リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「線虫の神経軸索再生を制御するシグナル調節機構」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

線虫の神経軸索再生を制御するシグナル調節機構

清水, 達太 名古屋大学

2020.04.02

概要

神経軸索再生は損傷した軸索を修復する機構であり、線虫から哺乳動物まで種を超えて保存された生命現象である。しかし、その制御機構の分子メカニズムについてはまだ不明な点が多く残されている。近年、線虫 Caenorhabditis elegans のD 型運動神経の神経軸索再生において MLK-1 MAPKKK – MEK-1 MAPKK – KGB-1 JNK MAPK から構成される JNK 型MAPK 経路が非常に重要な役割を担うことが報告された。また、網羅的 RNAi スクリーニングにより JNK 経路に関与する因子として 92 個の svh 遺伝子が同定された。このうち、HGF 様増殖因子 SVH-1 と Met 様受容体チロシンキナーゼ SVH-2 はリガンド – 受容体として MLK-1 をリン酸化することで JNK 経路を活性化し、神経軸索再生を制御することが明らかとなった。この報告以降、他の svh 遺伝子の神経軸索再生への関与が次々と報告されている。そのため、未解析の svh 遺伝子の神経軸索再生との関連を明らかにすることで、神経軸索再生を制御する新たなシグナル調節機構の発見につながることが期待される。そこで、本研究では未解析の svh 遺伝子のうち、svh-6 と svh-15 の 2 つの遺伝子に着目して解析を行った。

svh-6/tns-1 は哺乳動物のテンシンのホモログをコードしていた。本研究では TNS-1が細胞自律的に神経軸索再生を制御することを明らかにした。また、神経軸索再生における TNS-1 の機能には C 端に存在する SH2 ドメインと PTB ドメインが必要であることを見出した。さらに生化学的な解析により、TNS-1 は SH2 ドメインを介して自己リン酸化した SVH-2 と結合すること、PTB ドメインを介してインテグリンβサブユニットである PAT-3 と結合することを示した。これまでに MLK-1 の活性化には SVH-2とインテグリンの下流で機能する MAP4K である MAX-2 によるリン酸化を受けることが必要であることが明らかとなっている。遺伝学的な解析により、tns-1 変異体の軸索再生率低下の表現型はSVH-2 またはMAX-2 を過剰発現で抑圧されることを見出した。以上の結果より、TNS-1 は SVH-2 からのシグナルとインテグリンからのシグナルを統合することで JNK 型 MAPK 経路を活性化し、神経軸索再生を制御すると考えられる。

svh-15/brc-2 は哺乳動物 BRCA2 の線虫ホモログであり、神経軸索再生に必要な遺伝子であることを見出した。また、神経軸索再生における BRC-2 の結合因子として ALP/Enigma ファミリータンパク質 ALP-1 を同定した。さらに RHO-1/Rho GTP アーゼ – LET-502/Rho キナーゼ(ROCK)経路も神経軸索再生を促進するシグナル伝達経路であることを明らかにした。遺伝学的、生化学的な解析により、この経路において、BRC-2 は RHO-1 による LET-502 の活性化のステップで機能することを示した。さらに LET-502 はミオシン軽鎖 MLC-4 のリン酸化を介して神経軸索再生を制御することを明らかにし、in vivo において軸索切断後に軸索の先端で MLC-4 がリン酸化されることを示した。この時、ALP-1 は BRC-2 だけでなく、 LET-502 と MLC-4 とも結合し、LET-502 による MLC-4 のリン酸化の足場として神経軸索再生を制御することを明らかにした。以上の結果から、BRC-2 – ALP-1 複合体による Rho – ROCK – MLC リン酸化経路の制御が新たに神経軸索再生を促進するシグナル調節機構であることが明らかとなった。

この論文で使われている画像

参考文献

1. Curcio, M., and Bradke, F. (2018). Axon Regeneration in the Central Nervous System: Facing the Challenges from the Inside. Annu. Rev. Cell Dev. Biol. 34, 495–521

2. Rossi, F., Gianola, S., and Corvetti, L. (2007). Regulation of intrinsic neuronal properties for axon growth and regeneration. Prog. Neurobiol. 81, 1–28.

3. Neumann, S., and Woolf, C.J. (1999). Regeneration of Dorsal Column Fibers into and beyond the Lesion Site following Adult Spinal Cord Injury. Neuron 23, 83–91

4. Cho, Y., Park, D., and Cavalli, V. (2015). Filamin A is required in injured axons for HDAC5 activity and axon regeneration. J. Biol. Chem. 290, 22759–22770.

