リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Search for the NΛ resonance in the ɤd→ dπ+π- reaction」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Search for the NΛ resonance in the ɤd→ dπ+π- reaction

Toyama Yuichi 東北大学

2022.03.25

概要

A dibaryon which is an object with baryon number B = 2 has been studied for a long time. Dyson and Xuong classified non-strangeness dibaryon states based on SU(6) symmetries in 1960's. In the framework, the deuteron is classified as one of the sextet states of dibaryons. Although dibaryon have been an interesting subject of research for a long time, most of the experimental studies up to the early 2000's were unsuccessful.

The CELCIUS/WASA collaboration reported this state via the double-pionic fusion reaction (pn → dn°°) in 2009. Thereafter, the WASA-at-COSY collaboration revealed properties of the isoscaler resonance state via the pn → da°n° reaction in 2011. The dibaryon resonance state with isospin 1 = 0 and spin S = 3 thought to be a Dos which was predicted by Dyson and Xuong at 2.35 GeV/c~ with a configuration of AA. The reported mass and width of that state were 2.37 GeV/c* and 0.07 GeV/c?, respectively. The mass was ~0.08 GeV/ c2 smaller than that of 24, the width was narrower than that of single A. This surprising result made dibaryon study come back into the limelight.

Diz is one of the dibaryon states classified by Dyson and Xuong with isospin 1 = 1, spin S = 2. This state can be regarded as an s-wave NA resonance. Diz is an interesting state from the point of view of the possibilities of existence as an internal structure of D03 and contribution to many-body effects in nuclei. Though there were some experimental clues and theoretical studies of this state, it was unclear whether the obtained experimental results represented a real resonance or not due to the difficulty of separation from kinematical effects. Very recently, the FOREST group at Tohoku University reported a photoproduced isovector dibaryon state at mass of 2.14 GeV/c- in the dr invariant mass spectra of the yd → din° reaction. The most probable JP configuration was 2+ although they didn't exclude the possibility of JP = 1+ or 3-. They separated the dibaryon production process from conventional pion production process for the first time using angular distribution of deuteron.

We investigated the yd → dit reaction for study of a possible NA dibaryon state using a deuterium target at the Research Center for Electron Photon Science, Tohoku University, Japan. In the experiment, ~3 × 10'2 tagged photon beam at energies ranging from 0.8 to 1.1 GeV was impinged to the liquid deuterium target (~520 mg/cm?) and the charged particles in the final state: deuteron, i, and , were detected by a magnetic spectrometer with a large solid angle named NKS2. NKS2 had capabilities of reconstructing momentum of charged particles, multi-track analysis, and p/n separation. We performed two different analyses named 2-track analysis and 3-track analysis. The 2-track (3-track) analysis was for events in which two (three) particles of dn* in the final state, including deuteron, were detected by NKS2. In the 3-track and 2-track analysis, ~2000, ~15000 events were identified as the yd → dr reaction events, respectively. The 2-track analysis with higher statistics was mainly used to derive the cross sections, and the 3-track analysis was used to check the consistency of the 2-track analysis.

In this thesis, we have shown the total cross section, the differential cross sections of the yd → diti reaction in the region of It| > 0.15 GeV?. This is the world's first measurement of this reaction in this energy region. Dibaryon resonance structures were observed below the NA threshold in the differential cross section of the invariant mass of dn*. The mass and width of the structure were consistent with these of Di2 measured by the ya → dino reaction. The mechanism of the production process was discussed based on the angular distribution of emitted deuteron.

この論文で使われている画像

参考文献

[ABC60] Alexander Abashian et al. Phys. Rev. Lett. 5 (6 1960), pp. 258–260.

[Adl+11] P. Adlarson et al. Phys. Rev. Lett. 106 (24 2011), p. 242302.

[Adl+13a] P. Adlarson et al. Phys. Lett. B 721.4 (2013), pp. 229 –236.

[Adl+13b] P. Adlarson et al. Phys. Rev. C 88 (5 2013), p. 055208.

[Adl+14] P. Adlarson et al. Phys. Rev. C 90 (3 2014), p. 035204.

[Adl+15] P. Adlarson et al. Phys. Lett. B 743 (2015), pp. 325–332.

[Aga+15] G. Agakishiev et al. Phys. Lett. B 750 (2015), pp. 184–193.

[Ant+09] I. Antcheva et al. Comput. Phys. Commun. 180.12 (2009), pp. 2499–2512.

[Arn+00] J. Arnold et al. Euro. Phys. J. C - Particles and Fields 17.1 (2000), pp. 67–81.

[Arn+93] Richard A. Arndt et al. Phys. Rev. C 48 (4 1993), pp. 1926–1938.

[ASW94] Richard A. Arndt et al. Phys. Rev. C 50 (4 1994), pp. 1796–1806.

[BAC61] Norman E. Booth et al. Phys. Rev. Lett. 7 (1 1961), pp. 35–39.

[Bal+87] J. Ball et al. Nucl. Phys. B 286 (1987), pp. 635–642.

[Bal+93] J. Ball et al. Nucl. Phys. A 559.4 (1993), pp. 489–510.

[Bas+09] M. Bashkanov et al. Phys. Rev. Lett. 102 (5 2009), p. 052301.

[Bec13] B.O. Beckford. PhD thesis, Tohoku University (2013).

[Ben+74] P. Benz et al. Nucl. Phys. B 79.1 (1974), pp. 10–37.

[Bro+02] W Brodowski et al. Phys. Lett. B 550.3 (2002), pp. 147–153.

[CBS15] H Clement et al. Physica Scripta T166 (2015), p. 014016.

[Cho+03] S.-K. Choi et al. Phys. Rev. Lett. 91 (26 2003), p. 262001.

