リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Exact Monte Carlo calculation method for K-eigenvalue change using perturbation source method」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Exact Monte Carlo calculation method for K-eigenvalue change using perturbation source method

Yamamoto, Toshihiro Sakamoto, Hiroki 京都大学 DOI:10.1080/00223131.2021.1883144

2021

概要

The ‘perturbation source method’ (PSM) is a Monte Carlo perturbation method that calculates an exact k-eigenvalue change caused by cross-section changes. Although the PSM, which can consider the effect of fission source perturbation, was proposed long ago, it has garnered minimal interest as a Monte Carlo perturbation method. The applicability of the PSM has not been thoroughly elucidated hitherto. This study revisits the PSM and reviews the associated Monte Carlo algorithm. Some improvements have been made to improve the efficiency. The PSM is applied to some numerical tests that involve the replacement of a fuel material with light water, a density change in a water hole, an interface shift between a fuel and reflector, and an external boundary extension. The performance of the PSM for these tests is compared with that of another exact Monte Carlo perturbation method, which is the correlated sampling method. The PSM can yield an accurate k-eigenvalue change even for large cross-section changes such as the replacement of a material with another material. The PSM used in this study is the exact method except for the approximation related to the spatial discretization for fission source perturbation. Furthermore, it exhibits superiority in terms of accuracy and computational efficiency, particularly for large perturbations added in a small region.

この論文で使われている画像

参考文献

[1] Kiedrowski BC. Review of early 21st-century Monte Carlo perturbation and sensitivity

techniques for k-eigenvalue radiation transport calculations. Nucl Sci Eng. 2017;185:426−444.

[2] Takahashi H. Monte Carlo method for geometrical perturbation and its application to the

pulsed fast reactor. Nucl Sci Eng. 1970;41;259–279.

[3] Matthes W. Calculation of reactivity perturbations with the Monte Carlo method. Nucl

Fo

Sci Eng. 1972;47;234–237.

[4] Hoffman TJ, Petrie LM, Landers NF. A Monte Carlo perturbation source method for

rP

reactivity calculations. Nucl Sci Eng. 1978;66;60−66.

ee

[5] Nakagawa M, Asaoka T. Improvement of correlated sampling Monte Carlo methods for

reactivity calculations. J Nucl Sci Technol. 1978;15;400−410.

rR

[6] Preeg WE, Tsang JSK. Comparison of correlated Monte Carlo techniques. Trans Am

ev

Nucl Soc. 1982;43;628–629.

[7] Rief H. Generalized Monte Carlo perturbation algorithms for correlated sampling and a

iew

second-order Taylor series approach. Ann Nucl Energy. 1984;9;455–476.

[8] Lux I, Koblinger L. Monte Carlo Particle Transport Methods: Neutron and Photon

On

Calculations, CRC Press, Boca Raton, Florida, 1991.

[9] McKinney GW, Iverson JL. Verification of the Monte Carlo differential operator

ly

technique for MCNP, Los Alamos National Laboratory, LA-13098, 1996.

[10] Kitada T, Yamane A, Takeda T. Improvements of correlated sampling method in Monte

Carlo perturbation theory, Proc Int Conf on the Physics of Reactors PHYSOR96, Mito,

Ibaraki, Japan, Sep. 16-20, 1996, A-212–A-219, 1996.

[11] Favorite JA. An alternative implementation of the differential operator (Taylor series)

perturbation method for Monte Carlo criticality problems. Nucl Sci Eng. 2002;142;327–

341.

21

URL: http://mc.manuscriptcentral.com/tnst

E-mail: hensyu@aesj.or.jp

A Self-archived copy in

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

[12] Nagaya Y, Mori T. Impact of perturbed fission source on the effective multiplication

factor in Monte Carlo perturbation calculations. J Nucl Sci Technol. 2005;42;428–441.

[13] Kiedrowski BC, Brown FB, Wilson PPH. Adjoint-weighted tallies for k-eigenvalue

calculations with continuous-energy Monte Carlo. Nucl Sci Eng. 2011;168;226–241.

[14] Terranova N, Mancusi D, Zoia A. New perturbation and sensitivity capabilities in

TRIPOLI-4®. Ann Nucl Energy. 2018;121;335-349.

