リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Molecular Mechanisms of Flower Coloration in Ornamental Plant Matthiola incana」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Molecular Mechanisms of Flower Coloration in Ornamental Plant Matthiola incana

Latifa Nuraini 岐阜大学

2020.09.18

概要

ストック(Matthiola incana (L.) R. Br)は,冬から春に流通する人気のある花き品目の一つである.ストックは様々な花色を有する品種が育成されているが,その花色の着色に関する分子機構が明らかになっていない。ストック野生型の花色である紫花品種である‘ビンテージラベンダー’を用いてアントシアニン生合成関連遺伝子の単離を試みた。5つのアントシアニン生合成に関する転写調節因子遺伝子(MiMYB1, MibHLH1, MibHLH2, MiWDR1, MiWDR2)を次世代シークエンスから同定した.酵母2ハイブリッド解析により,MiMYB1 タンパク質は, MibHLH1 とMibHLH2,MiWDR1 タンパク質と相互作用したが,MiWDR2 タンパク質はどの転写調節タンパク質とも相互作用しなかった.MiMYB1 と MibHLH1 遺伝子の発現量は,花弁発達にともない増加し,アントシアニン色素の蓄積とよく相関した.また,これらの発現様式 は,フラボノイド 3ʹ-水酸化酵素(F3ʹH),ジヒドロフラボノール 4-還元酵素(DFR),アントシアニジン合成酵素(ANS),アントシアニジン 3-O-配糖化酵素(3GT)の発現様式とも類似しており,これらの酵素遺伝子の発現を制御していることが示唆された.一方,MibHLH1 は‘ビンテージラベンダー’のどの器官においてもほとんど転写していなかった.しかし,‘ビンテージバーガンディ’,‘ビンテージレッド’,‘ビンテージローズ’,‘ビンテージカッパー’のような高レベルでアントシアンを蓄積する品種の花弁では強い転写が検出された.カブモザイクウイルス(TuMV)を用いた1か月実生の葉における MiMYB1 遺伝子の一過的発現は,アントシアニンの異所蓄積を誘導し,F3’H や DFR, ANS 遺伝子の発現を活性化した.これらの結果から, MiMYB1 は MibHLH2 と MiWDR1 は複合体を形成し,アントシアニン生合成酵素遺伝子の転写を活性化することが示唆された.また,MibHLH1 は,MiMYB1-MibHLH2-MiWDR1 複合体と協調的に働くことでアントシアニン生合成に対するエンハンサーの役割を有していることが推定された.これらの結果から,ストック花弁におけるアントシアニン生合成の分子調節機構が明らかとなった.

さらに,白花ストック6品種を用いて白花化に関与した変異遺伝子の特定を試みた.‘キスミーホワイト’と‘ピグミーホワイト’の花弁では,カルコン合成酵素(CHS),フラバノン 3-水酸化酵素(F3H), F3ʹH, DFR, ANS, 3GT の発現が抑制され,アントシアニン生合成調節因子の一つである basic helix-loop-helix 2 (bHLH2)の発現が約 2 倍に増加していた.‘ビンテージホワイト’,‘アイアンホワイト’,‘ホワイトワンダー2 号’と‘カルテットホワイト’では,花弁における ANS 遺伝子の発現量が有意に減少していたが,他のアントシアニン生合成関連遺伝子の発現量には有意な差は観察されなかった.調査した 6 つの白花品種において,ANS 遺伝子の第 1エキソンにフレームシフト変異を引き起こす 1 塩基欠失が存在した.この変異対立遺伝子を ans-1 と名付けた.‘キスミーホワイト’と‘ピグミーホワイト’では,bHLH2 の第 6 エキソンに 481 bp の挿入が観察され,その挿入配列は hAT 型トランスポゾンの特徴を有していた.ストックで初めて単離されたこのトランスポゾンを dTmi1,さらに変異対立遺伝子を bhlh2dTmi1 と名付けた.‘キスミーホワイト’と‘ピグミーホワイト’の 2 品種の遺伝子型は ans-1 と bhlh2dTmi1の二重変異,それら以外の白花品種は ans-1 変異であることが明らかとなった.カロテノイド蓄積により黄花を呈している‘キスミーイエロー’はアントシアニン色素を花弁に蓄積せず,その遺伝子型は bhlh2dTmi1 単独変異であった.これらの結果から,bhlh2dTmi1 単独または ans-1 単独変異のどちらもアントシアニン蓄積を欠損させることが明らかとなった.本研究ではさらに, bHLH2 および ANS 遺伝子の野生型または変異型対立遺伝子を識別できる共優性マーカーの開発にも成功した.我々が以前に報告した一重咲き・八重咲き識別マーカーと組み合わせることで,ストックの育種や種苗管理にとって有益な技術になると考えられる.

