リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「An ancient retroviral RNA element hidden in mammalian genomes and its involvement in co-opted retroviral gene regulation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

An ancient retroviral RNA element hidden in mammalian genomes and its involvement in co-opted retroviral gene regulation

Kitao, Koichi Nakagawa, So Miyazawa, Takayuki 京都大学 DOI:10.1186/s12977-021-00580-2

2021

概要

[Background] Retroviruses utilize multiple unique RNA elements to control RNA processing and translation. However, it is unclear what functional RNA elements are present in endogenous retroviruses (ERVs). Gene co-option from ERVs sometimes entails the conservation of viral cis-elements required for gene expression, which might reveal the RNA regulation in ERVs. [Results] Here, we characterized an RNA element found in ERVs consisting of three specific sequence motifs, called SPRE. The SPRE-like elements were found in different ERV families but not in any exogenous viral sequences examined. We observed more than a thousand of copies of the SPRE-like elements in several mammalian genomes; in human and marmoset genomes, they overlapped with lineage-specific ERVs. SPRE was originally found in human syncytin-1 and syncytin-2. Indeed, several mammalian syncytin genes: mac-syncytin-3 of macaque, syncytin-Ten1 of tenrec, and syncytin-Car1 of Carnivora, contained the SPRE-like elements. A reporter assay revealed that the enhancement of gene expression by SPRE depended on the reporter genes. Mutation of SPRE impaired the wild-type syncytin-2 expression while the same mutation did not affect codon-optimized syncytin-2, suggesting that SPRE activity depends on the coding sequence. [Conclusions] These results indicate multiple independent invasions of various mammalian genomes by retroviruses harboring SPRE-like elements. Functional SPRE-like elements are found in several syncytin genes derived from these retroviruses. This element may facilitate the expression of viral genes, which were suppressed due to inefficient codon frequency or repressive elements within the coding sequences. These findings provide new insights into the long-term evolution of RNA elements and molecular mechanisms of gene expression in retroviruses.

この論文で使われている画像

参考文献

1. Lavialle C, Cornelis G, Dupressoir A, Esnault C, Heidmann O, Vernochet C,

et al. Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in

placentation. Philos Trans R Soc B Biol Sci. 2013;368:1626.

2. Chuong EB, Elde NC, Feschotte C. Regulatory activities of transposable

elements: from conflicts to benefits. Nat Rev Genet. 2017;18(2):71–86.

3. Foroushani AK, Chim B, Wong M, Rastegar A, Smith PT, Wang S, et al.

Posttranscriptional regulation of human endogenous retroviruses

by RNA-binding motif protein 4, RBM4. Proc Natl Acad Sci USA.

2020;117(42):26520–30.

4. Daly TJ, Cook KS, Gray GS, Maione TE, Rusche JR. Specific binding of HIV-1

recombinant Rev protein to the Rev-responsive element in vitro. Nature.

1989;342(6251):816–9.

5. Zapp ML, Green MR. Sequence-specific RNA binding by the HIV-1 Rev

protein. Nature. 1989;342(6250):714–6.

6. Fornerod M, Ohno M, Yoshida M, Mattaj IW. CRM1 is an export receptor

for leucine-rich nuclear export signals. Cell. 1997;90(6):1051–60.

7. Arrigo SJ, Chen ISY. Rev is necessary for translation but not cytoplasmic accumulation of HIV-1 vif, vpr, and env/vpu 2 RNAs. Genes Dev.

1991;5(5):808–19.

Page 14 of 15

8. Hanly SM, Rimsky LT, Malim MH, Kim JH, Hauber J, Duc Dodon M,

et al. Comparative analysis of the HTLV-I Rex and HIV-1 Rev transregulatory proteins and their RNA response elements. Genes Dev.

1989;3(10):1534–44.

9. Indik S, Günzburg WH, Salmons B, Rouault F. A novel, mouse mammary tumor virus encoded protein with Rev-like properties. Virology.

2005;337(1):1–6.

10. Bray M, Prasad S, Dubay JW, Hunter E, Jeang KT, Rekosh D, et al. A small

element from the Mason-Pfizer monkey virus genome makes human

immunodeficiency virus type 1 expression and replication Rev-independent. Proc Natl Acad Sci USA. 1994;91(4):1256–60.

11. Grüter P, Tabernero C, Von Kobbe C, Schmitt C, Saavedra C, Bachi A, et al.

TAP, the human homolog of Mex67p, mediates CTE-dependent RNA

export from the nucleus. Mol Cell. 1998;1(5):649–59.