5. Tan, C.L., Kwok, J.C., Heller, J.P., Zhao, R., Eva, R., and Fawcett, J.W. (2015). Full length talin stimulates integrin activation and axon regeneration. Mol. Cell. Neurosci. 68, 1–8.

6. Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science 23, 509–514.

7. Bito, H., Furuyashiki, T., Ishihara, H., Shibasaki, Y., Ohashi, K., Mizuno, K., Maekawa, M., Ishizaki, T., and Narumiya, S. (2000). A critical role for a Rho-associated kinase, p160ROCK, in determining axon outgrowth in mammalian CNS neurons. Neuron 26, 431–441.

8. Niederöst, B., Oertle, T., Fritsche, J., McKinney, R.A., and Bandtlow, C.E. (2002). Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1. J. Neurosci. 22, 10368–10376.

9. Yanik, M.F., Cinar, H., Cinar, H.N., Chisholm, A.D., Jin, Y., and Ben-Yakar, A. (2004). Neurosurgery: functional regeneration after laser axotomy. Nature 432, 822.

10. Chisholm, A.D., Hutter, H., Jin, Y., and Wadsworth W.G. (2016). The genetics of axon guidance and axon regeneration in Caenorhabditis elegans. Genetics 204, 849–882.

11. Hammarlund, M., and Jin, Y. (2014). Axon Regeneration in C. elegans. Curr. Opin. Neurobiol. 0, 199–207

12. Hammarlund, M., Nix, P., Hauth, L., Jorgensen, E.M., and Bastiani, M. (2009). Axon regeneration requires a conserved MAP kinase pathway. Science 323, 802–806.

13. Nix, P., Hisamoto, N., Matsumoto, K., and Bastiani, M. (2011). Axon regeneration requires coordinate activation of p38 and JNK MAPK pathways. Proc. Natl. Acad. Sci. U.S.A. 108, 10738–10743.

14. Pearson, G., Robinson, F., Beers Gibson, T., Xu, B.E., Karandikar, M., Berman, K. and Cobb, M.H. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22, 153-183

15. Yan, D., and Jin, Y. (2012). Regulation of DLK-1 kinase activity by calcium- mediated dissociation from an inhibitory isoform. Neuron 76, 534–548.

16. Ghosh-Roy, A., Wu, Z., Goncharov, A., Jin, Y., and Chisholm, A.D. (2010). Calcium and cyclic AMP promote axonal regeneration in Caenorhabditis elegans and require DLK-1 kinase. J. Neurosci. 30, 3175–3183.

17. Mizuno, T., Hisamoto, N., Terada, T., Kondo, T., Adachi, M., Nishida, E., Kim, D.H., Ausubel, F.M., and Matsumoto, K. (2004). The Caenorhabditis elegans MAPK phosphatase VHP-1 mediates a novel JNK-like signaling pathway in stress response. EMBO J 23, 2226–2234.

18. Barnat, M., Enslen, H., Propst, F., Davis, R.J., Soares, S., and Nothias, F. (2010). Distinct Roles of c-Jun N-Terminal Kinase Isoforms in Neurite Initiation and Elongation during Axonal Regeneration. J. Neurosci. 30, 7804–7816

19. Xiong, X., Wang, X., Ewanek, R., Bhat, P., Diantonio, A., and Collins, C.A. (2010). Protein turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal injury. J. Cell Biol. 191, 211–223

20. Shin, J.E., Cho, Y., Beirowski, B., Milbrandt, J., Cavali, V., and DiAntonio, A. (2012). Dual leucine zipper kinase is required for retrograde injury signaling and axon regeneration. Neuron 74, 1015-1022

21. Li, C., Hisamoto, N., Nix, P., Kanao, S., Mizuno, T., Bastiani, M., and Matsumoto, K. (2012). The growth factor SVH-1 regulates axon regeneration in C. elegans via the JNK MAPK cascade. Nat. Neurosci. 15, 551–557.

22. Pastuhov, S.I., Fujiki, K., Nix, P., Kanao, S., Bastiani, M., Matsumoto, K., and Hisamoto, N. (2012). Endocannabinoid-Goα signalling inhibits axon regeneration in Caenorhabditis elegans by antagonizing Gqα-PKC-JNK signalling. Nat Commun 3, 1136.