この論文で使われている画像

参考文献

Alkurdi M, K. Hassan, and J. Supuka. 2015. Influence of planting date on growth, stem number formation and flower appearance of Matthiola incana. J.Bot., Kosice. 25 (1): 29-39.

Allen IM. 1924. The cytology of Matthiola incana with reference to the genetics of certain cultivated varieties. New phytologist: 103-112.

Allan AC, R. V. Espley. 2018. MYBs drive novel consumer traits in fruits and vegetables. Trends Plant Sci 23 (8):693-705.

Bedoya LC, Martinez F, Orzaez D, Daros JA. 2012. Visual tracking of plant virus infection and movement using a reporter MYB transcription factor that activates anthocyanin biosynthesis. Plant Physiol 158 (3):1130-1138.

Bernhardt C, Lee MM, Gonzalez A, Zhang F, Lloyd A, Schiefelbein J. 2003. The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development 130 (26):6431-6439.

Chen, D., Y. Liu, Q. Pan, F. F. Li, Q. Zhang, X. Ge and Z. Li. 2018. De novo transcriptome assembly, gene expressions and metabolites for flower color variation of two garden species in Brassicaceae. Sci Hortic 240: 592-602.

Chiu LW, Zhou X, Burke S, Wu X, Prior RL, Li L .2010. The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiol 154 (3):1470-1480.

Crane, M. B. and M. B. Lawrence. 1947. The genetics of garden plants. Macmillan & Co. Ltd. London. Dangelmayr B, Stotz G, Spribille R and Forkmann G. 2014. Relationship between flower development, anthocyanin accumulation and activity of enzymes involved in flavonoid biosynthesis in Matthiola incana R. Br. Bioscience 38: 551-555.

Davies KM, Bradley JM, Schwinn KE, Markham KR, and Podivinsky E. 1993. Flavonoid biosynthesis in flower petals of five lines of lisianthus (Eustoma grandiflorum Grise.). Plant Sci 95 (1): 67- 77.

Davies KM, Nick WA, and Kathy ES. 2012. From landing lights to mimicry: the molecular regulation of flower coloration and mechanisms for pigmentation patterning. Functional plant biology: 12195.

Dole, J. M. and H. F. Wilkins. 2005. Matthiola. p. 682-687 Floriculture prinples and species. Pearson Prentice Hall. New Jersey.

Dooner HK, Robbins TP, and Jorgensen RA. 1991. Genetic and developmental control of anthocyanin biosynthesis. Annu. Rev. Genet 25: 509-519.

Dressel, A. and V. Hemleben. 2009. Transparent Testa Glabra 1 (TTG1) and TTG1-like genes in Matthiola incana R. Br. and related Brassicaceae and mutation in the WD-40 motif. Plant Biol 11: 204-212.

Dubois A, Raymond O, Maene M, Baudino S, Langlade NB, Boltz V, Vergne P, and Bendahmane. 2010. Tinkering with the C-fuction: a molecular frame for the selection of double flowers in cultivated roses. PlosOne (5)2.

Ecker, R., A. Barzilay and E. Osherenko. 1993. Linkage relationships of genes for leaf morphology and double flowering in Matthiola incana. Euphytica 74: 133-136.

Feller, A., K. Machemer, E. L. Braun and E. Grotewold. 2011. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66: 94-116. syndromes and floral specialization. Annu.Rev.Ecol. Evol.Syst. 35: 375-403.

