リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Construction of a Comprehensive Picture of Non-thermal Emissions from Various Types of Supernova Remnants」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Construction of a Comprehensive Picture of Non-thermal Emissions from Various Types of Supernova Remnants

Yasuda, Haruo 京都大学 DOI:10.14989/doctor.k23706

2022.03.23

概要

太陽の8から10倍以上の大質量を持つ星々は、その一生を終える際に大爆発し、「超新星」という明るい天体現象として観測できる。超新星の明るさは母銀河にも匹敵するが、その大多数は数週間から数ヶ月の間に消えてゆく、いわゆる「突発天体」である。超新星は恒星進化の終着点であり、その観測データは未だに謎が多い親星の素性や、大質量星進化の最終段階などを解明するための伴にされている。特に親星が爆発直前に星周空間へ放出した質量(星の外層)は超新星の衝撃波と相互作用する。これを電波などの電磁波で観測することによって、天文学の大問題とされている星の質量放出現象への理解が近年大きく進展しつつある。ただし、超新星の短いタイムスケールはすなわち星の近傍をしか探れないことを意味するため、もっと長いタイムスパンをわたる親星の進化については有効な研究対象・手段ではない。加えて、爆発した星の内部は急速な断熱膨張によってかなり低温に冷やされるため、超新星の段階では親星の内部構造(特に化学組成)の電磁波観測も極めて困難である。

本論文は、超新星爆発そのものではなく、その後に残された「超新星残骸(SNR)」を用いて、超新星の起源とその親星の素性を探る手段を確立するための幾つの研究結果で構成されている。超新星残骸は爆発から数十年から数万年まで広い波長域で観測でき、かつ約10光年のスケールで広かる天体現象である。超新星放出物質とそれにより掃かれた星周物質は衝撃波でX線の温度まで加熱されているほか、荷電粒子(陽子、電子、重イオン等)が高エネルギーまで加速されて明るい非熱的電磁波を放射する。このため、SNRは親星の星周環境(あるいは親星の質量放出とエネルギー解放の歴史)と内部構造を丸裸にできる貴重な天体と言える。特に、前進衝撃波由来の非熱的放射は直接に星周環境の密度構造と相関するため、SNRの非熱的放射の時間進化を計算することによって、星の爆発前の活動を探ることができる。本研究は、業界で初めて親星・超新星の種類を分けて、各種類ごとに適切な恒星進化モデルを用いてそれぞれの星周環境を計算した上、数値計算の手法でSNRの非熱的放射の長時間進化を系統的に調べた。

本論文の前半(導入)は、まず超新星残骸の標準理論と今まで観測されてきた特徴について紹介し、申請者が自ら開発した流体・非線形宇宙線加速シミュレーションコード(CR-Hydroコード)とそのSNRへの応用の研究をまとめたものである。超新星残骸の非熱的放射には豊かな多様性があるが、その起源は未だに解明されていない。ここでは、 SNRとその星周環境との相互作用を注目して、パラメーターサーベイを行い、様々な星周環境で進化するSNRが放つ非熱的多波長電磁波の特性を包括的に調べた。結果として、SNRの非熱的放射とその時間進化は星周環境(特に密度構造)の違いに大きく左右されることを発見した。よって、星周環境の多様性は実は観測されてきたSNR放射の多様性の主な起源であることを提唱した。