12. Jin L, Guzik BW, Bor YC, Rekosh D, Hammarskjöld ML. Tap and NXT promote translation of unspliced mRNA. Genes Dev. 2003;17(24):3075–86.

13. Sakuma T, Davila JI, Malcolm JA, Kocher J-PA, Tonne JM, Ikeda Y. Murine

leukemia virus uses NXF1 for nuclear export of spliced and unspliced viral

transcripts. J Virol. 2014;88(8):4069–82.

14. Takata M, Soll SJ, Emery A, Blanco-Melo D, Swanstrom R, Bieniasz PD.

Global synonymous mutagenesis identifies cis-acting RNA elements that

regulate HIV-1 splicing and replication. PLoS Pathog. 2018;14(1):1–26.

15. Villesen P, Aagaard L, Wiuf C, Pedersen FS. Identification of endogenous retroviral reading frames in the human genome. Retrovirology.

2004;1:1–13.

16. Wildschutte JH, Williams ZH, Montesion M, Subramanian RP, Kidd JM, Coffin JM. Discovery of unfixed endogenous retrovirus insertions in diverse

human populations. Proc Natl Acad Sci USA. 2016;113(16):E2326–34.

17. Magin C, Löwer R, Löwer J. cORF and RcRE, the Rev/Rex and RRE/RxRE

homologues of the human endogenous retrovirus family HTDV/HERV-K. J

Virol. 1999;73(11):9496–507.

18. Yang J, Bogerd HP, Peng S, Wiegand H, Truant R, Cullen BR. An ancient

family of human endogenous retroviruses encodes a functional homolog

of the HIV-1 Rev protein. Proc Natl Acad Sci USA. 1999;96(23):13404–8.

19. Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L, et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature. 2000 Feb;403(6771):785–9.

20. Blond J-L, Lavillette D, Cheynet V, Bouton O, Oriol G, Chapel-Fernandes

S, et al. An envelope glycoprotein of the human endogenous retrovirus

HERV-W is expressed in the human placenta and fuses cells expressing

the type D mammalian retrovirus receptor. J Virol. 2000;74(7):3321–9.

21. Kitao K, Tanikaga T, Miyazawa T. Identification of a post-transcriptional

regulatory element in the human endogenous retroviral syncytin-1. J

Gen Virol. 2019;100(4):662–8.

22. Blaise S, de Parseval N, Benit L, Heidmann T. Genomewide screening for

fusogenic human endogenous retrovirus envelopes identifies syncytin

2, a gene conserved on primate evolution. Proc Natl Acad Sci USA.

2003;100(22):13013–8.

23. Storer J, Hubley R, Rosen J, Wheeler TJ, Smit AF. The Dfam community

resource of transposable element families, sequence models, and

genome annotations. Mob DNA. 2021;12(1):1–14.

24. Wheeler TJ, Eddy SR. nhmmer: DNA homology search with profile HMMs.

Bioinformatics. 2013;29(19):2487–9.

25. Laufer G, Mayer J, Mueller BF, Mueller-Lantzsch N, Ruprecht K. Analysis of

transcribed human endogenous retrovirus W env loci clarifies the origin

of multiple sclerosis-associated retrovirus env sequences. Retrovirology.

2009;6:1–17.

26. Kryukov K, Imanishi T. Human contamination in public genome assemblies. PLoS ONE. 2016;11(9):1–11.

27. Cantrell MA, Ederer MM, Erickson IK, Swier VJ, Baker RJ, Wichman HA.

MysTR: an endogenous retrovirus family in mammals that is undergoing recent amplifications to unprecedented copy numbers. J Virol.

2005;79(23):14698–707.

28. Grandi N, Cadeddu M, Blomberg J, Tramontano E. Contribution of type W

human endogenous retroviruses to the human genome: characterization

of HERV-W proviral insertions and processed pseudogenes. Retrovirology.

2016;13(1):67.

29. Vargiu L, Rodriguez-Tomé P, Sperber GO, Cadeddu M, Grandi N, Blikstad

V, et al. Classification and characterization of human endogenous retroviruses mosaic forms are common. Retrovirology. 2016;13(1):1–29.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Kitao et al. Retrovirology

(2021) 18:36

30. Grandi N, Cadeddu M, Blomberg J, Mayer J, Tramontano E. HERV-W group

evolutionary history in non-human primates: characterization of ERV-W

orthologs in Catarrhini and related ERV groups in Platyrrhini. BMC Evol

Biol. 2018;18(1):1–14.

