リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Identification of NEK9 as a selective autophagy adaptor to regulate ciliogenesis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Identification of NEK9 as a selective autophagy adaptor to regulate ciliogenesis

山本, 康博 東京大学 DOI:10.15083/0002007033

2023.03.24

概要

[課程-2]
審査の結果の要旨
氏名 山本 康博
本研究はオートファジーの生体内における意義を明らかにするため、新規選択的オートフ
ァジー基質あるいはアダプター分子の探索を試みたものであり、以下の結果を得ている。
1.

哺乳類では LC3 または GABARAP サブファミリーが選択的オートファジー基質
と LC3-interacting region (LIR) を介して結合してオートファゴソーム膜へ誘
導している。GABARAP のホモログである GABARAPL1 野生型と GABARAPL1 の LIR 認
識部位変異体を用いた結合差分解析を行い、新規選択的オートファジー基質とし
て NEK9 を同定した。NEK9 の LIR 依存的な機能を解析するため、内在性の NEK9 の
LIR に GABARAP 結合不全変異を導入した細胞株およびマウス系統を樹立した。野
生型細胞は血清飢餓条件で培養すると細胞表面に一次繊毛を形成するが、LIR 変
異細胞では一時繊毛の形成が著しく阻害された。また、NEK9LIR 変異マウスでは
腎近位尿細管細胞における一次繊毛の形成が阻害されており、尿細管細胞の腫大
を認めた。この表現型は、Kif3a 欠損マウスなどの既知の一次繊毛機能不全マウ
スと類似しており、NEK9 が選択的オートファジー経路を介して一次繊毛の形成に
重要であることが示唆された。

2.

NEK9 は脊椎動物全体で保存されている遺伝子であるが、NEK9 の LIR は陸上動物で
のみ保存されていることを見出した。魚類から陸上動物への移行においては腎臓
に劇的な機能進化が起こっており、腎尿細管に存在する一次繊毛は陸上動物の腎
恒常性維持に重要な役割を果たしている。このことから陸上動物における NEK9 の
選択的オートファジー経路を介した機能の獲得は腎尿細管一次繊毛の形成および
腎恒常性維持に寄与していることが示唆された。

3.

NEK9 の結合因子解析を行い、新規結合因子として MYH9 (non-muscle Myosin
IIA)を同定した。MYH9 は NEK9 の LIR 依存的に選択的オートファジー分解され、
NEK9 は一次繊毛形成条件において MYH9 の分解を介在する選択的オートファジー
アダプターとして機能していることが示唆された。一次繊毛形成条件においては
アクチン骨格を含んだ細胞骨格のリモデリングが起こるが、NEK9 による MYH9 分
解によってアクチン細胞骨格のリモデリングが促進されることが示唆された。

以上、本論文は選択的オートファジーの新規アダプター分子としてNEK9を同定した。本研

究は選択的オートファジーがNEK9-MYH9の分解によって一次繊毛の形成を制御しうること
を明らかにし、これまで全貌の明らかにされていなかった選択的オートファジーの生理的
意義の解明に重要な貢献をなすと考えられる
よって本論文は博士( 医 学 )の学位請求論文として合格と認められる。

この論文で使われている画像

参考文献

1.

Malicki, J.J. & Johnson, C.A. The Cilium: Cellular Antenna and Central

Processing Unit. Trends Cell Biol 27, 126-140 (2017).

2.

Anvarian, Z., Mykytyn, K., Mukhopadhyay, S., Pedersen, L.B. & Christensen, S.T.

Cellular signalling by primary cilia in development, organ function and disease.

Nat Rev Nephrol 15, 199-219 (2019).

3.

Spasic, M. & Jacobs, C.R. Primary cilia: Cell and molecular mechanosensors

directing whole tissue function. Semin Cell Dev Biol 71, 42-52 (2017).

4.

Berbari, N.F., O'Connor, A.K., Haycraft, C.J. & Yoder, B.K. The primary cilium

as a complex signaling center. Curr Biol 19, R526-535 (2009).

5.