23. Hisamoto, N., Nagamori, Y., Shimizu, T., Pastuhov, S.I., and Matsumoto, K. (2016). The C. elegans Discoidin Domain Receptor DDR-2 Modulates the Met-like RTK-JNK Signaling Pathway in Axon Regeneration. PLoS Genet. 12, e1006475.

24. Li, C., Hisamoto, N., and Matsumoto, K. (2015). Axon Regeneration Is Regulated by Ets-C/EBP Transcription Complexes Generated by Activation of the cAMP/Ca2+ Signaling Pathways. PLoS Genet. 11, e1005603.

25. Shimizu, T., Kato, Y., Sakai, Y., Hisamoto, N., and Matsumoto, K. (2019). N-Glycosylation of the Discoidin Domain Receptor Is Required for Axon Regeneration in Caenorhabditis elegans. Genetics 213, 491–500.

26. Hisamoto, N., Tsuge, A., Pastuhov, S.I., Shimizu, T., Hanafusa, H., and Matsumoto, K. (2018). Phosphatidylserine exposure mediated by ABC transporter activates the integrin signaling pathway promoting axon regeneration. Nat Commun 9, 3099.

27. Sakai, Y., Hanafusa, H., Pastuhov, S.I., Shimizu, T., Li, C., Hisamoto, N., and Matsumoto, K. (2019). TDP2 negatively regulates axon regeneration by inducing SUMOylation of an Ets transcription factor. EMBO Rep 20.

28. Lo, S.H. (2004). Tensin. Int. J. Biochem. Cell Biol. 36, 31–34.

29. Lo, S.H. (2017). Tensins. Curr. Biol. 27, R331–R332.

30. Muharram, G., Sahgal, P., Korpela, T., Francesch, N.D., Kaukonen, R., Clark, K., Tulasne, D., Carpen, O., and Ivaska, J. (2014). Tensin-4- dependent MET stabilization is essential for survival and proliferation in carcinoma cells. Dev. Cell 29, 1–16.

31. Gettner, S.N., Kenyon, C., and Reichardt, L.F. (1995). Characterization of beta pat-3 heterodimers, a family of essential integrin receptors in C. elegans. J. Cell Biol. 129, 1127–1141.

32. Poinat, P., De Arcangelis, A., Sookhareea, S., Zhu, X., Hedgecock, E.M., Labouesse, M., and Georges-Labouesse, E. (2002). A conserved interaction between 1 integrin/PAT-3 and Nck-interacting kinase/MIG-15 that mediates commissural axon navigation in C. elegans. Curr Biol 12, 622– 631.

33. Calderwood, D.A., Fujioka, Y., de Pereda, J.M., García-Alvarez, B., Nakamoto, T., Margolis, B., McGlade, C.J., Liddington, R.C., and Ginsberg, M.H. (2003). Integrin β cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. Proc. Natl. Acad. Sci. USA 100, 2272–2277.

34. Pastuhov, S.I., Fujiki, K., Tsuge, A., Asai, K., Ishikawa, S., Hirose, K., Matsumoto, K., and Hisamoto, N. (2016). The Core Molecular Machinery Used for Engulfment of Apoptotic Cells Regulates the JNK Pathway Mediating Axon Regeneration in Caenorhabditis elegans. J. Neurosci. 36, 9710–9721.

35. Martin, J.S., Winkelmann, N., Petalcorin, M.I., McIlwraith, M.J., and Boulton, S.J. (2005). RAD-51-dependent and -independent roles of a Caenorhabditis elegans BRCA2-related protein during DNA double-strand break repair. Mol. Cell. Biol. 25, 3127–3139.

36. Gudmundsdottir, K., and Ashworth, A. (2006). The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene 25, 5864–5874.

37. Roy, R., Chun, J., and Powell, S.N. (2011). BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat. Rev. Cancer. 12, 68–78.

38. Li, S., Armstrong, C.M., Bertin, N., Ge, H., Milstein, S., Boxem, M., Vidalain, P.-O., Han, J.-D.J., Chesneau, A., Hao, T., et al. (2004). A Map of the Interactome Network of the Metazoan C. elegans. Science 303, 540–543.

39. McKeown, C.R., Han, H.F., and Beckerle, M.C. (2006). Molecular characterization of the Caenorhabditis elegans ALP/Enigma gene alp-1. Dev. Dyn. 235, 530–538.