Forkmann G. 1977. Precursors and genetic control of anthocyanin synthesis in Matthiola incana R. Br. Planta 137, 159-163.

Forkmann G. 1979. Flavones and dihydroflavonols as biosynthetic in Matthiola incana. Phytochemistry (18): 1973-1975.

Forkmann G. 1980. The B-ring hydroxylation pattern of intermediates of anthocyanin synthesis in pelargonidin- and cyanidin-producing lines of Matthiola incana. Planta 148:157-161.

Forkmann G. 1991. Flavonoids as flower pigments: the formation of the natural spectrum and its extention by genetic engineering. Plant breeding (1) 106: 1-26.

Forkmann G .1993. Genetics of flavonoids. In: Harborn JB (ed) The flavonoids: Advances in research scince 1986. Chapman & hall London, pp 537-564

Fujita, M. 1994. Stock (In Japanese). Seibundo Shinkosya. Tokyo.

Fujita M, Nishitani T. 1978. Studies on establishment of cropping system in common stock (Matthiola incana R. Br.) IV. Effect of gibberelin on the growth and flowering in non-branching stocks. Res Bull Wakayama Agr Exp Stn 6: 19-26

Gerats A., De Vlaming P., Doodeman M., Al B., Schram A. Genetic control of the conversation of dihydroflavonols into flavonols and anthocyanins in flowers of petunia hybrida. Planta 115: 364- 368.

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A . 2011. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 29 (7):644-652.

Grotewold E. 2006. The science of flavonoids. Springer: VI:147-173.

Haliassos, A., J. C. Chomel, S. Grandjouan, J. Kruh, J. C. Kaplan and A. Kitzis. 1989. Detection of minority point mutations by modified PCR technique: a new approach for a sensitive diagnosis of tumor-progression markers. Nucleic Acids Res 17: 8093-8099.

Heller W, Forkmann G, Britsch L, and Grisebach H. 1985. Enzymatic reduction of (+)- dihydroflavonols to flavan-3,4-cis-diols with flower extracts from Matthiola incana and its role in anthocyanin biosynthesis. Planta 165: 284-287.

Hemleben, V., A. Dressel, B. Epping, R. Lukacin, S. Martens and M. Austin. 2004. Characterization and structural features of a chalcone synthase mutation in a white-flowering line of Matthiola incana R. Br. (Brassicaceae). Plant Mol Biol 55: 455-465.

Hisamatsu T, Koshioka M, Kubota S, Fujime Y, King RW, Mander LN .2000. The role of gibberellin biosynthesis in the control of growth and flowering in Matthiola incana. Physiol Plant 109:97- 105.

Holton T, Cornish E. 1995. Genetic and biochemistry of anthocyanin biosynthesis. Plant Cell 7: 1071- 1083.

Irani SF, and Arab M. 2017. Early selection of double flowers base don cotyledon shape in cut stock (Matthiola incana L.) flowers. Horticultural science and technology 35 (2): 265-275.

Kamada K, Omata S, Yamagishi N, Kasajima I, Yoshikawa N .2018. Gentian (Gentiana triflora) prevents transmission of apple latent spherical virus (ALSV) vector to progeny seeds. Planta 248 (6):1431-1441.

Kappert H. 1949. Die Genetic des incana characters und der anthocyanbildung bei der levkoje. Zuchter 19: 289-297.

Kunze, R. and C. F. Well. 2002. The hAT and CACTA superfamilies of plant transposons. p. 565-610. In: N. L. Craig, R. Craigie, M. Gellert andA. M. Lambowitz (eds.). Mobile DNA II. ASM press. Washington, D. C. Liu, Y., L. Wang, J. L. Kermicle and S. R. Wessler. 1998. Molecular consequences of Ds insertion into and excision from the helix-loop-helix domain of the maize R gene. Genetics 150: 1639-1648.