Tummala, P., Arnsdorf, E.J. & Jacobs, C.R. The Role of Primary Cilia in

Mesenchymal Stem Cell Differentiation: A Pivotal Switch in Guiding Lineage

Commitment. Cell Mol Bioeng 3, 207-212 (2010).

6.

Wheway, G., Nazlamova, L. & Hancock, J.T. Signaling through the Primary

Cilium. Front Cell Dev Biol 6, 8 (2018).

7.

Reiter, J.F. & Leroux, M.R. Genes and molecular pathways underpinning

ciliopathies. Nat Rev Mol Cell Biol 18, 533-547 (2017).

110

8.

Hildebrandt, F., Benzing, T. & Katsanis, N. Ciliopathies. N Engl J Med 364, 15331543 (2011).

9.

Nakatogawa, H. Mechanisms governing autophagosome biogenesis. Nat Rev Mol

Cell Biol 21, 439-458 (2020).

10.

Soreng, K., Neufeld, T.P. & Simonsen, A. Membrane Trafficking in Autophagy.

Int Rev Cell Mol Biol 336, 1-92 (2018).

11.

Gatica, D., Lahiri, V. & Klionsky, D.J. Cargo recognition and degradation by

selective autophagy. Nat Cell Biol 20, 233-242 (2018).

12.

Johansen, T. & Lamark, T. Selective Autophagy: ATG8 Family Proteins, LIR

Motifs and Cargo Receptors. J Mol Biol 432, 80-103 (2020).

13.

Gomes, L.C. & Dikic, I. Autophagy in antimicrobial immunity. Mol Cell 54, 224233 (2014).

14.

Palikaras, K., Lionaki, E. & Tavernarakis, N. Mechanisms of mitophagy in

cellular homeostasis, physiology and pathology. Nat Cell Biol 20, 1013-1022

(2018).

15.

Chino, H. & Mizushima, N. ER-Phagy: Quality Control and Turnover of

Endoplasmic Reticulum. Trends Cell Biol 30, 384-398 (2020).

16.

Anding, A.L. & Baehrecke, E.H. Cleaning House: Selective Autophagy of

111

Organelles. Dev Cell 41, 10-22 (2017).

17.

Dikic, I. & Elazar, Z. Mechanism and medical implications of mammalian

autophagy. Nat Rev Mol Cell Biol 19, 349-364 (2018).

18.

Mizushima, N., Levine, B. Autophagy in human diseases. N. Engl. J. Med. in press

19.

Mizushima, N. The ATG conjugation systems in autophagy. Curr Opin Cell Biol

63, 1-10 (2020).

20.

Birgisdottir, A.B., Lamark, T. & Johansen, T. The LIR motif - crucial for selective

autophagy. J Cell Sci 126, 3237-3247 (2013).

21.

Morleo, M. & Franco, B. The Autophagy-Cilia Axis: An Intricate Relationship.

Cells 8 (2019).

22.

Pampliega, O. & Cuervo, A.M. Autophagy and primary cilia: dual interplay. Curr

Opin Cell Biol 39, 1-7 (2016).

23.

Odabasi, E., Gul, S., Kavakli, I.H. & Firat-Karalar, E.N. Centriolar satellites are

required for efficient ciliogenesis and ciliary content regulation. EMBO Rep 20

(2019).

24.

Prosser, S.L. & Pelletier, L. Centriolar satellite biogenesis and function in

vertebrate cells. J Cell Sci 133 (2020).

25.

Ferrante, M.I. et al. Oral-facial-digital type I protein is required for primary cilia

112

formation and left-right axis specification. Nat Genet 38, 112-117 (2006).

26.

Singla, V., Romaguera-Ros, M., Garcia-Verdugo, J.M. & Reiter, J.F. Ofd1, a

human disease gene, regulates the length and distal structure of centrioles. Dev

Cell 18, 410-424 (2010).

27.

Tang, Z. et al. Autophagy promotes primary ciliogenesis by removing OFD1 from

centriolar satellites. Nature 502, 254-257 (2013).

28.