31. Grandi N, Pisano MP, Demurtas M, Blomberg J, Magiorkinis G, Mayer

J, et al. Identification and characterization of ERV-W-like sequences in

Platyrrhini species provides new insights into the evolutionary history of

ERV-W in primates. Mob DNA. 2020;11(1):1–16.

32. Imakawa K, Nakagawa S. The phylogeny of placental evolution through

dynamic integrations of retrotransposons. Prog Mol Biol Transl Sci.

2017;145:89–109.

33. Imakawa K, Nakagawa S, Miyazawa T. Baton pass hypothesis: successive

incorporation of unconserved endogenous retroviral genes for placentation during mammalian evolution. Genes Cells. 2015;20:771–88.

34. Esnault C, Cornelis G, Heidmann O, Heidmann T. Differential evolutionary fate of an ancestral primate endogenous retrovirus envelope gene,

the EnvV Syncytin, captured for a function in placentation. PLoS Genet.

2013;9(3):1–12.

35. Dupressoir A, Marceau G, Vernochet C, Benit L, Kanellopoulos C, Sapin V,

et al. Syncytin-A and syncytin-B, two fusogenic placenta-specific murine

envelope genes of retroviral origin conserved in Muridae. Proc Natl Acad

Sci USA. 2005;102(3):725–30.

36. Redelsperger F, Cornelis G, Vernochet C, Tennant BC, Catzeflis F, Mulot B,

et al. Capture of syncytin-Mar1, a fusogenic endogenous retroviral envelope gene involved in placentation in the rodentia squirrel-related clade.

J Virol. 2014;88(14):7915–28.

37. Heidmann O, Vernochet C, Dupressoir A, Heidmann T. Identification of

an endogenous retroviral envelope gene with fusogenic activity and

placenta-specific expression in the rabbit: a new “syncytin” in a third order

of mammals. Retrovirology. 2009;6:1–11.

38. Cornelis G, Heidmann O, Degrelle SA, Vernochet C, Lavialle C, Letzelter

C, et al. Captured retroviral envelope syncytin gene associated with the

unique placental structure of higher ruminants. Proc Natl Acad Sci USA.

2013;110(9):E828–37.

39. Nakaya Y, Koshi K, Nakagawa S, Hashizume K, Miyazawa T. Fematrin-1

is involved in fetomaternal cell-to-cell fusion in Bovinae placenta

and has contributed to diversity of ruminant placentation. J Virol.

2013;87(19):10563–72.

40. Cornelis G, Heidmann O, Bernard-Stoecklin S, Reynaud K, Veron G, Mulot

B, et al. Ancestral capture of syncytin-Car1, a fusogenic endogenous

retroviral envelope gene involved in placentation and conserved in

Carnivora. Proc Natl Acad Sci USA. 2012;109(7):E432–41.

41. Cornelis G, Vernochet C, Malicorne S, Souquere S, Tzika AC, Goodman

SM, et al. Retroviral envelope syncytin capture in an ancestrally diverged

mammalian clade for placentation in the primitive Afrotherian tenrecs.

Proc Natl Acad Sci USA. 2014 Oct;14(41):E4332–41. 111(.

42. Cornelis G, Vernochet C, Carradec Q, Souquere S, Mulot B, Catzeflis F, et al.

Retroviral envelope gene captures and syncytin exaptation for placentation in marsupials. Proc Natl Acad Sci USA. 2015;112(5):E487–96.

43. Lima SA, Chipman LB, Nicholson AL, Chen YH, Yee BA, Yeo GW, et al. Short

poly(A) tails are a conserved feature of highly expressed genes. Nat Struct

Mol Biol. 2017;24(12):1057–63.

44. Chang H, Lim J, Ha M, Kim VN. TAIL-seq: Genome-wide determination of

poly(A) tail length and 3’ end modifications. Mol Cell. 2014;53(6):1044–52.

45. Subtelny AO, Eichhorn SW, Chen GR, Sive H, Bartel DP. Poly(A)-tail

profiling reveals an embryonic switch in translational control. Nature.

2014;508(1):66–71.

46. Nicholson AL, Pasquinelli AE. Tales of detailed Poly(A) tails. Trends Cell

Biol. 2019;29(3):191–200.