40. Wang, H.F., Takenaka, K., Nakanishi, A., and Miki, Y. (2011). BRCA2 and nucleophosmin coregulate centrosome amplification and form a complex with the Rho effector kinase ROCK2. Cancer Res. 71, 68–77.

41. Wissmann, A., Ingles, J., McGhee, J.D., and Mains, P.E. (1997). Caenorhabditis elegans LET-502 is related to Rho-binding kinases and human myotonic dystrophy kinase and interacts genetically with a homolog of the regulatory subunit of smooth muscle myosin phosphatase to affect cell shape. Genes Dev. 11, 409–422.

42. Diogon, M., Wissler, F., Quintin, S., Nagamatsu, Y., Sookhareea, S., Landmann, F., Hutter, H., Vitale, N., and Labouesse, M. (2007). The RhoGAP RGA-2 and LET-502/ROCK achieve a balance of actomyosin- dependent forces in C. elegans epidermis to control morphogenesis. Development 134, 2469–2479.

43. Sahai, E., Alberts, A.S., and Treisman, R. (1998). RhoA effector mutants reveal distinct effector pathways for cytoskeletal reorganization, SRF activation and transformation. EMBO J. 17, 1350–1361.

44. Amano, M., Fukata, Y., and Kaibuchi, K. (2000). Regulation and functions of Rho-associated kinase. Exp. Cell Res. 261, 44–51.

45. Somlyo, A.P., and Somlyo, A.V. (2003). Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83, 1325–1358.

46. Wilkins, J.A., Risinger, M.A., and Lin, S. (1986). Studies on proteins that co-purify with smooth muscle vinculin: identification of immunologically related species in focal adhesions of nonmuscle and Z-lines of muscle cells. J. Cell Biol. 103, 483–1494.

47. Lo, S.H., Janmey, P.A., and Chen, L.B. (1994). Interactions of tensin with actin and identification of its three distinct actin-binding domains. J. Cell Biol. 125, 1067–1075.

48. Chen, H., and Lo, S.H. (2003). Regulation of tensin-promoted cell migration by its focal adhesion binding and Src homology domain 2. Biochem. J. 230, 1039–1045.

49. Meissner, B., Rogalski, T., Viveiros, R., Warner, A., Plastino, L., Lorch, A., Granger, L., Segelat, L., and Moerman, D.G. (2011). Determining the sub- cellular localization of proteins within Caenorhabditis elegans body wall muscle. PLoS One 6, 19937.

50. Popoff, M.R. and Geny, B. (2009). Multifaceted role of Rho, Rac, Cdc42 and Ras in intercellular junctions, lessons from toxins. Biochim. Biophys. Acta. 1788, 797–812.

51. Chan, C.C., Khodarahmi, K., Liu, J., Sutherland, D., Oschipok, L.W., Steeves, J.D., and Tetzlaff, W. (2005). Dose-dependent beneficial and detrimental effects of ROCK inhibitor Y27632 on axonal sprouting and functional recovery after rat spinal cord injury. Exp. Neurol. 196, 352– 364.

52. Aizawa, H., Wakatsuki, S., Ishii, A., Moriyama, K., Sasaki, Y., Ohashi, K., Sekine-Aizawa, Y., Sehara-Fujisawa, A., Mizuno, K., Goshima, Y., et al. (2001). Phosphorylation of cofilin by LIM-kinase is necessary for semaphorin 3A-induced growth cone collapse. Nat. Neurosci. 4, 367–373.

53. Hsieh, S.H.K., Ferrano, G.B., and Fournier, A.E. (2006). Myelin-associated inhibitors regulate cofilin phosphorylation and neuronal inhibition through LIM kinase and slingshot phosphatase. J. Neurosci. 26, 1006–1015.

54. Te Velthuis, A.J., Isogai, T., Gerrits, L., and Bagowski, C.P. (2007). Insights into the molecular evolution of the PDZ/LIM family and identification of a novel conserved protein motif. PLoS One 2, e189.

55. Medeiros, N.A., Burnette, D.T., and Forscher, P. (2006). Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat. Cell Biol. 8, 215– 226.

56. Han, H.F., and Beckerle, M.C. (2009). The ALP-Enigma protein ALP-1 functions in actin filament organization to promote muscle structural integrity in Caenorhabditis elegans. Mol. Biol. Cell 20, 2361–2370.