Liu, Z.Q. et al. Ciliogenesis is reciprocally regulated by PPARA and NR1H4/FXR

through controlling autophagy in vitro and in vivo. Autophagy 14, 1011-1027

(2018).

29.

Hsiao, C.J. et al. Gli2 modulates cell cycle re-entry through autophagy-mediated

regulation of the length of primary cilia. J Cell Sci 131 (2018).

30.

Wang, S., Livingston, M.J., Su, Y. & Dong, Z. Reciprocal regulation of cilia and

autophagy via the MTOR and proteasome pathways. Autophagy 11, 607-616

(2015).

31.

Kim, E.S. et al. Inhibition of autophagy suppresses sertraline-mediated primary

ciliogenesis in retinal pigment epithelium cells. PLoS One 10, e0118190 (2015).

32.

Pampliega, O. et al. Functional interaction between autophagy and ciliogenesis.

Nature 502, 194-200 (2013).

113

33.

Struchtrup, A., Wiegering, A., Stork, B., Ruther, U. & Gerhardt, C. The ciliary

protein RPGRIP1L governs autophagy independently of its proteasomeregulating function at the ciliary base in mouse embryonic fibroblasts. Autophagy

14, 567-583 (2018).

34.

Chino, H., Hatta, T., Natsume, T. & Mizushima, N. Intrinsically Disordered

Protein TEX264 Mediates ER-phagy. Mol Cell 74, 909-921 e906 (2019).

35.

Joachim, J. et al. Centriolar Satellites Control GABARAP Ubiquitination and

GABARAP-Mediated Autophagy. Curr Biol 27, 2123-2136 e2127 (2017).

36.

Behrends, C., Sowa, M.E., Gygi, S.P. & Harper, J.W. Network organization of the

human autophagy system. Nature 466, 68-76 (2010).

37.

Fry, A.M., Bayliss, R. & Roig, J. Mitotic Regulation by NEK Kinase Networks.

Front Cell Dev Biol 5, 102 (2017).

38.

Moniz, L., Dutt, P., Haider, N. & Stambolic, V. Nek family of kinases in cell cycle,

checkpoint control and cancer. Cell Div 6, 18 (2011).

39.

Cullati, S.N., Kabeche, L., Kettenbach, A.N. & Gerber, S.A. A bifurcated

signaling cascade of NIMA-related kinases controls distinct kinesins in anaphase.

J Cell Biol 216, 2339-2354 (2017).

40.

Eibes, S. et al. Nek9 Phosphorylation Defines a New Role for TPX2 in Eg5-

114

Dependent Centrosome Separation before Nuclear Envelope Breakdown. Curr

Biol 28, 121-129 e124 (2018).

41.

Roig, J., Mikhailov, A., Belham, C. & Avruch, J. Nercc1, a mammalian NIMAfamily kinase, binds the Ran GTPase and regulates mitotic progression. Genes

Dev 16, 1640-1658 (2002).

42.

Bertran, M.T. et al. Nek9 is a Plk1-activated kinase that controls early centrosome

separation through Nek6/7 and Eg5. EMBO J 30, 2634-2647 (2011).

43.

Upadhya, P., Birkenmeier, E.H., Birkenmeier, C.S. & Barker, J.E. Mutations in a

NIMA-related kinase gene, Nek1, cause pleiotropic effects including a

progressive polycystic kidney disease in mice. Proc Natl Acad Sci U S A 97, 217221 (2000).

44.

Otto, E.A. et al. NEK8 mutations affect ciliary and centrosomal localization and

may cause nephronophthisis. J Am Soc Nephrol 19, 587-592 (2008).

45.

Chivukula, R.R. et al. A human ciliopathy reveals essential functions for NEK10

in airway mucociliary clearance. Nat Med 26, 244-251 (2020).

46.

Casey, J.P. et al. Recessive NEK9 mutation causes a lethal skeletal dysplasia with

evidence of cell cycle and ciliary defects. Hum Mol Genet 25, 1824-1835 (2016).

47.

Shrestha, B.K. et al. NIMA-related kinase 9-mediated phosphorylation of the

115

microtubule-associated LC3B protein at Thr-50 suppresses selective autophagy of

p62/sequestosome 1. J Biol Chem 295, 1240-1260 (2020).

