/mvx087

Nakayama, K. and Katoh, Y. (2020). Architecture of the IFT ciliary trafficking

machinery and interplay between its components. Crit. Rev. Biochem. Mol. Biol.

55, 179-196. doi:10.1080/10409238.2020.1768206

Nishijima, Y., Hagiya, Y., Kubo, T., Takei, R., Katoh, Y. and Nakayama, K. (2017).

RABL2 interacts with the intraflagellar transport B complex and CEP19 and

participates in ciliary assembly. Mol. Biol. Cell 28, 1652-1666. doi:10.1091/mbc.

E17-01-0017

Nozaki, S., Katoh, Y., Terada, M., Michisaka, S., Funabashi, T., Takahashi, S.,

Kontani, K. and Nakayama, K. (2017). Regulation of ciliary retrograde protein

12

Biology Open

RESEARCH ARTICLE

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

trafficking by the Joubert syndrome proteins ARL13B and INPP5E. J. Cell Sci.

130, 563-576. doi:10.1242/jcs.197004

Nozaki, S., Katoh, Y., Kobayashi, T. and Nakayama, K. (2018). BBS1 is involved

in retrograde trafficking of ciliary GPCRs in the context of the BBSome complex.

PLoS One 13, e0195005. doi:10.1371/journal.pone.0195005

Nozaki, S., Castro Araya, R. F., Katoh, Y. and Nakayama, K. (2019). Requirement

of IFT-B–BBSome complex interaction in export of GPR161 from cilia. Biol. Open

8, bio043786. doi:10.1242/bio.043786

Okazaki, M., Kobayashi, T., Chiba, S., Takei, R., Liang, L., Nakayama, K. and

Katoh, Y. (2020). Formation of the B9-domain protein complex MKS1–B9D2–

B9D1 is essential as a diffusion barrier for ciliary membrane proteins. Mol. Biol.

Cell 31, 2259-2268. doi:10.1091/mbc.E20-03-0208

Parisi, M. and Glass, I. (2017). Joubert syndrome. In GeneReviews® [Internet] (ed.

M.P. Adam, H.H. Ardinger, R.A. Pagon, S.E. Wallace, L.J.H. Bean, K. Stephens

and A. Amemiya). Seatle, WA: University of Washington, Bookshelf ID: NBK1325.

Park, J., Lee, J., Shim, J., Han, W., Lee, J., Bae, Y. C., Chung, Y. D., Kim, C. H.

and Moon, S. J. (2013). dTULP, the Drosophila melanogaster homolog of Tubby,

regulates transient receptor potential channel localization in cilia. PLoS Genet. 9,

e1003814. doi:10.1371/journal.pgen.1003814

Picariello, T., Brown, J. M., Hou, Y., Swank, G., Cochran, D. A., King, O. D.,

Lechtreck, K., Pazour, G. J. and Witman, G. B. (2019). A global analysis of IFTA function reveals specialization for transport of membrane-associated proteins

into cilia. J. Cell Sci. 132, jcs220749. doi:10.1242/jcs.220749

Qiu, H., Fujisawa, S., Nozaki, S., Katoh, Y. and Nakayama, K. (2021). Interaction

of INPP5E with ARL13B is essential for its ciliary membrane retention but

dispensable for its ciliary entry. Biol. Open 10, bio057653. doi:10.1242/bio.

057653

Reiter, J. F. and Leroux, M. R. (2017). Genes and molecular pathways

underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 18, 533-547. doi:10.1038/

nrm.2017.60

Schrick, J. J., Vogel, P., Abuin, A., Hampton, B. and Rice, D. S. (2006). ADPribosylation factor-like 3 is involved in kidney and photoreceptor development.

Am. J. Pathol. 168, 1288-1298. doi:10.2353/ajpath.2006.050941

Seo, S., Zhang, Q., Bugge, K., Breslow, D. K., Searby, C. C., Nachury, M. V. and

Sheffield, V. C. (2011). A novel protein LZTFL1 regulates ciliary trafficking of the

BBSome and Smoothened. PLoS Genet. 7, e1002358. doi:10.1371/journal.pgen.