57. Iga, J., Ueno, S., Yamauchi, K., Numata, S., Motoki, I., Tayoshi, S., Kinouchi, S., Ohta, K., Song, H., Morita, K., et al. (2006). Gene expression and association analysis of LIM (PDLIM5) in major depression. Neurosci. Lett. 400, 203–207.

58. Ohno, K., Kato, H., Funahashi, S., Hasegawa, T., and Sato, K. (2009). Characterization of CLP36/Elfin/PDLIM1 in the nervous system. J. Neurochem. 111, 790–800.

59. Kato, T., Iwayama, Y., Kakiuchi, C., Iwamoto, K., Yamada, K., Minabe, Y., Nakamura, K., Mori, N., Fujii, K., Nanko, S., et al. (2005). Gene expression and association analyses of LIM (PDLIM5) in bipolar disorder and schizophrenia. Mol. Psychiatry 10, 1045–1055.

60. Li, C., Tao, R., Qin, W., Zheng, Y., He, G., Shi, Y., Li, X., Guo, Z., Chen, H., Feng, G., et al. (2008). Positive association between PDLIM5 and schizophrenia in the Chinese Han population. Int. J. Neuropsychopharmacol. 11, 27–34.

61. Moselhy, H., Eapen, V., Akawi, N.A., Younis, A., Salih, B., Othman, A.R., Yousef, S., Clarke, R.A., and Ali, B.R. (2015). Secondary association of PDLIM5 with paranoid schizophrenia in Emirati patients. Meta. Gene 21, 135–139.

62. Ren, B., Li, X., Zhang, J., Fan, J., Duan, J., and Chen, Y. (2015). PDLIM5 mediates PKCε translocation in PMA-induced growth cone collapse. Cell Signal. 27, 424–435.

63. Daniels, M.J., Wang, Y., Lee, M., and Venkitaraman, A.R. (2004). Abnormal cytokinesis in cells deficient in the breast cancer susceptibility protein BRCA2. Science 306, 876–879.

64. Takaoka, M., Saito, H., Takenaka, K., Miki, Y., and Nakanishi, A. (2014). BRCA2 phosphorylated by PLK1 moves to the midbody to regulate cytokinesis mediated by nonmuscle myosin IIC. Cancer Res. 74, 1518– 1528.

65. Tutt, A., Gabriel, A., Bertwistle D, Connor, F., Paterson, H., Peacock, J., Ross, G., and Ashworth, A. (1999). Absence of Brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification. Curr Biol 9, 1107–1110.

66. Brock, A.R., Wang, Y., Berger, S., Renkawitz-Pohl, R., Han, V.C., Wu, Y., and Galko, M.J. (2012). Transcriptional regulation of Profilin during wound closure in Drosophila larvae. J. Cell Sci. 125, 5667–5676.

67. Kulshammer, E., and Uhlirova, M. (2013). The actin cross-linker Filamin/Cheerio mediates tumor malignancy downstream of JNK signaling. J. Cell Sci. 126, 927–938.

68. Hattori, A., Mizuno, T., Akamatsu, M., Hisamoto, N., and Matsumoto, K. (2013). The Caenorhabditis elegans JNK Signaling Pathway Activates Expression of Stress Response Genes by Derepressing the Fos/HDAC Repressor Complex. PLoS Genet 9.

69. Nix, P., Hammarlund, M., Hauth, L., Lachnit, M., Jorgensen, E.M., and Bastiani, M. (2014). Axon regeneration genes identified by RNAi screening in C. elegans. J. Neurosci. 34, 629–645.

70. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71–94.

71. Burke, S.L., Hammell, M., and Ambros, V. (2015). Robust distal tip cell pathfinding in the face of temperature stress is ensured by two conserved microRNAs in Caenorhabditis elegans. Genetics 200, 1201-1218.

72. Alam, T., Maruyama, H., Li, C., Pastuhov, S.I., Nix, P., Bastiani, M., Hisamoto, N., and Matsumoto, K. (2016). Axotomy-induced HIF-serotonin signalling axis promotes axon regeneration in C. elegans. Nat Commun 7, 10388.

73. Mello, C.C., Kramer, J.M., Stinchcomb, D., and Ambros, V. (1991). Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970.

74. Duerr, J.S. (2006). Immunohistochemistry. WormBook. ed. The C. elegans Research Community. Jun 19, 1–61.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る