47. Haas J, Park EC, Seed B. Codon usage limitation in the expression of HIV-1

envelope glycoprotein. Curr Biol. 1996;6(3):315–24.

48. Kotsopoulou E, Kim VN, Kingsman AJ, Kingsman SM, Mitrophanous KA. A

Rev-independent human immunodeficiency virus type 1 (HIV-1)-based

vector that exploits a codon-optimized HIV-1 gag-pol gene. J Virol. 2000

May;74(10):4839–52.

Page 15 of 15

49. Schneider R, Campbell M, Nasioulas G, Felber BK, Pavlakis GN. Inactivation

of the human immunodeficiency virus type 1 inhibitory elements allows

Rev-independent expression of Gag and Gag/protease and particle

formation. J Virol. 1997;71(7):4892–903.

50. Chuong EB, Elde NC, Feschotte C. Regulatory evolution of innate

immunity through co-option of endogenous retroviruses. Science.

2016;351(6277):1083–7.

51. Chuong EB, Rumi MAK, Soares MJ, Baker JC. Endogenous retroviruses

function as species-specific enhancer elements in the placenta. Nat

Genet. 2013;45(3):325–9.

52. Dunn-Fletcher CE, Muglia LM, Pavlicev M, Wolf G, Sun MA, Hu YC,

et al. Anthropoid primate–specific retroviral element THE1B controls

expression of CRH in placenta and alters gestation length. PLoS Biol.

2018;16(9):1–21.

53. Faulkner GJ, Kimura Y, Daub CO, Wani S, Plessy C, Irvine KM, et al. The

regulated retrotransposon transcriptome of mammalian cells. Nat Genet.

2009;41(5):563–71.

54. Jin X, Xu XE, Jiang YZ, Liu YR, Sun W, Guo YJ, et al. The endogenous

retrovirus-derived long noncoding RNA TROJAN promotes triplenegative breast cancer progression via ZMYND8 degradation. Sci Adv.

2019;5(3):1–16.

55. Zhou B, Qi F, Wu F, Nie H, Song Y, Shao L, et al. Endogenous retrovirusderived long noncoding RNA enhances innate immune responses via

derepressing RELA expression. MBio. 2019;10(4):e00937.

56. Wilson KD, Ameen M, Guo H, Abilez OJ, Tian L, Mumbach MR, et al.

Endogenous retrovirus-derived lncRNA BANCR promotes cardiomyocyte migration in humans and non-human primates. Dev Cell.

2020;54(6):694–709.

57. Morita S, Kojima T, Kitamura T. Plat-E: an efficient and stable system for

transient packaging of retroviruses. Gene Ther. 2000;7(12):1063–6.

58. Yoshikawa R, Nakagawa S, Okamoto M, Miyazawa T. Construction of an

infectious clone of simian foamy virus of Japanese macaque (SFVjm) and

phylogenetic analyses of SFVjm isolates. Gene. 2014;548(1):149–54.

59. Suenaga T, Satoh T, Somboonthum P, Kawaguchi Y, Mori Y, Arase H.

Myelin-associated glycoprotein mediates membrane fusion and entry of

neurotropic herpesviruses. Proc Natl Acad Sci USA. 2010;107(2):866–71.

60. Katoh K, Standley DM. MAFFT multiple sequence alignment software

version 7: improvements in performance and usability. Mol Biol Evol.

2013;30(4):772–80.

61. Crooks GE, Hon G, Chandonia J-M, Brenner SE. WebLogo: a sequence

logo generator. Genome Res. 2004;14(6):1188–90.

62. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing

genomic features. Bioinformatics. 2010;26(6):841–2.

63. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol.

2018;35(6):1547–9.

64. Bénit L, Dessen P, Heidmann T. Identification, phylogeny, and evolution of retroviral elements based on their envelope genes. J Virol.

2001;75(23):11709–19.

65. Kanaya S, Yamada Y, Kudo Y, Ikemura T. Studies of codon usage and tRNA

genes of 18 unicellular organisms and quantification of Bacillus subtilis

tRNAs: Gene expression level and species-specific diversity of codon

usage based on multivariate analysis. Gene. 1999;238(1):143–55.

66. Suzuki H, Brown CJ, Forney LJ, Top EM. Comparison of correspondence

analysis methods for synonymous codon usage in bacteria. DNA Res.

2008;15(6):357–65.

67. Larsson A. AliView: a fast and lightweight alignment viewer and editor for

large datasets. Bioinformatics. 2014;30(22):3276–8.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る