リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Combination treatment with ibandronate and eldecalcitol prevents osteoporotic bone loss and deterioration of bone quality characterized by nano-arrangement of the collagen/apatite in an ovariectomized aged rat model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Combination treatment with ibandronate and eldecalcitol prevents osteoporotic bone loss and deterioration of bone quality characterized by nano-arrangement of the collagen/apatite in an ovariectomized aged rat model

Ozasa, Ryosuke 大阪大学

2022.04.01

概要

Combination therapy with bisphosphonates and vitamin D3 analogs has been frequently used for the treatment of osteoporosis. However, its effects on bone anisotropies, such as orientations of collagen and apatite at the nanometer-scale, which is a promising bone quality index, and its trabecular architecture at the micrometer scale, are not well understood despite its important mechanical properties and its role in fracture risk. In the present study, we analyzed the effects of ibandronate (IBN), eldecalcitol (ELD), and their combination on the collagen/apatite orientation and trabecular architectural anisotropy using an estrogen-deficiency-induced osteoporotic rat model. Estrogen deficiency caused by ovariectomy (OVX) excessively increased the degree of collagen/apatite orientation or trabecular architectural anisotropy along the craniocaudal axis in the lumbar vertebra compared to that of the sham-operated group. The craniocaudal axis corresponds to the direction of principal stress in the spine. The excessive material anisotropy in the craniocaudal axis contributed to the enhanced Young's modulus, which may compensate for the reduced mechanical resistance by bone loss to some extent. The solo administration of IBN and ELD prevented the reduction of bone fraction (BV/TV) determined by μ-CT, and combination therapy showed the highest efficacy in BV/TV gain. Furthermore, the solo administration and combination treatment significantly decreased the degree of collagen/apatite orientation to the sham level. Based on the results of bone mass and collagen/apatite orientation, combination treatment is an effective strategy. This is the first report to demonstrate the efficacy of IBN, ELD, and combination treatment with IBN and ELD relative to the bone micro-architectural anisotropy characterized by collagen/apatite orientation.

参考文献

[1] S. Sakai, S. Takeda, M. Sugimoto, M. Shimizu, Y. Shimonaka, K. Yogo, J. Hashimoto, F. Bauss, K. Endo, Treatment with the combination of ibandronate plus eldecalcitol has a synergistic effect on inhibition of bone resorption without suppressing bone formation in ovariectomized rats, Bone 81 (2015) 449–458, https://doi.org/10.1016/j.bone.2015.08.004.

[2] J. Takada, H. Wada, K. Iba, K. Sasaki, T. Dohke, K. Kanaya, T. Yoshizaki, T. Yamashita, Combined use of ibandronate and eldecalcitol in postmenopausal Japanese women with osteoporosis, J. Orthop. Surg. 24 (3) (2016) 362–366, https://doi.org/10.1177/1602400318.

[3] Y. Ono, N. Miyakoshi, Y. Kasukawa, Y. Imai, H. Nagasawa, H. Tsuchie, M. Akagawa, I. Nagahata, Y. Yuasa, C. Sato, M. Kawatani, Y. Shimada, Micro-CT imaging analysis for the effects of ibandronate and eldecalcitol on secondary osteoporosis and arthritis in adjuvant-induced arthritis rats, Biomed. Res. 40 (5) (2019) 197–205, https://doi.org/10.2220/biomedres.40.197.

[4] F. Bauss, S. Lalla, R. Endele, L.A. Hothorn, Effects of treatment with ibandronate on bone mass, architecture, biomechanical properties, and bone concentration of ibandronate in ovariectomized aged rats, J. Rheumatol. 29 (2002) 2200–2208.

[5] K.-J. Zhang, J. Zhang, Z.-K. Kang, X.-M. Xue, J.-F. Kang, Y.-W. Li, H.-N. Dong, D.- G. Liu, Ibandronate for prevention and treatment of glucocorticoid-induced osteoporosis in rabbits, Rheumatol. Int. 32 (11) (2012) 3405–3411, https://doi. org/10.1007/s00296-011-2074-9.

