リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Diversification processes of teleost intron-less opsin genes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Diversification processes of teleost intron-less opsin genes

Fujiyabu, Chihiro Sato, Keita Ohuchi, Hideyo Yamashita, Takahiro 京都大学 DOI:10.1016/j.jbc.2023.104899

2023.07

概要

Opsins are universal photosensitive proteins in animals. Vertebrates have a variety of opsin genes for visual and non-visual photoreceptions. Analysis of the gene structures shows that most opsin genes have introns in their coding regions. However, teleosts exceptionally have several intron-less opsin genes which are presumed to have been duplicated by an RNA-based gene duplication mechanism, retroduplication. Among these retrogenes, we focused on the Opn4 (melanopsin) gene responsible for non-image-forming photoreception. Many teleosts have five Opn4 genes including one intron-less gene, which is speculated to have been formed from a parental intron-containing gene in the Actinopterygii. In this study, to reveal the evolutionary history of Opn4 genes, we analyzed them in teleost (zebrafish and medaka) and non-teleost (bichir, sturgeon and gar) fishes. Our synteny analysis suggests that the intron-less Opn4 gene emerged by retroduplication after branching of the bichir lineage. In addition, our biochemical and histochemical analyses showed that, in the teleost lineage, the newly acquired intron-less Opn4 gene became abundantly used without substantial changes of the molecular properties of the Opn4 protein. This stepwise evolutionary model of Opn4 genes is quite similar to that of rhodopsin genes in the Actinopterygii. The unique acquisition of rhodopsin and Opn4 retrogenes would have contributed to the diversification of the opsin gene repertoires in the Actinopterygii and the adaptation of teleosts to various aquatic environments.

この論文で使われている画像

参考文献

1. Terakita, A. (2005) The opsins. Genome Biol. 6, 213

2. Shichida, Y., and Matsuyama, T. (2009) Evolution of opsins and phototransduction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 2881–2895

3. Porter, M. L., Blasic, J. R., Bok, M. J., Cameron, E. G., Pringle, T., Cronin,

T. W., et al. (2012) Shedding new light on opsin evolution. Proc. Biol. Sci.

279, 3–14

4. Nayak, S. K., Jegla, T., and Panda, S. (2007) Role of a novel photopigment,

melanopsin, in behavioral adaptation to light. Cell Mol. Life Sci. 64,

144–154

5. Do, M. T., and Yau, K. W. (2010) Intrinsically photosensitive retinal

ganglion cells. Physiol. Rev. 90, 1547–1581

6. Bellingham, J., and Foster, R. G. (2002) Opsins and mammalian photoentrainment. Cell Tissue Res. 309, 57–71

7. Lamb, T. D. (2013) Evolution of phototransduction, vertebrate photoreceptors and retina. Prog. Retin. Eye Res. 36, 52–119

8. Pantzartzi, C. N., Pergner, J., and Kozmik, Z. (2018) The role of transposable elements in functional evolution of amphioxus genome: the case

of opsin gene family. Sci. Rep. 8, 2506

9. Fitzgibbon, J., Hope, A., Slobodyanyuk, S. J., Bellingham, J., Bowmaker, J.

K., and Hunt, D. M. (1995) The rhodopsin-encoding gene of bony fish

lacks introns. Gene 164, 273–277

10. Bellingham, J., Whitmore, D., Philp, A. R., Wells, D. J., and Foster, R. G.

(2002) Zebrafish melanopsin: isolation, tissue localisation and phylogenetic position. Brain Res. Mol. Brain Res. 107, 128–136

11. Ward, M. N., Churcher, A. M., Dick, K. J., Laver, C. R., Owens, G. L.,

Polack, M. D., et al. (2008) The molecular basis of color vision in colorful

fish: four long wave-sensitive (LWS) opsins in guppies (Poecilia reticulata)

are defined by amino acid substitutions at key functional sites. BMC Evol.

Biol. 8, 210

12. Kaessmann, H., Vinckenbosch, N., and Long, M. (2009) RNA-based gene

duplication: mechanistic and evolutionary insights. Nat. Rev. Genet. 10,

19–31

13. Fujiyabu, C., Sato, K., Utari, N. M. L., Ohuchi, H., Shichida, Y., and

Yamashita, T. (2019) Evolutionary history of teleost intron-containing

and intron-less rhodopsin genes. Sci. Rep. 9, 10653

14. Mano, H., Kojima, D., and Fukada, Y. (1999) Exo-rhodopsin: a novel

rhodopsin expressed in the zebrafish pineal gland. Brain Res. Mol. Brain

Res. 73, 110–118

15. Betancur, R. R., Wiley, E. O., Arratia, G., Acero, A., Bailly, N., Miya, M.,

et al. (2017) Phylogenetic classification of bony fishes. BMC Evol. Biol. 17,

162

16. Provencio, I., Jiang, G., De Grip, W. J., Hayes, W. P., and Rollag, M. D.

(1998) Melanopsin: an opsin in melanophores, brain, and eye. Proc. Natl.