本論文の後半では、前半で展開したシミュレーションフレームワークを基礎にしつつ、種類の違う親星・超新星由来のSNRを細分し、それぞれの進化を定量的に比較する内容になっている。前半では、(1)そもそも星周環境の多様性はどこから生まれたのかについてはまだ不明のままにしたほか、(2)親星の恒星進化を無視した非現実的な星周環境を仮定したモデルであった故、定量的な考察はまだできなかったという問題点が残された。後半部ではその問題を解消するべく、まず赤色超巨星を経由して爆発に至るII型超新星残骸を想定し、その親星である大質量星の恒星進化と質量放出の歴史を取り入れ、より現実的な星周環境をモデル化した。太陽の12倍と18倍の質量を持つ親星において、それぞれの超新星爆発から1万年後までの多波長放射の時間進化を解いた。その結果、今までの標準的描像と全く異なった、「初期(~1000年前)では明るく、中期(1000−5000年)では観測できないほど暗く、後期(~10000年)ではまた増光する」という非単調的な光度曲線を得た。特に中期に当たる年齢層での暗さは、親星の質量放出歴史に直結した結果であると示した。具体的には、親星がまだ主系列星であった若い時に放出した高速星風により、爆発前に低密度のバブルが星周空間に広がったのが主な理由だと示した。つまり、SNRがそのバブルに突入した際に密度の低下に沿って減光する、そしてバブルから脱出するまでの間は非常に暗いフェースを保つという結果である。本研究では、II型SNRに暗いフェーズが存在することを初めて発見し、それを「ダークエイジ(暗黒時代)」と名付けた。以上はThe Astrophysical Journal Letters誌上で国際査読論文として出版された。

重力崩壊型超新星の半分ほどはII型であるが、次に数が多いタイプはIb/c型超新星である。Ib/c型超新星の素性については近年の観測・理論研究で理解が深まっており、赤色巨星に進化する過程で連星相互作用を受けコンパクトなヘリウムあるいは炭素星になった後に爆発するものであると考えられている。しかし、Ib/c型超新星由来のSNRに関してはほとんど調べられていない。申請者は上のII型の研究と同じ要領でCR-Hydroコードを応用し、Ib/c型超新星残骸はどんな特徴を持ってるのかを年齢別に計算した。驚くことに、Ib/c型SNRはII型とは対照的な時間進化を示す結果になった。つまり、II型の進化は bright→dark→brightであるが、Ib/c型ではdark→bright→brightという光度進化になる。これは、今回初めて発見された振る舞いであり、申請者はこの振る舞いもII型の結果と同様に、親星の質量放出歴史が起源であると示した。II型の親星が単独星であるのに対し、Ib/c型では親星が連星系であることがII型と振る舞いとの違いを生み出す。II型の「ダークエイジ」に対して、暗い初期から再び明るくなる中期に進化するという特徴に
「リサレクション(復活)」と名付けた。

申請者は以上の結果をまとめ、重力崩壊型超新星の大半を占めると思われるII型と Ib/c型のSNRが正反対な時間進化を見せることが、SNR種族全体への理解に大きな意味を持つと提唱した。つまり、今回の結果を踏まえて、今まで発見された若いSNRはほとんどII型で、年齢が数千年のものの多数はIb/c型であるという、SNRの型分けに年齢バイアスが掛かっていると予想した。その予想の間接的な証拠として、今回計算したII型とIb/c型SNRのガンマ線放射スペクトルの時間進化を適切に考慮することで、これまで得られているSNRのガンマ線観測データを包括的に説明できることが分かった。それは従来の理論モデル、つまり恒星進化と質量放出を無視したモデルでは説明できなかったことであり、本研究はSNRへの理解における超新星爆発前の物理の重要性を示した。以上の結果はThe Astrophysical Journal誌上で国際査読論文として受理された。

参考文献

Acero, F. et al. (June 2010). “First detection of VHE γ-rays from SN 1006 by HESS”. In: A&A 516, A62, A62. DOI: 10 .1051/0004-6361 / 200913916. arXiv: 1004.2124 [astro-ph.HE].

Acero, F. et al. (May 2016). “The First Fermi LAT Supernova Remnant Cat- alog”. In: ApJS 224, 8, p. 8. DOI: 10.3847/0067-0049/224/1/8. arXiv: 1511.06778 [astro-ph.HE].

Ackermann, M. et al. (Feb. 2013). “Detection of the Characteristic Pion-Decay Signature in Supernova Remnants”. In: Science 339, pp. 807–811. DOI: 10. 1126/science.1231160. arXiv: 1302.3307 [astro-ph.HE].