[6] L. Schultheis, C.B. Ruff, S. Rastogi, S. Bloomfield, H.A. Hogan, N. Fedarko, M. Thierry-Palmer, J. Ruiz, F. Bauss, J.R. Shapiro, Disuse bone loss in hindquarter suspended rats: partial weightbearing, exercise and ibandronate treatment as countermeasures, J. Gravit. Physiol. 7 (2000) 13–14.

[7] J.E. Dunford, K. Thompson, F.P. Coxon, S.P. Luckman, F.M. Hahn, C.D. Poulter, F. H. Ebetino, M.J. Rogers, Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogencontaining bisphosphonates, J. Pharmacol. Exp. Ther. 296 (2001) 235–242.

[8] J.M. Olmos, M.T. Zarrabeitia, J.L. Hernandez, ´ C. Sanudo, ˜ J. Gonz´ alez-Macías, J. A. Riancho, Common allelic variants of the farnesyl diphosphate synthase gene influence the response of osteoporotic women to bisphosphonates, Pharmacogenomics J. 12 (3) (2012) 227–232, https://doi.org/10.1038/ tpj.2010.88.

[9] P.H.L. de Freitas, T. Hasegawa, S. Takeda, M. Sasaki, C. Tabata, K. Oda, M. Li, H. Saito, N. Amizuka, Eldecalcitol, a second-generation vitamin D analog, drives bone minimodeling and reduces osteoclastic number in trabecular bone of ovariectomized rats, Bone 49 (3) (2011) 335–342, https://doi.org/10.1016/j. bone.2011.05.022.

[10] B. Ettinger, D.M. Black, B.H. Mitlak, R.K. Knickerbocker, T. Nickelsen, H.K. Genant, C. Christiansen, P.D. Delmas, J.R. Zanchetta, J. Stakkestad, C.C. Glüer, K. Krueger, F.J. Cohen, S. Eckert, K.E. Ensrud, L.V. Avioli, P. Lips, S.R. Cummings, Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: Results from a 3-year randomized clinical trial, JAMA 282 (1999) 637–645, https://doi.org/10.1001/jama.282.7.637.

[11] J. Tuukkanen, A. Koivukangas, T. Jams ¨ ¨ a, K. Sundquist, C.A. MacKay, S.C. Marks, Mineral density and bone strength are dissociated in long bones of rat osteopetrotic mutations, J. Bone Miner. Res. 15 (10) (2000) 1905–1911, https://doi.org/ 10.1359/jbmr.2000.15.10.1905.

[12] L.J. Melton, S. Khosla, E.J. Atkinson, W.M. O'Fallon, B.L. Riggs, Relationship of bone turnover to bone density and fractures, J. Bone Miner. Res. 12 (7) (1997) 1083–1091, https://doi.org/10.1359/jbmr.1997.12.7.1083.

[13] NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy, Osteoporosis prevention, diagnosis, and therapy, JAMA 285 (2001) 785- 795, Doi: 10.1001/jama.285.6.785.

[14] J.J. Stepan, D.B. Burr, I. Pavo, A. Sipos, D. Michalska, J. Li, A. Fahrleitner-Pammer, H. Petto, M. Westmore, D. Michalsky, M. Sato, H. Dobnig, Low bone mineral density is associated with bone microdamage accumulation in postmenopausal women with osteoporosis, Bone 41 (3) (2007) 378–385, https://doi.org/10.1016/ j.bone.2007.04.198.

[15] T.C. Kreipke, J.G. Garrison, J. Easley, A.S. Turner, G.L. Niebur, The roles of architecture and estrogen depletion in microdamage risk in trabecular bone, J. Biomech. 49 (14) (2016) 3223–3229, https://doi.org/10.1016/j. jbiomech.2016.08.009.

[16] G. Boivin, Y. Bala, A. Doublier, D. Farlay, L.G. Ste-Marie, P.J. Meunier, P. D. Delmas, The role of mineralization and organic matrix in the microhardness of bone tissue from controls and osteoporotic patients, Bone 43 (3) (2008) 532–538, https://doi.org/10.1016/j.bone.2008.05.024.