Acad. Sci. U. S. A. 95, 340–345

17. Provencio, I., Rodriguez, I. R., Jiang, G., Hayes, W. P., Moreira, E. F., and

Rollag, M. D. (2000) A novel human opsin in the inner retina. J. Neurosci.

20, 600–605

18. Bellingham, J., Chaurasia, S. S., Melyan, Z., Liu, C., Cameron, M. A.,

Tarttelin, E. E., et al. (2006) Evolution of melanopsin photoreceptors:

discovery and characterization of a new melanopsin in nonmammalian

vertebrates. PLoS Biol. 4, e254

19. Davies, W. I., Zheng, L., Hughes, S., Tamai, T. K., Turton, M., Halford, S.,

et al. (2011) Functional diversity of melanopsins and their global

expression in the teleost retina. Cell Mol. Life Sci. 68, 4115–4132

20. Matos-Cruz, V., Blasic, J., Nickle, B., Robinson, P. R., Hattar, S., and

Halpern, M. E. (2011) Unexpected diversity and photoperiod dependence

of the zebrafish melanopsin system. PLoS One 6, e25111

21. Du, K., Stock, M., Kneitz, S., Klopp, C., Woltering, J. M., Adolfi, M. C.,

et al. (2020) The sterlet sturgeon genome sequence and the mechanisms

of segmental rediploidization. Nat. Ecol. Evol. 4, 841–852

22. Bi, X., Wang, K., Yang, L., Pan, H., Jiang, H., Wei, Q., et al. (2021) Tracing

the genetic footprints of vertebrate landing in non-teleost ray-finned

fishes. Cell 184, 1377–1391.e1314

23. Matsuyama, T., Yamashita, T., Imamoto, Y., and Shichida, Y. (2012)

Photochemical properties of mammalian melanopsin. Biochemistry 51,

5454–5462

24. Naito, T., Nashima-Hayama, K., Ohtsu, K., and Kito, Y. (1981) Photoreactions of cephalopod rhodopsin. Vis. Res 21, 935–941

25. Ashida, A., Matsumoto, K., Ebrey, T. G., and Tsuda, M. (2004) A purified

agonist-activated G-protein coupled receptor: truncated octopus Acid

Metarhodopsin. Zoolog. Sci. 21, 245–250

J. Biol. Chem. (2023) 299(7) 104899

15

Evolutionary history of teleost intron-less Opn4 gene

26. Emanuel, A. J., and Do, M. T. (2015) Melanopsin tristability for sustained

and broadband phototransduction. Neuron 85, 1043–1055

27. Sun, L., Kawano-Yamashita, E., Nagata, T., Tsukamoto, H., Furutani, Y.,

Koyanagi, M., et al. (2014) Distribution of mammalian-like melanopsin in

cyclostome retinas exhibiting a different extent of visual functions. PLoS

One 9, e108209

28. Tsukamoto, H., Kubo, Y., Farrens, D. L., Koyanagi, M., Terakita, A., and

Furutani, Y. (2015) Retinal attachment instability is diversified among

mammalian melanopsins. J. Biol. Chem. 290, 27176–27187

29. Klaassen, L. J., de Graaff, W., van Asselt, J. B., Klooster, J., and Kamermans, M. (2016) Specific connectivity between photoreceptors and horizontal cells in the zebrafish retina. J. Neurophysiol. 116, 2799–2814

30. Cheng, N., Tsunenari, T., and Yau, K. W. (2009) Intrinsic light response

of retinal horizontal cells of teleosts. Nature 460, 899–903

31. Sato, K., Yamashita, T., Haruki, Y., Ohuchi, H., Kinoshita, M., and Shichida, Y. (2016) Two UV-sensitive photoreceptor proteins, Opn5m and

Opn5m2 in ray-finned fish with distinct molecular properties and broad

distribution in the retina and brain. PLoS One 11, e0155339

32. Sato, K., Nwe, K. N., and Ohuchi, H. (2021) The Opsin 3/Teleost multiple

tissue opsin system: mRNA localization in the retina and brain of medaka

(Oryzias latipes). J. Comp. Neurol. 529, 2484–2516

33. Fernandes, A. M., Fero, K., Arrenberg, A. B., Bergeron, S. A., Driever, W.,

and Burgess, H. A. (2012) Deep brain photoreceptors control lightseeking behavior in zebrafish larvae. Curr. Biol. 22, 2042–2047