[15] Kim SH, Yamanaka M, Pyeon CH. Improvement of fission source distribution by

Fo

correlated sampling method in Monte Carlo perturbation calculations. J Nucl Sci Technol.

2018;55;945–954.

rP

[16] Nauchi Y, Kameyama T. Development of calculation technique for iterated fission

ee

probability and reactor kinetic parameters using continuous-energy Monte Carlo method.

J Nucl Sci Technol. 2010;47;977–990.

rR

[17] Shim HJ, Kim CH. Adjoint sensitivity and uncertainty analyses in Monte Carlo forward

ev

calculations. J Nucl Sci Technol. 2011;48;1453–1461.

[18] Choi SH, Shim HJ. Memory-efficient calculations of adjoint-weighted tallies by the

iew

Monte Carlo Wielandt method. Ann Nucl Energy. 2016;96;287–294.

[19] Qiu Y, Shang X, Tang X, et al. Computing eigenvalue sensitivity coefficients to nuclear

On

data by adjoint superhistory method and adjoint Wielandt method implemented in RMC

code. Ann Nucl Energy. 2016;87;228–241.

ly

[20] Sakamoto H, Yamamoto T. Improvement and performance evaluation of the

perturbation source method for an exact Monte Carlo perturbation calculation in fixed

source problems. J Compt Phys. 2017;345;245–259.

[21] Yamamoto T, Sakamoto H. Monte Carlo perturbation calculation for geometry change

in fixed source problems with the perturbation source method. Prog Nucl Energy

2021;132;103611.

[22] Nagaya Y, Mori T. Estimation of sample reactivity worth with differential operator

sampling method. Prog Nucl Sci Technol. 2011;2;842–850.

22

URL: http://mc.manuscriptcentral.com/tnst

E-mail: hensyu@aesj.or.jp

Page 22 of 48

A Self-archived copy in

Page 23 of 48

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

[23] Favorite JA, Parsons DK. Second-order cross terms in Monte Carlo differential operator

perturbation estimates,” Proc M&C 2001, Salt Lake City, Utah, September 2001.

[24] Bell GI, Glasstone S. Nuclear Reactor Theory, Van Norstrand Reinhold, New York,

1970.

[25] Truchet G. Continuous-energy adjoint flux and perturbation calculation using the

iterated fission probability method in Monte Carlo code TRIPOLI-4 and underlying

applications.” Proc Joint Int Conf on Supercomputing in Nuclear Applications and Monte

Fo

Carlo 2013 (SNA + MC 2013), Paris, France, October 2013.

[26] Truchet G, Leconte P, Palau JM, et al. Sodium void reactivity effect analysis using the

rP

newly developed exact perturbation theory in Monte-Carlo code TRIPOLI-4®. Proc

September 2014.

rR

ee

PHYSOR 2014 - The Role of Reactor Physics toward a Sustainable Future, Kyoto, Japan,

[27] Alcouffe RE, Baker RS, Brinkley FW, et al. DANTSYS: A diffusion accelerated neutral

ev

particle transport code system. LA-12969-M. 1995.

[28] Okumura K, Kugo T, Kaneno K, et al. SRAC2006: A comprehensive neutronics

iew

calculation code system. JAEA-Data/Code 2007-004. 2007.

On

ly

23

URL: http://mc.manuscriptcentral.com/tnst

E-mail: hensyu@aesj.or.jp

A Self-archived copy in

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

Table captions

Table 1. Three group constants of materials (1) and (2) in Figure 2 (Cases 1 and 2).

Table 2. Three group constants of material (3) in Figure 2 (Case1).

Table 3. k-eigenvalue changes for verification (Case 1).

Table 4. Relative figure-of-merit with respect to direct method. Number in parentheses

denotes factor C in Eq. (32).

Table 5. Three group constants of material (3) in Figure 2 (Case2).

Fo

Table 6. k-eigenvalue changes for verification (Case 2).

Table 7. Three group constants of UO2 rod array (the materials (1) and (2) in Figure 2

rP

(Case3)).

ee

Table 8. Three group constants of light water (the material (3) in Figure 2 (Case3)).

Table 9. k-eigenvalue changes for replacement of UO2 with light water (Case 3).

rR

Table 10. k-eigenvalue changes for light water density change (Case 4).

ev

Table 11. Three group constants of graphite.

