リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Potentially reduced fusogenicity of syncytin‐2 in New World monkeys」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Potentially reduced fusogenicity of syncytin‐2 in New World monkeys

Shoji, Hiyori Kitao, Koichi Miyazawa, Takayuki Nakagawa, So 京都大学 DOI:10.1002/2211-5463.13555

2023.03

概要

Syncytin-2 is a membrane fusion protein involved in placenta development that is derived from the endogenous retrovirus envelope gene acquired in the common ancestral lineage of New World and Old World monkeys. It is known that syncytin-2 is conserved between apes and Old World monkeys, suggesting its functional importance; however, syncytin-2 of common marmosets (Callithrix jacchus) exhibits lower fusogenic activity than those of humans and Old World monkeys in human cell lines. To obtain insight into the functional diversity of syncytin-2 genes in primates, we examined the syncytin-2 gene in New World monkeys. We experimentally evaluated the cell fusion ability of syncytin-2 in humans, C. jacchus, and tufted capuchins (Sapajus apella). We found that the cell fusion ability of S. apella was lower than that of human syncytin-2. Chimeric syncytin-2 constructs revealed that the amino acid differences in the surface unit of S. apella syncytin-2 were responsible for the weak cell fusion activity. In addition, genomic sequence analyses of syncytin-2 revealed that the open reading frames (ORFs) of syncytin-2 were highly conserved in 7 apes and 22 Old World monkeys; however, the syncytin-2 ORFs of three out of 12 New World monkey species were truncated. Our results suggest that syncytin-2 in several New World monkeys may be of less importance than in Old World monkeys and apes, and other syncytin-like genes may be required for placental development in various New World monkey species.

この論文で使われている画像

参考文献

1 Hoyt SJ, Storer JM, Hartley GA, Grady PGS,

Gershman A, de Lima LG, et al. From telomere to

telomere: the transcriptional and epigenetic state of

human repeat elements. Science. 2022;376:6588. https://

doi.org/10.1126/science.abk3112

2 Johnson WE. Origins and evolutionary consequences of

ancient endogenous retroviruses. Nat Rev Microbiol.

2019;17(6):355–70. https://doi.org/10.1038/s41579-0190189-2

3 Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L,

et al. Syncytin is a captive retroviral envelope protein

involved in human placental morphogenesis. Nature.

2000;403:785–9. https://doi.org/10.1038/35001608

4 Blond JL, Lavillette D, Cheynet V, Bouton O, Oriol G,

Chapel-Fernandes S, et al. An envelope glycoprotein of

the human endogenous retrovirus HERV-W is

expressed in the human placenta and fuses cells

expressing the type D mammalian retrovirus receptor.

J Virol. 2000;74:3321–9. https://doi.org/10.1128/jvi.74.7.

3321-3329.2000

5 Denner J. Expression and function of endogenous

retroviruses in the placenta. APMIS. 2016;124:31–43.

https://doi.org/10.1111/apm.12474

466

H. Shoji et al.

6 Mallet F, Bouton O, Prudhomme S, Cheynet V, Orio

LG, Bonnaud B, et al. The endogenous retroviral locus

ERVWE1 is a bona fide gene involved in hominoid

placental physiology. Proc Natl Acad Sci USA.

2004;101(6):1731–6. https://doi.org/10.1073/pnas.

0305763101

7 Blaise S, de Parseval N, Benit L, Heidmann T.

Genomewide screening for fusogenic human

endogenous retrovirus envelopes identifies syncytin 2, a

gene conserved on primate evolution. Proc Natl Acad

Sci USA. 2003;100:2213013–8. https://doi.org/10.1073/

pnas.2132646100

8 Esnault C, Priet S, Ribet D, Vernochet C, Bruls T,

Lavialle C, et al. A placentaspecific receptor for the

fusogenic, endogenous retrovirus-derived, human

syncytin-2. Proc Natl Acad Sci USA. 2008;105:17532–7.

https://doi.org/10.1073/pnas.0807413105

9 Vargas A, Moreau J, Landry S, LeBellego F, Toufaily

 et al. Syncytin-2 plays an important role

C, Rassart E,

in the fusion of human trophoblast cells. J Mol Biol.

2009;392:301–18. https://doi.org/10.1016/j.jmb.2009.07.

025

10 Kitao K, Tanikaga T, Miyazawa T. Identification of a

post-transcriptional regulatory element in the

human endogenous retroviral syncytin-1. J Gen

Virol. 2019;100(4):662–8. https://doi.org/10.1099/jgv.0.

001238

11 Camacho C, Coulouris G, Avagyan V, Ma N,

Papadopoulos J, Bealer K, Madden TL. BLAST+:

architecture and applications. BMC Bioinformatics.

2009;15(10):421. https://doi.org/10.1186/1471-2105-10421

12 Quinlan AR, Hall IM. BEDTools: a flexible suite of

utilities for comparing genomic features. Bioinformatics.