48.

Kalvari, I. et al. iLIR: A web resource for prediction of Atg8-family interacting

proteins. Autophagy 10, 913-925 (2014).

49.

Amemiya, C.T. et al. The African coelacanth genome provides insights into

tetrapod evolution. Nature 496, 311-316 (2013).

50.

Yoshii, S.R. et al. Systemic Analysis of Atg5-Null Mice Rescued from Neonatal

Lethality by Transgenic ATG5 Expression in Neurons. Dev Cell 39, 116-130

(2016).

51.

Natsume, T., Kiyomitsu, T., Saga, Y. & Kanemaki, M.T. Rapid Protein Depletion

in Human Cells by Auxin-Inducible Degron Tagging with Short Homology

Donors. Cell Rep 15, 210-218 (2016).

52.

Boehlke, C. et al. Primary cilia regulate mTORC1 activity and cell size through

Lkb1. Nat Cell Biol 12, 1115-1122 (2010).

53.

Orhon, I. et al. Primary-cilium-dependent autophagy controls epithelial cell

volume in response to fluid flow. Nat Cell Biol 18, 657-667 (2016).

54.

Kimura, T. et al. Autophagy protects the proximal tubule from degeneration and

acute ischemic injury. J Am Soc Nephrol 22, 902-913 (2011).

116

55.

Pecci, A., Ma, X., Savoia, A. & Adelstein, R.S. MYH9: Structure, functions and

role of non-muscle myosin IIA in human disease. Gene 664, 152-167 (2018).

56.

Copeland, J. Actin-based regulation of ciliogenesis - The long and the short of it.

Semin Cell Dev Biol 102, 132-138 (2020).

57.

Wang, L. & Dynlacht, B.D. The regulation of cilium assembly and disassembly

in development and disease. Development 145 (2018).

58.

Kim, J. et al. Functional genomic screen for modulators of ciliogenesis and cilium

length. Nature 464, 1048-1051 (2010).

59.

Pitaval, A. et al. Microtubule stabilization drives 3D centrosome migration to

initiate primary ciliogenesis. J Cell Biol 216, 3713-3728 (2017).

60.

Cao, J. et al. miR-129-3p controls cilia assembly by regulating CP110 and actin

dynamics. Nat Cell Biol 14, 697-706 (2012).

61.

Kim, J. et al. Actin remodelling factors control ciliogenesis by regulating

YAP/TAZ activity and vesicle trafficking. Nat Commun 6, 6781 (2015).

62.

Yan, X. & Zhu, X. Branched F-actin as a negative regulator of cilia formation.

Exp Cell Res 319, 147-151 (2013).

63.

Shutova, M.S. & Svitkina, T.M. Mammalian nonmuscle myosin II comes in three

flavors. Biochem Biophys Res Commun 506, 394-402 (2018).

117

64.

Even-Ram, S. et al. Myosin IIA regulates cell motility and actomyosinmicrotubule crosstalk. Nat Cell Biol 9, 299-309 (2007).

65.

Vicente-Manzanares, M., Ma, X., Adelstein, R.S. & Horwitz, A.R. Non-muscle

myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol

10, 778-790 (2009).

66.

Rao, Y., Hao, R., Wang, B. & Yao, T.P. A Mec17-Myosin II Effector Axis

Coordinates Microtubule Acetylation and Actin Dynamics to Control Primary

Cilium Biogenesis. PLoS One 9, e114087 (2014).

67.

Hong, H., Kim, J. & Kim, J. Myosin heavy chain 10 (MYH10) is required for

centriole migration during the biogenesis of primary cilia. Biochem Biophys Res

Commun 461, 180-185 (2015).

68.

Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science

347, 1260419 (2015).

69.

Fry, A.M., O'Regan, L., Sabir, S.R. & Bayliss, R. Cell cycle regulation by the NEK

family of protein kinases. J Cell Sci 125, 4423-4433 (2012).

70.