[17] D. Faibish, S.M. Ott, A.L. Boskey, Mineral changes in osteoporosis: A review, Clin. Orthop. Relat. Res. 443 (2006) 28–38, https://doi.org/10.1097/01. blo.0000200241.14684.4e.

[18] N. Mathavan, M.J. Turunen, M. T¨ agil, H. Isaksson, Characterising bone material composition and structure in the ovariectomized (OVX) rat model of osteoporosis, Calcif. Tissue Int. 97 (2) (2015) 134–144, https://doi.org/10.1007/s00223-015- 9991-7.

[19] M. Saito, K. Marumo, Collagen cross-links as a determinant of bone quality: A possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus, Osteoporosis Int. 21 (2) (2010) 195–214, https://doi.org/10.1007/s00198-009- 1066-z.

[20] A. Shiraishi, S. Miyabe, T. Nakano, Y. Umakoshi, M. Ito, M. Mihara, The combination therapy with alfacalcidol and risedronate improves the mechanical property in lumbar spine by affecting the material properties in an ovariectomized rat model of osteoporosis, BMC Musculoskelet Disord 10 (1) (2009), https://doi. org/10.1186/1471-2474-10-66.

[21] R. Ozasa, T. Ishimoto, S. Miyabe, J. Hashimoto, M. Hirao, H. Yoshikawa, T. Nakano, Osteoporosis changes collagen/apatite orientation and Young’s modulus in vertebral cortical bone of rat, Calcif. Tissue Int. 104 (4) (2019) 449–460, https://doi.org/10.1007/s00223-018-0508-z.

[22] T. Nakano, K. Kaibara, Y. Tabata, N. Nagata, S. Enomoto, E. Marukawa, Y. Umakoshi, Unique alignment and texture of biological apatite crystallites in typical calcified tissues analyzed by microbeam x-ray diffractometer system, Bone 31 (4) (2002) 479–487, https://doi.org/10.1016/S8756-3282(02)00850-5.

[23] T. Ishimoto, T. Nakano, Y. Umakoshi, M. Yamamoto, Y. Tabata, Degree of biological apatite c-axis orientation rather than bone mineral density controls mechanical function in bone regenerated using recombinant bone morphogenetic protein-2, J. Bone Miner. Res. 28 (5) (2013) 1170–1179, https://doi.org/10.1002/ jbmr.1825.

[24] Y. Shinno, T. Ishimoto, M. Saito, R. Uemura, M. Arino, K. Marumo, T. Nakano, M. Hayashi, Comprehensive analyses of how tubule occlusion and advanced glycation end-products diminish strength of aged dentin, Sci. Rep. 6 (2016) srep19849, https://doi.org/10.1038/srep19849.

[25] R. Ozasa, A. Matsugaki, T. Ishimoto, S. Kamura, H. Yoshida, M. Magi, Y. Matsumoto, K. Sakuraba, K. Fujimura, H. Miyahara, T. Nakano, Bone fragility via degradation of bone quality featured by collagen/apatite micro-arrangement in human rheumatic arthritis, Bone 155 (2022) 116261, https://doi.org/10.1016/j. bone.2021.116261.

[26] T. Moriishi, R. Ozasa, T. Ishimoto, T. Nakano, T. Hasegawa, T. Miyazaki, W. Liu, R. Fukuyama, Y. Wang, H. Komori, X. Qin, N. Amizuka, T. Komori, Osteocalcin is necessary for the alignment of apatite crystallites, but not glucose metabolism, testosterone synthesis, or muscle mass, PLoS Getet. 16 (2020), e1008586, https:// doi.org/10.1371/journal.pgen.1008586.