Table 12. k-eigenvalue changes for interface displacement by 1 cm (Case 5).

iew

Table 13. Relative figure-of-merit with respect to direct method. Number in parentheses

denotes factor C in Eq. (32).

On

Table 14. k-eigenvalue changes for interface displacement by 0.02 cm (Case 6).

Table 15. k-eigenvalue changes for boundary extension by 3 cm (Case 7).

ly

Table 16. k-eigenvalue changes for boundary extension by 0.02 cm (Case 8).

Table 17. Dependence of k-eigenvalue change on spatial bin sizes in Case 2.

24

URL: http://mc.manuscriptcentral.com/tnst

E-mail: hensyu@aesj.or.jp

Page 24 of 48

A Self-archived copy in

Page 25 of 48

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

Figure captions

Figure 1(a). Flow chart of unperturbed calculation mode.

Figure 1(b). Flow chart of perturbation calculation mode.

Figure 2. Geometry for perturbation calculations in Cases 1 to 4.

Figure 3. ∆k with and without source perturbation effect as a function of generation.

Figure 4. Interface shift in Case 5 (x = 1 cm) and Case 6 (x = 0.02 cm).

Figure 5. External boundary extension in Case 7 (x = 3 cm) and Case 8 (x = 0.02 cm).

iew

ev

rR

ee

rP

Fo

On

ly

25

URL: http://mc.manuscriptcentral.com/tnst

E-mail: hensyu@aesj.or.jp

A Self-archived copy in

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

Unperturbed calculation mode

Start particle

Fission source bank

Fission spectrum

perturbation

FSPB

Determine collision point

Fission source

perturbation

yes

rP

Fo

Total cross section

perturbation

Perturbed region?

Scattering cross

section perturbation

ee

FSPB

Kill or escape?

Perturbation

calculation mode

FSPB: Fission Source Perturbation Bank

iew

yes

ev

no

rR

Implicit capture, Russian roulette

Figure 1(a). Flow chart of unperturbed calculation mode.

ly

On

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

Page 26 of 48

A Self-archived copy in

Page 27 of 48

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

Perturbation calculation mode

Start particle

Determine collision point

Fo

FSPB

no

rP

Implicit capture, Russian roulette

ee

Kill or escape?

yes

rR

Unperturbed calculation mode

ev

iew

Figure 1(b). Flow chart of perturbation calculation mode.

ly

On

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

A Self-archived copy in

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

(1)

(1)

(2)

(3)

rP

Fo

iew

ev

rR

ee

Figure 2. Geometry for perturbation calculations in Cases 1 to 4.

ly

On

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

Page 28 of 48

A Self-archived copy in

Page 29 of 48

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

0.12

0.10

Δk without source perturbation

Δk [-]

0.08

Δk source perturbation effect

0.06

Fo

0.04

0.00

ee

rP

0.02

10

20

30

rR

Generations

iew

ev

Figure 3. ∆k with and without source perturbation effect as a function of generation.

ly

On

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

40

A Self-archived copy in

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

10 cm

35 cm

Graphite

35 cm

UO2 rod

array

rP

Fo

Interface before perturbation

ee

Figure 4. Interface shift in Case 5 (x = 1 cm) and Case 6 (x =0.02 cm).

iew

ev

rR

ly

On

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

Page 30 of 48

A Self-archived copy in

Page 31 of 48

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

10 cm

35 cm

Graphite

35 cm

UO2 rod

array

rP

Fo

Boundary before perturbation

ee

Figure 5. External boundary extension in Case 7 (x = 3 cm) and Case 8 (x = 0.02 cm).

iew

ev

rR

ly

On

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

A Self-archived copy in

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

Page 32 of 48

Table 1. Three group constants of materials (1) and (2) in Figure 2 (Cases 1 and 2).

1st group

2nd group

3rd group

𝛴𝑐(𝑐𝑚 )

𝛴𝑓(𝑐𝑚 ―1)

1.0

0.01

0.01

1.5

0.02

0.04

3.0

0.03

0.06

2.4

2.4

2.4

𝛴𝑠𝑔→𝑔(𝑐𝑚 ―1)

0.8

0.2

0.0

0.882

1.296

2.91

𝛴𝑠𝑔→𝑔 + 1(𝑐𝑚 ―1)

0.098

0.144

0.0

𝛴𝑡 (𝑐𝑚

―1

―1

iew

ev

rR

ee

rP

Fo

ly

On

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

A Self-archived copy in

Page 33 of 48

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

Table 2. Three group constants of material (3) in Figure 2 (Case1).