Li X, Chen L, Hong M, Zhang Y, Zu F, Wen J, Yi B, Ma C, Shen J, Tu J, Fu T. 2012. A large insertion in bHLH transcription factor BrTT8 resulting in yellow seed coat in Brassica rapa. PLoS One 7 (9):e44145.

Lim SH, Kim DH, Kim JK, Lee JY, Ha SH. 2017 A radish basic Helix-Loop-Helix transcription factor, RsTT8 acts a positive regulator for anthocyanin biosynthesis. Front Plant Sci 8:1917.

Lim SH, Song JH, Kim DH, Kim JK, Lee JY, Kim YM, Ha SH. 2016. Activation of anthocyanin biosynthesis by expression of the radish R2R3-MYB transcription factor gene RsMYB1. Plant Cell Rep 35 (3):641-653.

Martin E, Unal M, Dogan B, Altinordu F, Sefali A, and Kaya A. 2016. Karyotype analyses of the genus Matthiola (Brassicaceae) in Turkey. Cytologia 81 (1): 53-60.

Matsubara, K., S. Chen, J. Lee, H. Kodama, H. Kokubun, H. Watanabe and T. Ando. 2006. PCR-based markers for the genotype identification of flavonoid 3',5'-hydroxylase genes governing floral anthocyanin biosynthesis in commercial petunias. Breed Sci 56: 389-397.

Morita, Y., M. Saitoh, A. Hoshino, E. Nitasaka and S. Iida. 2006. Isolation of cDNAs for R2R3-MYB, bHLH and WDR transcriptional regulators and identification of c and ca mutations conferring white flowers in the Japanese morning glory. Plant Cell Physiol 47: 457-470.

Mortimer CL, Dugdale B, Dale JL. 2015. Updates in inducible transgene expression using viral vectors: from transient to stable expression. Curr Opin Biotechnol 32:85-92.

Nakajima, T., K. Matsubara, H. Kodama, H. Kokubun, H. Watanabe and T. Ando. 2005. Insertion and excision of a transposable element governs the red floral phenotype in commercial petunias. Theoretical and Applied Genetics 110.

Nakatsuka T, Nishihara M, Mishiba K, Yamamura S. 2005. Temporal expression of flavonoid biosynthesis-related genes regulates flower pigmentation in gentian plants. Plant Sci 168:1309- 1318

Nakatsuka, T., M. Nishihara, K. Mishiba and S. Yamamura. 2005a. Two different mutations are involved in the formation of white-flowered gentian plants. Plant Science 169: 949-958.

Nakatsuka, T., M. Nishihara, K. Mishiba and S. Yamamura. 2005b. Temporal expression of flavonoid biosynthesis-related genes regulates flower pigmentation in gentian plants. Plant Sci 168: 1309- 1318.

Nakatsuka, T., K. S. Haruta, C. Pitaksutheepong, Y. Abe, Y. Kakizaki, K. Yamamoto, N. Shimada, S. Yamamura and M. Nishihara. 2008. Identification and characterization of R2R3-MYB and bHLH transcription factors regulating anthocyanin biosynthesis in gentian flowers. Plant Cell Physiol 49: 1818-1829.

Nakatsuka, T., M. Saito, Y. Sato-Ushiku, E. Yamada, T. Nakasato, N. Hoshi, K. Fujiwara, T. Hikage and M. Nishihara. 2012. Development of DNA markers that discriminate between white- and blue-flowers in Japanese gentian plants. Euphytica 184: 335–344.

Nakatsuka T, Sasaki N, Nishihara M. 2014. Transcriptional regulators of flavonoid biosynthesis and their application to flower color modification in Japanese gentians. Plant Biotechnol 31:389-399.

Nakatsuka, T. and K. Koishi. 2018. Molecular characterization of a double-flower mutation in Matthiola incana. Plant Sci 268: 39-46.

Nakatsuka T, Suzuki T, Harada K, Kobayashi Y, Dohra H, Ohno H. 2019. Floral organ- and temperature-dependent regulation of anthocyanin biosynthesis in Cymbidium hybrid flowers. Plant Sci 287:in press.

Neff, M. M., J. D. Neff, J. Chory and A. E. Pepper. 1998. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14: 387-392.

Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L. 2001. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13 (9):2099-2114.

Nishihara, M., E. Yamada, M. Saito, K. Fujita, H. Takahashi and T. Nakatsuka. 2014. Molecular characterization of mutations in white-flowered torenia plants. BMC Plant Biol 14: 86.

Nishihara, M., K. Mishiba, T. Imamura, H. Takahashi and T. Nakatsuka. 2015. Molecular breeding of Japanese gentians—Applications of genetic transformation, metabolome analyses, and genetic markers. p. 239-265. In: J. Rybczyński, M. Davey andA. Mikuła (eds.). The Gentianaceae - Volume 2: Biotechnology and Applications. Springer. Berlin, Heidelberg.

Nuraini, L., Y. Ando, K. Kawai, F. Tatsuzawa, K. Tanaka, M. Ochiai, K. Suzuki, V. Aragones, J. A. Daros and T. Nakatsuka. 2020. Anthocyanin regulatory and structural genes associated with violet flower color of Matthiola incana. Planta 251: 61.

Ohno, S., M. Hosokawa, A. Hoshino, Y. Kitamura, Y. Morita, K. I. Park, A. Nakashima, A. Deguchi, F. Tatsuzawa, M. Doi, S. Iida and S. Yazawa. 2011. A bHLH transcription factor, DvIVS, is involved in regulation of anthocyanin synthesis in dahlia (Dahlia variabilis). J Exp Bot 62: 5105- 5116.

Quattrocchio F, Wing JF, Leppen H, Mol J, Koes RE. 1993. Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell 5 (11):1497-1512.

Quattrocchio F, John W, Karel VD, Erik S, Nick DV, Mol J, Koes R. 1999. Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. The plant cell II(11): 1433-1444.

Rall S, Hemleben V (1984) Characterization and expression of chaicone synthase in different genotypes of Matthiola incana R.Br. during flower development. Plant Mol Biol 3:137-145.

Ramsay, N. A., A. R. Walker, M. Mooney and J. C. Gray. 2003. Two basic-helix-loop-helix genes (MYC-146 and GL3) from Arabidopsis can activate anthocyanin biosynthesis in a white- flowered Matthiola incana mutant. Plant Mol Biol 52: 679-688.

Sánchez F, Martinez-Herrera D, Aguilar I, Ponz F. 1998. Infectivity of turnip mosaic potyvirus cDNA clones and transcripts on the systemic host Arabidopsis thaliana and local lesion hosts. Virus Res 55 (2):207-219.

Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, Tohge T, Fernie AR. 2013. The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiol Biochem 72:21-34.

Saito N, Tatsuzawa F, Nishiyama A, Yokoi M, Shigihara A, Honda T. 1996. Acylated cyanidin 3- sambubioside-5-glucosides in Matthiola incana. Phytochemistry 38:1027-1032.

Sasaki K, Mitsuda N, Nashima K, Kishimoto K, Katayose Y, Kanamori H, Ohmiya A. 2017. Generation of expressed sequence tags for discovery of genes responsible for floral traits of Chrysanthemum morifolium by next-generation sequencing technology. BMC Genomics 18 (1):683.

Saunders, E. R. 1928. Matthiola. Bibliographia Genetica 4: 141-170.

Seitz, C., C. Eder, B. Deiml, S. Kellner, S. Martens and G. Forkmann. 2006. Cloning, functional identification and sequence analysis of flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase cDNAs reveals independent evolution of flavonoid 3',5'-hydroxylase in the Asteraceae family. Plant Mol Biol 61: 365-381.

Seyffert, W. 1971. Simulation of quantitative characters by genes with biochemically definable action. Theoret Appl Genetics 41: 285-291.

Shibata M,. 2008. Importance of genetic transformation in ornamental plant breeding. Plant Biotechnology 25: 3-8.

Shimizu, K., N. Ohnishi, N. Morikawa, A. Ishigami, S. Otake, I. O. Rabah, Y. Sakata and F. Hashimoto. 2011. A 94-bp deletion of anthocyanidin synthase gene in acyanic flower lines of lisianthus [Eustoma grandiflorum (Raf.) Shinn.]. J Japan Soc Hort Sci 80: 434-442.