[27] T. Wakamatsu, Y. Iwasaki, S. Yamamoto, K. Matsuo, S. Goto, I. Narita, J.J. Kazama, K. Tanaka, A. Ito, R. Ozasa, T. Nakano, C. Miyakoshi, Y. Onishi, S. Fukuma, S. Fukuhara, H. Yamato, M. Fukagawa, T. Akizawa, Type-I Angiotensin II Receptor Blockade Reduces Uremia-induced Deterioration of Bone Material Properties, J. Bone Miner. Res. 36 (2021) 67–79, https://doi.org/10.1002/jbmr.4159.

[28] Y. Tanaka, A. Kubota, M. Matsusaki, T. Duncan, Y. Hatakeyama, K. Fukuyama, A. J. Quantock, M. Yamato, M. Akashi, K. Nishida, Anisotropic mechanical properties of collagen hydrogels induced by uniaxial-flow for ocular applications, J. Biomater. Sci. Polym. Ed. 22 (11) (2011) 1427–1442, https://doi.org/10.1163/ 092050610X510542.

[29] B. Viswanath, R. Raghavan, U. Ramamurty, N. Ravishankar, Mechanical properties and anisotropy in hydroxyapatite single crystals, Scr. Mater. 57 (4) (2007) 361–364, https://doi.org/10.1016/j.scriptamat.2007.04.027.

[30] D. Adams, S.A. Swanson, Direct measurement of local pressures in the cadaveric human hip joint during simulated level walking, Ann. Rheum. Dis. 44 (10) (1985) 658–666, https://doi.org/10.1136/ard.44.10.658.

[31] R. Ozasa, M. Nakatsu, A. Moriguchi, K. Sasaki, T. Ishimoto, M. Okada, T. Matsumoto, T. Nakano, Analysis of bone regeneration based on the relationship between the orientations of collagen and apatite in mouse femur, Mater. Trans. 61 (2) (2020) 381–386, https://doi.org/10.2320/matertrans.MT-M2019341.

[32] W.J. Landis, K.J. Hodgens, J. Arena, M.J. Song, B.F. McEwen, Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography, Microsc. Res. Tech. 33 (1996) 192–202, https://doi.org/ 10.1002/(SICI)1097-0029(19960201)33:23.0.CO;2-V.

[33] J.S. Nyman, S. Uppuganti, A.J. Makowski, B.J. Rowland, A.R. Merkel, J.A. Sterling, T.L. Bredbenner, D.S. Perrien, Predicting mouse vertebra strength with microcomputed tomography-derived finite element analysis, Bonekey Rep. 4 (2015) 664, https://doi.org/10.1038/bonekey.2015.31.

[34] H. Iida, S. Fukuda, Age-related changes in bone mineral density, cross-sectional area and strength at different skeletal sites in male rats, J. Vet. Med. Sci. 64 (1) (2002) 29–34, https://doi.org/10.1292/jvms.64.29.

[35] T. Ohata, H. Maruno, S. Ichimura, Changes over time in callus formation caused by intermittently administering PTH in rabbit distraction osteogenesis models, J. Orthop. Surg. Res. 10 (1) (2015), https://doi.org/10.1186/s13018-015-0228-2.

[36] R. Ozasa, A. Matsugaki, Y. Isobe, T. Saku, H.-S. Yun, T. Nakano, Construction of human induced pluripotent stem cell-derived oriented bone matrix microstructure by using in vitro engineered anisotropic culture model, J. Biomed. Mater. Res. A 106 (2) (2018) 360–369, https://doi.org/10.1002/jbm.a.36238.

[37] Y.-X. Wang, J.F. Griffith, H. Zhou, K.C. Choi, V.W.Y. Hung, D.K.W. Yeung, L. Qin, A.T. Ahuja, Rat lumbar vertebrae bone densitometry using multidetector CT, Eur. Radiol. 19 (4) (2009) 882–890, https://doi.org/10.1007/s00330-008-1219-z.

[38] T. Ishimoto, B. Sato, J.-W. Lee, T. Nakano, Co-deteriorations of anisotropic extracellular matrix arrangement and intrinsic mechanical property in c-src deficient osteopetrotic mouse femur, Bone 103 (2017) 216–223, https://doi.org/ 10.1016/j.bone.2017.06.023.