1002358

Shi, X., Garcia, G., III, Van De Weghe, J. C., McGorty, R., Pazour, G. J.,

Doherty, D., Huang, B. and Reiter, J. F. (2017). Super-resolution microscopy

reveals that disruption of ciliary transition-zone architecture causes Joubert

syndrome. Nat. Cell Biol. 19, 1178-1188. doi:10.1038/ncb3599

Stephen, L. A. and Ismail, S. (2016). Shuttling and sorting of lipid-modified cargo

into the cilia. Biochem. Soc. Trans. 44, 1273-1280. doi:10.1042/BST20160122

Biology Open (2021) 10, bio058843. doi:10.1242/bio.058843

Takahashi, S., Kubo, K., Waguri, S., Yabashi, A., Shin, H.-W., Katoh, Y. and

Nakayama, K. (2012). Rab11 regulates exocytosis of recycling vesicles at the

plasma membrane. J. Cell Sci. 125, 4049-4057. doi:10.1242/jcs.102913

Takao, D. and Verhey, K. J. (2016). Gated entry into the ciliary compartment. Cell.

Mol. Life Sci. 73, 119-127. doi:10.1007/s00018-015-2058-0

Taschner, M. and Lorentzen, E. (2016). The intraflagellar transport machinery.

Cold Spring Harb. Perspect. Biol. 8, a028092. doi:10.1101/cshperspect.a028092

Thomas, S., Ritter, B., Verbich, D., Sanson, C., Bourbonnière, L.,

McKinney, R. A. and McPherson, P. S. (2009). Intersectin regulates dendritic

spine development and somatodendritic endocytosis but not synaptic vesicle

recycling in hippocampal neurons. J. Biol. Chem. 284, 12410-12419. doi:10.1074/

jbc.M809746200

Thomas, S., Wright, K. J., Le Corre, S., Micalizzi, A., Romani, M., Abhyankar, A.,

Saada, J., Perrault, I., Amiel, J., Litzler, J. et al. (2014). A homozygous PDE6D

mutation in Joubert syndrome impairs targeting of farnesylated INPP5E protein to

the primary cilium. Hum. Mut. 35, 137-146. doi:10.1002/humu.22470

Tsurumi, Y., Hamada, Y., Katoh, Y. and Nakayama, K. (2019). Interactions of the

dynein-2 intermediate chain WDR34 with the light chains are required for ciliary

retrograde protein trafficking. Mol. Biol. Cell 30, 658-670. doi:10.1091/mbc.E1810-0678

Vakulskas, C. A., Dever, D. P., Rettig, G. R., Turk, R., Jacobi, A. M.,

Collingwood, M. A., Bode, N. M., McNeill, M. S., Yan, S., Camarena, J. et al.

(2018). A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex

enables efficient gene editing in human hematopoietic stem and progenitor cells.

Nat. Med. 24, 1216-1224. doi:10.1038/s41591-018-0137-0

Van Valkenburgh, H., Shern, J. F., Sharer, J. D., Zhu, X. and Kahn, R. A. (2001).

ADP-ribosylation factors (ARFs) and ARF-like 1 (ARL1) have both specific and

shared effectors: characterizing ARF1-binding proteins. J. Biol. Chem. 276,

22826-22837. doi:10.1074/jbc.M102359200

Wä tzlich, D., Vetter, I., Gotthardt, K., Miertzschke, M., Chen, Y.-X.,

Wittinghofer, A. and Ismail, S. (2013). The interplay between RPGR, PDEδ

and Arl2/3 regulate the ciliary targeting of farnesylated cargo. EMBO Rep. 14,

465-472. doi:10.1038/embor.2013.37

Yang, T. T., Su, J., Wang, W.-J., Craige, B., Witman, G. B., Tsou, M.-F. B. and

Liao, J.-C. (2015). Superresolution pattern recognition reveals the architectural

map of the ciliary transition zone. Sci. Rep. 5, 14096. doi:10.1038/srep14096

Ye, F., Nager, A. R. and Nachury, M. V. (2018). BBSome trains remove activated

GPCRs from cilia by enabling passage through the transition zone. J. Cell Biol.

217, 1847-1868. doi:10.1083/jcb.201709041

Zhang, Q., Hu, J. and Ling, K. (2013). Molecular views of Arf-like small GTPases in

cilia and ciliopathies. Exp. Cell Res. 319, 2316-2322. doi:10.1016/j.yexcr.2013.

03.024

Zhang, Q., Li, Y., Zhang, Y., Torres, V. E., Harris, P. C., Ling, K. and Hu, J. (2016).

GTP-binding of ARL-3 is activated by ARL-13 as a GEF and stabilized by

UNC-119. Sci. Rep. 6, 24534. doi:10.1038/srep24534

Biology Open

RESEARCH ARTICLE

13

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る