2010;26(6):841–2. https://doi.org/10.1093/

bioinformatics/btq033

13 Rice P, Longden I, Bleasby A. EMBOSS: the European

Molecular Biology Open Software Suite. Trends Genet.

2000;16(6):276–7. https://doi.org/10.1016/s0168-9525(00)

02024-2

14 Katoh K, Standley DM. MAFFT multiple sequence

alignment software version 7: improvements in

performance and usability. Mol Biol Evol. 2013;30

(4):772–80. https://doi.org/10.1093/molbev/mst010

15 Kumar S, Suleski M, Craig JE, Kasprowicz AE,

Sanderford M, Li M, et al. TimeTree 5: an expanded

resource for species divergence times. Mol Biol Evol.

2022;39:msac174. https://doi.org/10.1093/molbev/

msac174

16 Minh BQ, Schmidt HA, Chernomor O, Schrempf D,

Woodhams MD, von Haeseler A, et al. IQ-TREE 2:

new models and efficient methods for

phylogenetic inference in the genomic era. Mol Biol

Evol. 2020;37(5):1530–4. https://doi.org/10.1093/molbev/

msaa015

FEBS Open Bio 13 (2023) 459–467 Ó 2023 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

22115463, 2023, 3, Downloaded from https://febs.onlinelibrary.wiley.com/doi/10.1002/2211-5463.13555 by Cochrane Japan, Wiley Online Library on [15/05/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Syncytin-2 fusogenicity in New World monkeys

17 Yang Z. PAML 4: phylogenetic analysis by maximum

likelihood. Mol Biol Evol. 2007;24(8):1586–91. https://

doi.org/10.1093/molbev/msm088

18 Nei M, Gojobori T. Simple methods for estimating the

numbers of synonymous and nonsynonymous

nucleotide substitutions. Mol Biol Evol. 1986;3(5):418–

26. https://doi.org/10.1093/oxfordjournals.molbev.

a040410

19 Esnault C, Cornelis G, Heidmann O, Heidmann T.

Differential evolutionary fate of an ancestral primate

endogenous retrovirus envelope gene, the EnvV

syncytin, captured for a function in placentation. PLoS

Genet. 2013;9(3):e1003400. https://doi.org/10.1371/

journal.pgen.1003400

20 Imakawa K, Nakagawa S, Miyazawa T. Baton pass

hypothesis: successive incorporation of unconserved

endogenous retroviral genes for placentation during

mammalian evolution. Genes Cells. 2015;20:771–88.

https://doi.org/10.1111/gtc.12278

21 Nakaya Y, Koshi K, Nakagawa S, Hashizume K,

Miyazawa T. Fematrin-1 is involved in fetomaternal

cell-to-cell fusion in Bovinae placenta and has

contributed to diversity of ruminant placentation. J

Virol. 2013;87(19):10563–72. https://doi.org/10.1128/

JVI.01398-13

22 Cornelis G, Heidmann O, Degrelle SA, Vernochet C,

Lavialle C, Letzelter C, et al. Captured retroviral

envelope syncytin gene associated with the unique

placental structure of higher ruminants. Proc Natl Acad

Sci USA. 2013;110(9):E828–37. https://doi.org/10.1073/

pnas.1215787110

Syncytin-2 fusogenicity in New World monkeys

23 Nakamura Y, Imakawa K. Retroviral endogenization

and its role in the genital tract during mammalian

evolution. J Mamm Ova Res. 2011;28(4):203–18. https://

doi.org/10.1274/jmor.28.203

24 Lavialle C, Cornelis G, Dupressoir A, Esnault C,

Heidmann O, Vernochet C, et al. Paleovirology of

‘syncytins’, retroviral env genes exapted for a role in

placentation. Philos Trans R Soc Lond B Biol Sci.

2013;368:20120507. https://doi.org/10.1098/rstb.2012.

0507

25 Imakawa K, Kusama K, Kaneko-Ishino T, Nakagawa

S, Kitao K, Miyazawa T, et al. Endogenous

retroviruses and placental evolution, development, and

diversity. Cells. 2022;11(15):2458. https://doi.org/10.

3390/cells11152458

26 Smith CA, Moore HDM, Hearn JP. The ultrastructure

of early implantation in the marmoset monkey

(Callithrix jacchus). Anat Embryol. 1987;175:399–410.

https://doi.org/10.1007/BF00309853

Supporting information

Additional supporting information may be found

online in the Supporting Information section at the end

of the article.

Table S1. Primer list.

Table S2. Syncytin-2 search in the 65 Euarchonta genomes.

Table S3. Pairwise dN/dS ratios of syncytin-2.

FEBS Open Bio 13 (2023) 459–467 Ó 2023 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

467

22115463, 2023, 3, Downloaded from https://febs.onlinelibrary.wiley.com/doi/10.1002/2211-5463.13555 by Cochrane Japan, Wiley Online Library on [15/05/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

H. Shoji et al.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る