[39] A. Sekita, A. Matsugaki, T. Ishimoto, T. Nakano, Synchronous disruption of anisotropic arrangement of the osteocyte network and collagen/apatite in melanoma bone metastasis, J. Struct. Biol. 197 (3) (2017) 260–270.

[40] J.Y. Rho, G.M. Pharr, Effects of drying on the mechanical properties of bovine femur measured by nanoindentation, J. Mater. Sci. Mater Med. 10 (1999) 485–488, https://doi.org/10.1023/A:1008901109705.

[41] A.J. Bushby, V.L. Ferguson, A. Boyde, Nanoindentation of bone: comparison of specimens tested in liquid and embedded in polymethylmethacrylate, J. Mater. Res. 19 (1) (2004) 249–259, https://doi.org/10.1557/jmr.2004.19.1.249.

[42] T. Ishimoto, T. Nakano, M. Yamamoto, Y. Tabata, Biomechanical evaluation of regenerating long bone by nanoindentation, J. Mater. Sci. Mater. Med. 22 (4) (2011) 969–976, https://doi.org/10.1007/s10856-011-4266-y.

[43] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (6) (1992) 1564–1583.

[44] A.R. Villanueva, Stain technology a bone stain for osteoid seams in fresh, unembedded, mineralized bone, Biotech. Histochem. 49 (1) (1974) 1–8, https:// doi.org/10.3109/10520297409116928.

[45] V. Bentolila, T.M. Boyce, D.P. Fyhrie, R. Drumb, T.M. Skerry, M.B. Schaffler, Intracortical remodeling in adult rat long bones after fatigue loading, Bone 23 (3) (1998) 275–281, https://doi.org/10.1016/S8756-3282(98)00104-5.

[46] R.M. O’brien, A caution regarding rules of thumb for variance inflation factors, Qual. Quan. 41 (2007) 673–690, https://doi.org/10.1007/s11135-006-9018-6.

[47] D.E. Hughes, K.R. Wright, H.L. Uy, A. Sasaki, T. Yoneda, D.G. Roodman, G. R. Mundy, B.F. Boyce, Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo, J. Bone Miner. Res. 10 (10) (1995) 1478–1487, https://doi.org/ 10.1002/jbmr.5650101008.

[48] C. Vitt´e, H. Fleisch, H.L. Guenther, Bisphosphonates induce osteoblasts to secrete an inhibitor of osteoclast-mediated resorption, Endocrinology 137 (6) (1996) 2324–2333, https://doi.org/10.1210/endo.137.6.8641182.

[49] F. Bauss, R.C. Schimmer, Ibandronate: The first once-monthly oral bisphosphonate for treatment of postmenopausal osteoporosis, Ther. Clin. Risk. Manag. 2 (2006) 3–18.

[50] S. Sakai, H. Takaishi, K. Matsuzaki, H. Kaneko, M. Furukawa, Y. Miyauchi, A. Shiraishi, K. Saito, A. Tanaka, T. Taniguchi, T. Suda, T. Miyamoto, Y. Toyama, 1- Alpha, 25-dihydroxy vitamin D3 inhibits osteoclastogenesis through IFN-betadependent NFATc1 suppression, J. Bone Miner. Metab. 27 (6) (2009) 643–652, https://doi.org/10.1007/s00774-009-0084-4.

[51] H. Takasu, A. Sugita, Y. Uchiyama, N. Katagiri, M. Okazaki, E. Ogata, K. Ikeda, cFos protein as a target of anti-osteoclastogenic action of vitamin D, and synthesis of new analogs, J. Clin. Invest. 116 (2006) 528–535, https://doi.org/10.1172/ JCI24742.

[52] J. Kikuta, S. Kawamura, F. Okiji, M. Shirazaki, S. Sakai, H. Saito, M. Ishii, Sphingosine-1-phosphate-mediated osteoclast precursor monocyte migration is a critical point of control in antibone-resorptive action of active vitamin D, Proc. Natl. Acad. Sci. U. S. A. 110 (17) (2013) 7009–7013, https://doi.org/10.1073/ pnas.1218799110.