1st group

2nd group

3rd group

1.1

0.005

0.02

2.4

1.6

0.01

0.08

2.4

3.2

0.015

0.12

2.4

0.6

0.4

0.0

𝛴𝑠𝑔→𝑔(𝑐𝑚 ―1)

0.86

1.208

3.065

𝛴𝑠𝑔→𝑔 + 1(𝑐𝑚 ―1)

0.215

0.302

0.0

𝛴𝑡 (𝑐𝑚

―1

―1

𝛴𝑐(𝑐𝑚 )

𝛴𝑓(𝑐𝑚 ―1)

iew

ev

rR

ee

rP

Fo

ly

On

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

A Self-archived copy in

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

Page 34 of 48

Table 3. k-eigenvalue changes for verification (Case 1).

Δ𝑘𝑁𝑃

𝑒𝑓𝑓

Δ𝑘𝑃𝑆

𝑒𝑓𝑓

Total

PSM (C=1)

CS

4.4574×10−2 ± 5.9×10−5

1.1139×10−1 ± 1.2×10−4

1.5596×10−1 ± 1.4×10−4

4.4517×10−2 ± 2.4×10−5

9.9430×10−2 ± 9.4×10−4

1.4395×10−1 ± 9.4×10−4

1.5585×10−1 ± 4×10−5

Direct method

1.5586×10−1

Deterministic method

iew

ev

rR

ee

rP

Fo

ly

On

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

A Self-archived copy in

Page 35 of 48

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

Table 4. Relative figure-of-merit with respect to direct method. Number in parentheses denotes

factor C in Eq. (32).

Direct method

PSM

CS

Case 1

Case 2

Case 3

Case 4

0.143 (C=1)

62.8 (C=1)

142 (C=1)

1092 (C=1)

0.072 (C=2)

66.4 (C=2)

184 (C=5)

4377 (C=20)

142 (C=10)

3701 (C=30)

0.004

92.0

0.238

117

iew

ev

rR

ee

rP

Fo

ly

On

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

A Self-archived copy in

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

Page 36 of 48

Table 5. Three group constants of material (3) in Figure 2 (Case2).

1st group

2nd group

3rd group

1.05

0.009

0.011

2.4

1.52

0.018

0.045

2.4

3.05

0.029

0.065

2.4

0.78

0.22

0.0

𝛴𝑠𝑔→𝑔(𝑐𝑚 ―1)

0.9167

1.29673

2.956

𝛴𝑠𝑔→𝑔 + 1(𝑐𝑚 ―1)

0.1133

0.16027

0.0

𝛴𝑡 (𝑐𝑚

―1

―1

𝛴𝑐(𝑐𝑚 )

𝛴𝑓(𝑐𝑚 ―1)

iew

ev

rR

ee

rP

Fo

ly

On

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

A Self-archived copy in

Page 37 of 48

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

Table 6. k-eigenvalue changes for verification (Case 2).

Δ𝑘𝑁𝑃

𝑒𝑓𝑓

Δ𝑘𝑃𝑆

𝑒𝑓𝑓

Total

PSM (C=1)

CS

5.2507×10−3 ± 8.8×10−6

5.1664×10−3 ± 4.1×10−6

1.0417×10−2 ± 9.6×10−6

5.2342×10−3 ± 3.2×10−6

5.1028×10−3 ± 6.0×10−6

1.0337×10−2 ± 6.8×10−6

1.0366×10−2 ± 6.1×10−5

Direct method

1.0389×10−2

Deterministic method

iew

ev

rR

ee

rP

Fo

ly

On

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

A Self-archived copy in

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

Page 38 of 48

Table 7. Three group constants of UO2 rod array (the materials (1) and (2) in Figure 2 (Case3)).