[Cle17] H. Clement. Prog. Part. Nucl. Phys. 93 (2017), pp. 195 –242.

[Dra+00] J. Draeger et al. Phys. Rev. C 62 (6 2000), p. 064615.

[DX64] Freeman J. Dyson and Nguyen-Huu Xuong. Phys. Rev. Lett. 13 (26 1964), pp. 815–817.

[DX65] Freeman J. Dyson and Nguyen-huu Xuong. Phys. Rev. Lett. 14 (9 1965), pp. 339–339.

[Ego20] Mikhail Egorov. Phys. Rev. C 101 (6 2020), p. 065205.

[FA05] A. Fix and H. Arenhövel. Euro. Phys. J. A 25.1 (2005), pp. 115–135.

[FW07] V. V. Flambaum and R. B. Wiringa. Phys. Rev. C 76 (5 2007), p. 054002.

[Gab+84] B. Gabioud et al. Nucl. Phys. A 420.3 (1984), pp. 496–524.

[GG14] Avraham Gal and Humberto Garcilazo. Nucl. Phys. A 928 (2014), pp. 73–88.

[Gla+93] G. Glass et al. Phys. Rev. C 47 (4 1993), pp. 1369–1375.

[Gro+20] Particle Data Group et al. Progress of Theoretical and Experimental Physics 2020.8 (2020).

[GY71] R. D. Gunn and Tomoyoshi Yamada. AIChE Journal 17.6 (1971), pp. 1341–1345.

[Hos93] Norio Hoshizaki. Progress of Theoretical Physics 89.2 (1993), pp. 569–574.

[Hua+15] Fei Huang et al. Chin. Phys. C 39.7 (2015), p. 071001.

[Ish+10] T. Ishikawa et al. Nucl. Instrum. Methods Phys. Res., Sect. A 622.1 (2010), pp. 1–10.

[Ish+19] T. Ishikawa et al. Phys. Lett. B 789 (2019), pp. 413 –418.

[Ish+20] T. Ishikawa et al. Proposal to J-PARC P79 Experiment (2020).

[Jaf77] R. L. Jaffe. Phys. Rev. Lett. 38 (5 1977), pp. 195–198.

[Kan+18] M. Kaneta et al. Nucl. Instrum. Methods Phys. Res., Sect. A 886 (2018), pp. 88–103.

[Les+99] A. de Lesquen et al. Euro. Phys. J. C 11.1 (1999), pp. 69–78.

[Mac01] R. Machleidt. Phys. Rev. C 63 (2 2001), p. 024001.

[Mak+80] Y. Makdisi et al. Phys. Rev. Lett. 45 (19 1980), pp. 1529–1533.

[MAS80] P. J. Mulders et al. Phys. Rev. D 21 (9 1980), pp. 2653–2671.

[MB79] Jan Myrheim and Lars Bugge. Nucl. Instrum. Methods 160.1 (1979), pp. 43–48.

[McG+08] J. C. McGeorge et al. Euro. Phys. J. A 37.1 (2008), pp. 129–137.

[McK+06] B. McKinnon et al. Phys. Rev. Lett. 96 (21 2006), p. 212001.

[McN+93] M. W. McNaughton et al. Phys. Rev. C 48 (1 1993), pp. 256–265.

[MT83] P J Mulders and A W Thomas. J. Phys. G: Nucl. Phys. 9.10 (1983), pp. 1159–1167.

[Mur+14] N. Muramatsu et al. Nucl. Instrum. Methods Phys. Res., Sect. A 737 (2014),pp. 184 –194.

[Nak+03] T. Nakano et al. Phys. Rev. Lett. 91 (1 2003), p. 012002.

[New+89] C. R. Newsom et al. Phys. Rev. C 39 (3 1989), pp. 965–974.

[Nis82] J.A. Niskanen. Phys. Lett. B 112.1 (1982), pp. 17–21.

[Nom+94] M Nomachi et al. Tech. rep. 1994.

[Noy72] H P Noyes. Annu. Rev. Nucl. Sci. 22.1 (1972), pp. 465–484.

[NP19] B.S. Neganov and L.B. Parfenov. SOVIET PHYSICS JETP 7 (0019), pp. 528–529.

[OY80] M. Oka and K. Yazaki. Phys. Lett. B 90.1 (1980), pp. 41–44.

[PK13] M. N. Platonova and V. I. Kukulin. Phys. Rev. C 87 (2 2013), p. 025202.

[PK16] M.N. Platonova and V.I. Kukulin. Nucl. Phys. A 946 (2016), pp. 117–157.

[Pol+87] R.E. Poling et al. McGraw-Hill chemical engineering series 10. McGraw-Hill,1987. isbn: 9780070517998.

[Sch+87] O. Schori et al. Phys. Rev. C 35 (6 1987), pp. 2252–2257.

[Set88] KK Seth. Bad Honnef 1988 (1988), p. 41.

[Sob+00] D.I. Sober et al. Nucl. Instrum. Methods Phys. Res., Sect. A 440.2 (2000), pp. 263–284.

[ST80] J. Simkin and C.W. Trowbridge. English. IEE Proceedings B (Electric Power Applications) 127 (6 1980), 368–374(6).

[Sö66] P. Söding. Physics Letters 19.8 (1966), pp. 702–704.

[UBM32] Harold C. Urey et al. Phys. Rev. 39 (1 1932), pp. 164–165.

[Yam+05] H. Yamazaki et al. Nucl. Instrum. Methods Phys. Res., Sect. A 536.1 (2005), pp. 70 –78.

[YC+10] HAN Yun-Cheng et al. Chin. Phys. C 34.2009-0022 (2010), p. 35.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る