34. Dekens, M. P. S., Fontinha, B. M., Gallach, M., Pflugler, S., and TessmarRaible, K. (2022) Melanopsin elevates locomotor activity during the wake

state of the diurnal zebrafish. EMBO Rep. 23, e51528

35. Chang, C. H. (2022) Correlated expression of the opsin retrogene LWS-R

and its host gene in two poeciliid fishes. Zool Stud. 61, e16

36. Lin, J. J., Wang, F. Y., Li, W. H., and Wang, T. Y. (2017) The rises and falls

of opsin genes in 59 ray-finned fish genomes and their implications for

environmental adaptation. Sci. Rep. 7, 15568

37. Wang, Z., Asenjo, A. B., and Oprian, D. D. (1993) Identification of the

Cl(-)-binding site in the human red and green color vision pigments.

Biochemistry 32, 2125–2130

38. Sun, H., Macke, J. P., and Nathans, J. (1997) Mechanisms of spectral

tuning in the mouse green cone pigment. Proc. Natl. Acad. Sci. U. S. A.

94, 8860–8865

39. Davies, W. I., Wilkie, S. E., Cowing, J. A., Hankins, M. W., and Hunt, D.

M. (2012) Anion sensitivity and spectral tuning of middle- and long-

16 J. Biol. Chem. (2023) 299(7) 104899

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

wavelength-sensitive (MWS/LWS) visual pigments. Cell Mol. Life Sci.

69, 2455–2464

Yamashita, T., Nakamura, S., Tsutsui, K., Morizumi, T., and Shichida, Y.

(2013) Chloride-dependent spectral tuning mechanism of L-group cone

visual pigments. Biochemistry 52, 1192–1197

Asaoka, Y., Mano, H., Kojima, D., and Fukada, Y. (2002) Pineal

expression-promoting element (PIPE), a cis-acting element, directs

pineal-specific gene expression in zebrafish. Proc. Natl. Acad. Sci. U. S. A.

99, 15456–15461

Sato, K., Yamashita, T., Kojima, K., Sakai, K., Matsutani, Y., Yanagawa,

M., et al. (2018) Pinopsin evolved as the ancestral dim-light visual opsin

in vertebrates. Commun. Biol. 1, 156

Niwa, H., Yamamura, K., and Miyazaki, J. (1991) Efficient selection for

high-expression transfectants with a novel eukaryotic vector. Gene 108,

193–199

Bailes, H. J., and Lucas, R. J. (2013) Human melanopsin forms a pigment

maximally sensitive to blue light (lambdamax approximately 479 nm)

supporting activation of G(q/11) and G(i/o) signalling cascades. Proc. Biol.

Sci. 280, 20122987

Sakai, K., Ikeuchi, H., Fujiyabu, C., Imamoto, Y., and Yamashita, T. (2022)

Convergent evolutionary counterion displacement of bilaterian opsins in

ciliary cells. Cell Mol. Life Sci. 79, 493

Kishi, J. Y., Lapan, S. W., Beliveau, B. J., West, E. R., Zhu, A., Sasaki, H. M.,

et al. (2019) SABER amplifies FISH: enhanced multiplexed imaging of

RNA and DNA in cells and tissues. Nat. Met. 16, 533–544

Beliveau, B. J., Kishi, J. Y., Nir, G., Sasaki, H. M., Saka, S. K., Nguyen, S. C.,

et al. (2018) OligoMiner provides a rapid, flexible environment for the

design of genome-scale oligonucleotide in situ hybridization probes. Proc.

Natl. Acad. Sci. U. S. A. 115, E2183–E2192

Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012) NIH Image to

ImageJ: 25 years of image analysis. Nat. Met. 9, 671–675

Morrow, J. M., Lazic, S., and Chang, B. S. (2011) A novel rhodopsin-like

gene expressed in zebrafish retina. Vis. Neurosci. 28, 325–335

Sukeena, J. M., Galicia, C. A., Wilson, J. D., McGinn, T., Boughman, J. W.,

Robison, B. D., et al. (2016) Characterization and Evolution of the Spotted

Gar Retina. J. Exp. Zool B Mol. Dev. Evol. 326, 403–421

Beaudry, F. E. G., Iwanicki, T. W., Mariluz, B. R. Z., Darnet, S., Brinkmann, H., Schneider, P., et al. (2017) The non-visual opsins: eighteen in

the ancestor of vertebrates, astonishing increase in ray-finned fish, and

loss in amniotes. J. Exp. Zool B Mol. Dev. Evol. 328, 685–696

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る