1st group

2nd group

3rd group

0.29829

3.2674×10−3

3.0586×10−3

2.4

0.83334

9.7371×10−3

2.1579×10−3

2.4

1.6389

0.029252

0.056928

2.4

0.87820

0.12180

0.0

𝛴𝑠𝑔→𝑔(𝑐𝑚 ―1)

0.22106

0.77764

1.5527

𝛴𝑠𝑔→𝑔 + 1(𝑐𝑚 ―1)

0.073843

0.043803

0.0

𝛴𝑡 (𝑐𝑚

―1

―1

𝛴𝑐(𝑐𝑚 )

𝛴𝑓(𝑐𝑚 ―1)

iew

ev

rR

ee

rP

Fo

ly

On

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

A Self-archived copy in

Page 39 of 48

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

Table 8. Three group constants of light water (the material (3) in Figure 2 (Case3)).

𝛴𝑡 (𝑐𝑚 ―1)

―1

𝛴𝑐(𝑐𝑚 )

𝛴𝑠𝑔→𝑔(𝑐𝑚 ―1)

𝛴𝑠𝑔→𝑔 + 1(𝑐𝑚

―1

1st group

2nd group

3rd group

0.33207

3.0500×10−4

1.1265

3.6990×10−4

2.7812

0.018250

0.22713

1.0281

2.7630

0.10464

0.097961

0.0

iew

ev

rR

ee

rP

Fo

ly

On

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

A Self-archived copy in

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

Page 40 of 48

Table 9. k-eigenvalue changes for replacement of UO2 with light water (Case 3).

Δ𝑘𝑁𝑃

𝑒𝑓𝑓

Δ𝑘𝑃𝑆

𝑒𝑓𝑓

Total

PSM (C=5)

CS

9.1827×10−5 ± 2.52×10−6

2.2405×10−4 ± 3.80×10−6

3.1587×10−4 ± 4.56×10−6

1.4112×10−4 ± 4.64×10−5

3.1462×10−4 ± 1.66×10−4

4.5574×10−4 ± 1.72×10−4

3.3500×10−4 ± 1.96×10−5

Direct method

3.1018×10−4

Deterministic method

iew

ev

rR

ee

rP

Fo

ly

On

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

A Self-archived copy in

Page 41 of 48

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

Table 10. k-eigenvalue changes for light water density change (Case 4).

Δ𝑘𝑁𝑃

𝑒𝑓𝑓

Δ𝑘𝑃𝑆

𝑒𝑓𝑓

Total

PSM (C=20)

CS

−7.7306×10−7 ± 5.53×10−7

−1.0834×10−4 ± 2.20×10−7

−1.0911×10−4 ± 5.95×10−7

−1.2908×10−6 ± 1.50×10−6

−1.0825×10−4 ± 3.81×10−6

−1.0955×10−4 ± 4.10×10−6

−1.3600×10−4 ± 2.19×10−5

Direct method

−1.0915×10−4

Deterministic method

iew

ev

rR

ee

rP

Fo

ly

On

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

A Self-archived copy in

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

Page 42 of 48

Table 11. Three group constants of graphite.

𝛴𝑡 (𝑐𝑚 ―1)

―1

𝛴𝑐(𝑐𝑚 )

𝛴𝑠𝑔→𝑔(𝑐𝑚 ―1)

𝛴𝑠𝑔→𝑔 + 1(𝑐𝑚 ―1)

1st group

2nd group

3rd group

0.23264

4.1681×10−5

0.22122

0.011379

0.41793

7.6738×10−6

0.41327

4.6514×10−3

0.42354

2.1311×10−4

2.5313

iew

ev

rR

ee

rP

Fo

ly

On

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

A Self-archived copy in

Page 43 of 48

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

Table 12. k-eigenvalue changes for interface displacement by 1 cm (Case 5).

Δ𝑘𝑁𝑃

𝑒𝑓𝑓

Δ𝑘𝑃𝑆

𝑒𝑓𝑓

Total

PSM (C=3)

CS

1.1793×10−2 ± 1.2×10−5

−7.7237×10−3 ± 9.6×10−6

4.0692×10−3 ± 1.5×10−5

4.0220×10−3 ± 2.16×10−5

Direct method

4.0182×10−3

Deterministic method

iew

ev

rR

ee

rP

Fo

ly

On

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

A Self-archived copy in

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

Page 44 of 48

Table 13. Relative figure-of-merit with respect to direct method. Number in parentheses denotes

factor C in Eq. (32).