Spelt C. Quattrocchio F, Mol J, Koes R. anthocyanin1 of Petunia Encodes a Basic Helix-Loop-Helix Protein That Directly Activates Transcription of structural anthocyanin genes. The Plant cell (12): 1619-1631.

Spribille, R. and G. Forkmann. 1981. Genetic control of chalcone synthase activity in flowers of Matthiola incana R. Br. Z Naturforsch 36 c: 619-624.

Suzuki, K., K. Tasaki and M. Yamagishi. 2015. Two distinct spontaneous mutations involved in white flower development in Lilium speciosum. Molecular Breeding 35: 193.

Suzuki K, Suzuki T, Nakatsuka T, Dohra H, Yamagishi M, Matsuyama K, Matsuura H (2016) RNA- seq-based evaluation of bicolor tepal pigmentation in Asiatic hybrid lilies (Lilium spp.). BMC Genomics 17 (1):611.

Tanaka Y., Tsuda S., Kusumi T. Metabolic engineering to modify flower color. Plant and cell physiology. 39(11): 1119-1126

Tatsuzawa, F., N. Saito, K. Toki, K. Shinoda and T. Honda. 2012. Flower colors and their anthocyanins in Matthiola incana cultivars (Brassicaceae). J Japan Soc Hort Sci 81: 91-100.

Tatsuzawa, F., N. Okuyama, K. Kato, H. Shono, J. Takeda and H. Kofujita. 2014. Sinapoylglucoside and kaempferol glycosides in flowers of Matthiola incana cultivars (Brassicaceae). . Hort Res 13 (In Japanese with English abstract ).

Teusch M, Forkmann G, Seyffert W (1986) Genetic control of UDP-glucose: anthocyanin 5-O- glucosyltransferase from flowers of Matthiola incana R.Br. Planta 168:586-591.

Teusch M, Forkmann G, Seyffert W.1987.Genetic control of hydroxycinnamoyl-coenzyme a: Anthocyanidin 3-glycoside-hydroxycinnamoyltransferase from petals of Matthiola incana. Phytochemistry 26 (4):991-994.

Tian J, Pei H, Zhang S, Chen J, Chen W, Yang R, Meng Y, You J, Gao J, Ma N. 2014. TRV-GFP: a modified Tobacco rattle virus vector for efficient and visualizable analysis of gene function. J Exp Bot 65 (1):311-322.

Wei Y-L, J-N. L, Lu J, Tang Z-L, Pu D-C, Chai Y-R. 2007. Molecular cloning of Brassica napus TRANSPARENT TESTA 2 gene family encoding potential MYB regulatory proteins of proanthocyanidin biosynthesis. Mol Biol Rep 34:105-120.

Winkel-Shirley, B. 2001a. Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology, and biotechnology, Plant Physiol 126: 485-493.

Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB-bHLH- WDR complexes. Trends Plant Sci 20 (3):176-185.

Yuan Y, Chiu LW, Li L. 2009. Transcriptional regulation of anthocyanin biosynthesis in red cabbage. Planta 230 (6):1141-1153.

Zhang B, Hu Z, Zhang Y, Li Y, Zhou S, Chen G. 2012. A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica Oleracea var. acephala f. tricolor). Plant Cell Rep 31 (2):281-289.

Zhang C., Fu J., Wang Y., Gao S., Du D., Wu., Guo J., Dong L. Glucose supply improves petal coloration and anthocyanin biosynthesis in Peonia suffruticosa 'Luoyang Hong' cut flower. Postharvest biology and technology: 73-81.

Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A. 2003. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130 (20):4859-4869.

Zhao D, Jiang Y, Ning C, Meng J, Lin S, Ding W, Tao J. 2014. Transcriptome sequencing of a chimaera reveals coordinated expression of anthocyanin biosynthetic genes mediating yellow formation in herbaceous peony (Paeonia lactiflora Pall.). BMC Genomics 15:689.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る