リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Serology suggests adequate safety measures to protect healthcare workers from COVID-19 in Shiga Prefecture, Japan.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Serology suggests adequate safety measures to protect healthcare workers from COVID-19 in Shiga Prefecture, Japan.

CHANO Tokuhiro 40346028 0000-0002-9959-1183 MORITA Shin-ya 20449870 0000-0003-4079-707X SUZUKI Tomoyuki YAMASHITA Tomoko FUJIMURA Hirokazu YURI Tatsushi MENJU Masakazu TANAKA Masaaki KAKUNO Fumihiko 滋賀医科大学

2022.07

概要

Healthcare workers (HCWs), especially frontline workers against coronavirus disease 2019 (COVID-19), are considered to be risky because of occupational exposure to infected patients. This study evaluated the correlation between seroprevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies among HCWs and the implementation of personal protective equipment (PPE) & infection prevention and control (IPC). We recruited 1237 HCWs from nine public COVID-19-designated hospitals in Shiga Prefecture, central Japan, between 15-26 February 2021. All participants answered a self-administered questionnaire and provided blood samples to evaluate SARS-CoV-2 antibodies. A total of 22 cases (1·78%) were seropositive among the 1237 study participants. An unavoidable outbreak of SARS-CoV-2 had occurred at the terminal care unit of one hospital, before identifying and securely isolating this cluster of cases. Excluding with this cluster, 0·68% of HCWs were suspected to have had previous SARS-CoV-2 infections. Binomial logistic regression from individual questionnaires and seropositivity predicted a significant correlation with N95 mask implementation under aerosol conditions (p = 8.63e-06, aOR = 2.47) and work duration in a red zone (p = 2.61e-04, aOR = 1.99). The institutional questionnaire suggested that IPC education was correlated with reduced seropositivity at hospitals. Seroprevalence and questionnaire analyses among HCWs indicated that secure implementation of PPE and re-education of IPC are essential to prevent SARS-CoV-2 infection within healthcare facilities. Occupational infections from SARS-CoV-2 in healthcare settings could be prevented by adhering to adequate measures and appropriate use of PPE. With these measures securely implemented, HCWs should not be considered against as significantly risky or dirty by local communities.

参考文献

1. https://covid2019.fa.xwire.jp/#japan_prefecture. Latest status and graph of COVID-19 cases. February 28, 2021.

2. Yoshihara T, Ito K, Zaitsu M, Chung E, Aoyagi I, Kaji Y, et al. SARS-CoV-2 Seroprevalence among Healthcare Workers in General Hospitals and Clinics in Japan. Int J Environ Res Public Health. 2021;18(7). Epub 2021/05/01. https://doi.org/10.3390/ijerph18073786 PMID: 33916399; PubMed Central PMCID: PMC8038556.

3. Takita M, Matsumura T, Yamamoto K, Yamashita E, Hosoda K, Hamaki T, et al. Preliminary Results of Seroprevalence of SARS-CoV-2 at Community Clinics in Tokyo. medRxiv. 2020:2020.04.29.20085449. https://doi.org/10.1101/2020.04.29.20085449

4. https://www.who.int/publications/i/item/protocol-for-assessment-of-potential-risk-factors-for-2019- novel-coronavirus-(2019-ncov)-infection-among-health-care-workers-in-a-health-care-setting. COVID- 19: Surveillance, case investigation and epidemiological protocols. January 25, 2020.

5. http://www.kankyokansen.org/modules/news/index.php?content_id=328. Checklist for SARS-CoV-2 infection control in medical facilities. July 20, 2020.

6. https://www.niid.go.jp/niid/ja/2019-ncov/2484-idsc/9735-covid19-21.html. Checklist for outbreaks of COVID-19 in medical facilities. July 9, 2020.

7. Tanis J, Vancutsem E, Pie´rard D, Weets I, Bjerke M, Schiettecatte J, et al. Evaluation of four laboratory- based SARS-CoV-2 IgG antibody immunoassays. Diagn Microbiol Infect Dis. 2021; 100(1):115313. Epub 2021/02/07. https://doi.org/10.1016/j.diagmicrobio.2021.115313 PMID: 33548855; PubMed Cen- tral PMCID: PMC7816597.

8. Schallier A, De Baets S, De Bruyne D, Dauwe K, Herpol M, Couck P. Assay dependence of long-term kinetics of SARS-CoV-2 antibodies. Diagn Microbiol Infect Dis. 2021; 100(4):115403. Epub 2021/06/01. https://doi.org/10.1016/j.diagmicrobio.2021.115403 PMID: 34058541; PubMed Central PMCID: PMC8061083.

9. Schaffner A, Risch L, Aeschbacher S, Risch C, Weber MC, Thiel SL, et al. Characterization of a Pan- Immunoglobulin Assay Quantifying Antibodies Directed against the Receptor Binding Domain of the SARS-CoV-2 S1-Subunit of the Spike Protein: A Population-Based Study. J Clin Med. 2020; 9 (12):3989. Epub 2020/12/16. https://doi.org/10.3390/jcm9123989 PMID: 33317059; PubMed Central PMCID: PMC7764650.

10. Manisty C, Otter AD, Treibel TA, McKnight A´ , Altmann DM, Brooks T, et al. Antibody response to first BNT162b2 dose in previously SARS-CoV-2-infected individuals. The Lancet. 2021; 397(10279):1057–8. https://doi.org/10.1016/S0140-6736(21)00501-8 PMID: 33640038

11. Kubota K, Kitagawa Y, Matsuoka M, Imai K, Orihara Y, Kawamura R, et al. Clinical evaluation of the antibody response in patients with COVID-19 using automated high-throughput immunoassays. Diagn Microbiol Infect Dis. 2021; 100(3):115370. Epub 2021/03/22. https://doi.org/10.1016/j.diagmicrobio. 2021.115370 PMID: 33744623; PubMed Central PMCID: PMC7954771.