Direct method

PSM

CS

Case 5

Case 6

Case 7

Case 8

5.17 (C=1)

341 (C=1)

54.1 (C=1)

2.33×105 (C=1)

13.4 (C=3)

2114 (C=40)

301 (C=20)

7.20×106 (C=3500)

12.1 (C=5)

1479 (C=60)

241 (C=40)

6.00×106 (C=5000)

135

1.92×104

iew

ev

rR

ee

rP

Fo

ly

On

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

A Self-archived copy in

Page 45 of 48

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

Table 14. k-eigenvalue changes for interface displacement by 0.02 cm (Case 6).

Δ𝑘𝑁𝑃

𝑒𝑓𝑓

Δ𝑘𝑃𝑆

𝑒𝑓𝑓

Total

PSM (C=40)

CS

2.3001×10−4 ± 2.4×10−7

−1.4561×10−4 ± 8.3×10−7

8.4398×10−5 ± 8.69×10−7

4.40×10−5 ± 1.55×10−5

Direct method

8.3940×10−5

Deterministic method

iew

ev

rR

ee

rP

Fo

ly

On

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

A Self-archived copy in

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

Page 46 of 48

Table 15. k-eigenvalue changes for boundary extension by 3 cm (Case 7).

Δ𝑘𝑁𝑃

𝑒𝑓𝑓

Δ𝑘𝑃𝑆

𝑒𝑓𝑓

Total

PSM (C=20)

CS

4.0950×10−3 ± 3.7×10−6

−1.2387×10−3 ± 3.5×10−6

2.8563×10−3 ± 5.1×10−6

4.0875×10−3 ± 4.6×10−6

−1.2572×10−3 ± 6.8×10−6

2.8302×10−3 ± 8.2×10−6

2.8810×10−3 ± 1.92×10−5

Direct method

2.8564×10−3

Deterministic method

iew

ev

rR

ee

rP

Fo

ly

On

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

A Self-archived copy in

Page 47 of 48

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

Table 16. k-eigenvalue changes for boundary extension by 0.02 cm (Case 8).

Δ𝑘𝑁𝑃

𝑒𝑓𝑓

Δ𝑘𝑃𝑆

𝑒𝑓𝑓

Total

PSM (C=3500)

CS

3.3091×10−5 ± 2.3×10−8

−9.8679×10−6 ± 2.16×10−8

2.3223×10−5 ± 3.2×10−8

3.3132×10−5 ± 3.34×10−7

−1.0123×10−5 ± 5.08×10−7

2.3009×10−5 ± 6.08×10−7

Direct method

2.3790×10−5

Deterministic method

iew

ev

rR

ee

rP

Fo

ly

On

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

A Self-archived copy in

Kyoto University Research Information Repository

Journal

ofhttps://repository.kulib.kyoto-u.ac.jp

Nuclear Science and Technology

Page 48 of 48

Table 17. Dependence of k-eigenvalue change on spatial bin sizes in Case 2.

Spatial

bins

Δ𝑘𝑁𝑃

𝑒𝑓𝑓

Δ𝑘𝑃𝑆

𝑒𝑓𝑓

Total

*This

(300+100+300)×

(300+100+300)*

(15+5+15)×(15+5+5)

(7+3+7)×(7+3+7)

5.2403×10−3 ± 8.6×10−6

5.1561×10−3 ± 6.8×10−6

1.0396×10−2 ± 1.1×10−5

5.2396×10−3 ±8.5×10−6

5.1982×10−3 ±6.8×10−6

1.0438×10−2 ±1.1×10−5

5.1796×10−3 ±8.2×10−6

5.1985×10−3 ±2.4×10−6

1.0378×10−2 ±8.5×10−6

is the same as in Table 6.

Table 17 (continued).

Δ𝑘𝑃𝑆

𝑒𝑓𝑓

4.9725×10−3 ±8.3×10−6

5.1395×10−3 ±2.5×10−6

1.0112×10−2 ±8.7×10−6

(3+2+3)×(3+2+3)

4.5344×10−3 ±8.2×10−6

4.7738×10−3 ±2.4×10−6

9.3082×10−3 ±8.5×10−6

iew

ev

rR

ee

Total

(4+2+4)×(4+2+4)

rP

Δ𝑘𝑁𝑃

𝑒𝑓𝑓

Fo

Spatial

bins

ly

On

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

...

参考文献をもっと見る