[53] S. Harada, T. Mizoguchi, Y. Kobayashi, Y. Nakamichi, S. Takeda, S. Sakai, F. Takahashi, H. Saito, H. Yasuda, N. Udagawa, T. Suda, N. Takahashi, Daily administration of eldecalcitol (ED-71), an active vitamin D analog, increases bone mineral density by suppressing RANKL expression in mouse trabecular bone, J. Bone Miner. Res. 27 (2) (2012) 461–473, https://doi.org/10.1002/jbmr.555.

[54] T.H. Smit, The use of a quadruped as an in vivo model for the study of the spine - Biomechanical considerations, Eur. Spine J. 11 (2) (2002) 137–144, https://doi. org/10.1007/s005860100346.

[55] J. Homminga, B. Van-Rietbergen, E.M. Lochmüller, H. Weinans, F. Eckstein, R. Huiskes, The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads, Bone 34 (3) (2004) 510–516, https:// doi.org/10.1016/j.bone.2003.12.001.

[56] Z. Zhang, Y. Chen, L. Xiang, Z. Wang, G.G. Xiao, D. Ju, Diosgenin protects against alveolar bone loss in ovariectomized rats via regulating long non-coding RNAs, Experimental and Therapeutic Medicine 16 (2018) 3939–3950, https://doi.org/ 10.3892/etm.2018.6681.

[57] P.L. Salmon, C. Ohlsson, S.J. Shefelbine, M. Doube, Structure model index does not measure rods and plates in trabecular bone, Front. Endocrinol. (Lausanne) 6 (2015) 162, https://doi.org/10.3389/fendo.2015.00162.

[58] T. Ishimoto, K. Kawahara, A. Matsugaki, H. Kamioka, T. Nakano, Quantitative evaluation of osteocyte morphology and bone anisotropic extracellular matrix in rat femur, Calcif. Tissue Int. 109 (4) (2021) 434–444, https://doi.org/10.1007/ s00223-021-00852-1.

[59] M. Tanaka, A. Matsugaki, T. Ishimoto, T. Nakano, Evaluation of crystallographic orientation of biological apatite in vertebral cortical bone in ovariectomized cynomolgus monkeys treated with minodronic acid and alendronate, J. Bone Miner. Metab. 34 (2) (2016) 234–241, https://doi.org/10.1007/s00774-015-0658- 2.

[60] S. Miyabe, T. Ishimoto, T. Nakano, Preferential orientation of biological apatite in normal and osteoporotic human vertebral trabeculae, J. Phys. Conf. Ser. 165 (2009) 012087, https://doi.org/10.1088/1742-6596/165/1/012087.

[61] K. Tai, M. Dao, S. Suresh, A. Palazoglu, C. Ortiz, Nanoscale heterogeneity promotes energy dissipation in bone, Nat. Mater. 6 (6) (2007) 454–462, https://doi.org/ 10.1038/nmat1911.

[62] E. Schacht, L. Dukas, F. Richy, Combined therapies in osteoporosis: bisphosphonates and Vitamin D-hormone analogs, J. Musculoskelet. Neuronal Interact. 7 (2007) 174–184.

[63] S. Ochiai, Y. Nishida, Y. Higuchi, D. Morita, K. Makida, T. Seki, K. Ikuta, S. Imagama, Short-range UV-LED irradiation in postmenopausal osteoporosis using ovariectomized mice, Sci. Rep. 11 (2021) 7875, https://doi.org/10.1038/s41598- 021-86730-0.

[64] T.S. Kaastad, O. Reikerås, V. Halvorsen, J.A. Falch, K.J. Obrant, L. Nordsletten, Vitamin D deficiency and ovariectomy reduced the strength of the femoral neck in rats, Calcif. Tissue Int. 69 (2) (2001) 102–108, https://doi.org/10.1007/s00223- 001-0009-2.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る