12. Prendecki M, Clarke C, Brown J, Cox A, Gleeson S, Guckian M, et al. Effect of previous SARS-CoV-2 infection on humoral and T-cell responses to single-dose BNT162b2 vaccine. The Lancet. 2021; 397 (10280):1178–81. https://doi.org/10.1016/S0140-6736(21)00502-X PMID: 33640037

13. Narasimhan M, Mahimainathan L, Araj E, Clark AE, Markantonis J, Green A, et al. Clinical Evaluation of the Abbott Alinity SARS-CoV-2 Spike-Specific Quantitative IgG and IgM Assays among Infected, Recovered, and Vaccinated Groups. Journal of Clinical Microbiology. 2021; 59(7):e00388–21. https:// doi.org/10.1128/JCM.00388-21 PMID: 33827901

14. Bryan A, Pepper G, Wener MH, Fink SL, Morishima C, Chaudhary A, et al. Performance Characteristics of the Abbott Architect SARS-CoV-2 IgG Assay and Seroprevalence in Boise, Idaho. Journal of Clinical Microbiology. 2020; 58(8):e00941–20. https://doi.org/10.1128/JCM.00941-20 PMID: 32381641

15. Kanda Y. Investigation of the freely available easy-to-use software ’EZR’ for medical statistics. Bone Marrow Transplant. 2013; 48(3):452–8. Epub 2012/12/05. https://doi.org/10.1038/bmt.2012.244 PMID: 23208313; PubMed Central PMCID: PMC3590441.

16. Anand SP, Prevost J, Nayrac M, Beaudoin-Bussieres G, Benlarbi M, Gasser R, et al. Longitudinal anal- ysis of humoral immunity against SARS-CoV-2 Spike in convalescent individuals up to 8 months post- symptom onset. Cell Rep Med. 2021; 2(6):100290. Epub 2021/05/11. https://doi.org/10.1016/j.xcrm. 2021.100290 PMID: 33969322; PubMed Central PMCID: PMC8097665.

17. Turner JS, Kim W, Kalaidina E, Goss CW, Rauseo AM, Schmitz AJ, et al. SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature. 2021. Epub 2021/05/25. https://doi. org/10.1038/s41586-021-03647-4 PMID: 34030176.

18. Yao L, Wang GL, Shen Y, Wang ZY, Zhan BD, Duan LJ, et al. Persistence of Antibody and Cellular Immune Responses in COVID-19 patients over Nine Months after Infection. J Infect Dis. 2021. Epub 2021/05/13. https://doi.org/10.1093/infdis/jiab255 PMID: 33978754.

19. Zeng F, Wu M, Wang J, Li J, Hu G, Wang L. Over one-year duration and age difference of SARS-CoV-2 antibody in convalescent COVID-19 patients. J Med Virol. 2021. Epub 2021/06/26. https://doi.org/10. 1002/jmv.27152 PMID: 34170519.

20. Gallais F, Gantner P, Bruel T, Velay A, Planas D, Wendling M-J, et al. Anti-SARS-CoV-2 Antibodies Persist for up to 13 Months and Reduce Risk of Reinfection. medRxiv. 2021:2021.05.07.21256823. https://doi.org/10.1101/2021.05.07.21256823

21. Caballero-Marcos A, Salcedo M, Alonso-Ferna´ndez R, Rodr´ıguez-Pera´lvarez M, Olmedo M, Graus Morales J, et al. Changes in humoral immune response after SARS-CoV-2 infection in liver transplant recipients compared to immunocompetent patients. Am J Transplant. 2021. Epub 2021/04/10. https:// doi.org/10.1111/ajt.16599 PMID: 33835707.

22. Harvey RA, Rassen JA, Kabelac CA, Turenne W, Leonard S, Klesh R, et al. Association of SARS-CoV- 2 Seropositive Antibody Test With Risk of Future Infection. JAMA Intern Med. 2021; 181(5):672–9. Epub 2021/02/25. https://doi.org/10.1001/jamainternmed.2021.0366 PMID: 33625463; PubMed Cen- tral PMCID: PMC7905701.

23. https://www.mhlw.go.jp/content/000761671.pdf. Second survey of SARS-CoV-2 seroprevalence in Japan, by Ministry of Health, Labour and Welfare. March 30, 2021.

24. Kageyama T, Ikeda K, Tanaka S, Taniguchi T, Igari H, Onouchi Y, et al. Antibody responses to BNT162b2 mRNA COVID-19 vaccine in 2,015 healthcare workers in a single tertiary referral hospital in Japan. medRxiv. 2021. Epub 2021/06/02. https://doi.org/10.1101/2021.06.01.21258188

25. Karlsson U, Fraenkel C-J. Covid-19: risks to healthcare workers and their families. BMJ. 2020; 371: m3944. https://doi.org/10.1136/bmj.m3944 PMID: 33115772

26. Wei J-T, Liu Z-D, Fan Z-W, Zhao L, Cao W-C. Epidemiology of and Risk Factors for COVID-19 Infection among Health Care Workers: A Multi-Centre Comparative Study. International Journal of Environmen- tal Research and Public Health. 2020; 17(19):7149. https://doi.org/10.3390/ijerph17197149 PMID: 33003634

27. Colaneri M, Novelli V, Cutti S, Muzzi A, Resani G, Monti MC, et al. The experience of the health care workers of a severely hit SARS-CoV-2 referral Hospital in Italy: incidence, clinical course and modifiable risk factors for COVID-19 infection. Journal of Public Health. 2020; 43(1):26–34. https://doi.org/10. 1093/pubmed/fdaa195 PMID: 33140084

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る