Wirth, M. et al. Molecular determinants regulating selective binding of autophagy

adapters and receptors to ATG8 proteins. Nat Commun 10, 2055 (2019).

71.

Finn, R.N., Chauvigne, F., Hlidberg, J.B., Cutler, C.P. & Cerda, J. The lineage-

118

specific evolution of aquaporin gene clusters facilitated tetrapod terrestrial

adaptation. PLoS One 9, e113686 (2014).

72.

Marra, A.N., Li, Y. & Wingert, R.A. Antennas of organ morphogenesis: the roles

of cilia in vertebrate kidney development. Genesis 54, 457-469 (2016).

73.

Kramer-Zucker, A.G. et al. Cilia-driven fluid flow in the zebrafish pronephros,

brain and Kupffer's vesicle is required for normal organogenesis. Development

132, 1907-1921 (2005).

74.

Gan, B. et al. Role of FIP200 in cardiac and liver development and its regulation

of TNFalpha and TSC-mTOR signaling pathways. J Cell Biol 175, 121-133

(2006).

75.

Sou, Y.S. et al. The Atg8 conjugation system is indispensable for proper

development of autophagic isolation membranes in mice. Mol Biol Cell 19, 47624775 (2008).

76.

Kaizuka, T. et al. An Autophagic Flux Probe that Releases an Internal Control.

Mol Cell 64, 835-849 (2016).

77.

Saitoh, T., Nakano, H., Yamamoto, N. & Yamaoka, S. Lymphotoxin-beta receptor

mediates NEMO-independent NF-kappaB activation. FEBS Lett 532, 45-51

(2002).

119

78.

Morita, K. et al. Genome-wide CRISPR screen identifies TMEM41B as a gene

required for autophagosome formation. J Cell Biol 217, 3817-3828 (2018).

79.

Hosokawa, N., Hara, Y. & Mizushima, N. Generation of cell lines with

tetracycline-regulated autophagy and a role for autophagy in controlling cell size.

FEBS Lett 580, 2623-2629 (2006).

80.

Dummer, A., Poelma, C., DeRuiter, M.C., Goumans, M.J. & Hierck, B.P.

Measuring the primary cilium length: improved method for unbiased highthroughput analysis. Cilia 5, 7 (2016).

81.

Schwanhausser, B. et al. Global quantification of mammalian gene expression

control. Nature 473, 337-342 (2011).

82.

Masuda, T., Tomita, M. & Ishihama, Y. Phase transfer surfactant-aided trypsin

digestion for membrane proteome analysis. J Proteome Res 7, 731-740 (2008).

83.

Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification,

enrichment, pre-fractionation and storage of peptides for proteomics using

StageTips. Nat Protoc 2, 1896-1906 (2007).

84.

Boersema, P.J., Raijmakers, R., Lemeer, S., Mohammed, S. & Heck, A.J.

Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics.

Nat Protoc 4, 484-494 (2009).

120

85.

Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular

Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 35,

1547-1549 (2018).

86.

Singh, N., and Bhalla, N. Moonlighting Proteins. Annu Rev Genet 54, 265-285

(2020)

87.

Minoshima, Y., et al. Phosphorylation by aurora B converts MgcRacGAP to a

RhoGAP during cytokinesis. Dev Cell 4, 549-560 (2003).

121

Acknowledgments

I thank Professor Takahide Nagase for his mentorship and encouragement, Professor

Noboru Mizushima for showing me what a researcher is and how fascinating research

can be. I appreciate Haruka Chino for teaching me the basics of how to perform

experiments from scratch, Hayashi Yamamoto for constructive discussion, Saori Yoshii

for mouse sampling, Keiko Igarashi for help with histological examinations, Shoji

Yamaoka for pMRX-vector, Teruhito Yasui for pCG-VSV-G and pCG-gag-pol, Robert

A. Weinberg for pCMV-VSV-G, Didier Trono for psPAX2, and Keith Mostov for

pLKO.1-blast vector.

I would like to thank all lab members for helping me. Finally, I would like to express my

sincere gratitude to my wife and my two wonderful children for supporting me throughout

my research life.

122

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る