Adams, Scott M. et al. (Dec. 2013). “Observing the Next Galactic Supernova”. In: ApJ 778.2, 164, p. 164. DOI: 10.1088/0004-637X/778/2/164. arXiv:1306.0559 [astro-ph.HE].

Aguilar, M. et al. (Nov. 2015a). “Precision Measurement of the Helium Flux in Primary Cosmic Rays of Rigidities 1.9 GV to 3 TV with the Alpha Mag- netic Spectrometer on the International Space Station”. In: PhRvL 115.21, 211101, p. 211101. DOI: 10.1103/PhysRevLett.115.211101.

Aguilar, M. et al. (May 2015b). “Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Mag- netic Spectrometer on the International Space Station”. In: PhRvL 114.17, 171103, p. 171103. DOI: 10.1103/PhysRevLett.114.171103.

Aguilar, M. et al. (Dec. 2017). “Observation of the Identical Rigidity Depen- dence of He, C, and O Cosmic Rays at High Rigidities by the Alpha Mag- netic Spectrometer on the International Space Station”. In: PhRvL 119.25, 251101, p. 251101. DOI: 10.1103/PhysRevLett.119.251101.

Aharonian, F. et al. (Mar. 2007). “Primary particle acceleration above 100 TeV in the shell-type supernova remnant <ASTROBJ>RX J1713.7-3946</ASTROBJ> with deep HESS observations”. In: A&A 464, pp. 235–243. DOI: 10.1051/0004-6361:20066381. eprint: astro-ph/0611813.

Aharonian, F. et al. (Sept. 2008). “HESS upper limits for Kepler’s supernova remnant”. In: A&A 488, pp. 219–223. DOI: 10.1051/0004-6361:200809401. arXiv: 0806.3347.

Aharonian, F. et al. (July 2011). “Primary particle acceleration above 100 TeV in the shell-type supernova remnant RX J1713.7 - 3946 with deep H.E.S.S. observations (Corrigendum)”. In: A&A 531, C1, p. C1. DOI: 10 . 1051 / 0004-6361/20066381e.

Aharonian, F. A., S. R. Kelner, and A. Y. Prosekin (Aug. 2010). “Angular, spectral, and time distributions of highest energy protons and associated secondary gamma rays and neutrinos propagating through extragalactic magnetic and radiation fields”. In: PhRvD 82.4, 043002, p. 043002. DOI: 10.1103/PhysRevD.82.043002. arXiv: 1006.1045 [astro-ph.HE].

Ahnen, M. L. et al. (Dec. 2017). “A cut-off in the TeV gamma-ray spectrum of the SNR Cassiopeia A”. In: MNRAS 472, pp. 2956–2962. DOI: 10.1093/ mnras/stx2079. arXiv: 1707.01583 [astro-ph.HE].

Albert, J. et al. (Aug. 2007). “Discovery of Very High Energy Gamma Radia- tion from IC 443 with the MAGIC Telescope”. In: ApJL 664, pp. L87–L90. DOI: 10.1086/520957. arXiv: 0705.3119.

Allen, G. E., R. Petre, and E. V. Gotthelf (Sept. 2001). “X-Ray Synchrotron Emission from 10-100 TeV Cosmic-Ray Electrons in the Supernova Rem- nant SN 1006”. In: ApJ 558, pp. 739–752. DOI: 10.1086/322470. eprint: astro-ph/0107540.

Allen, G. E. et al. (Jan. 2015). “On the Expansion Rate, Age, and Distance of the Supernova Remnant G266.2-1.2 (Vela Jr.)” In: ApJ 798, 82, p. 82. DOI: 10.1088/0004-637X/798/2/82. arXiv: 1410.7435 [astro-ph.HE].

Amato, E. and P. Blasi (Feb. 2009). “A kinetic approach to cosmic-ray-induced streaming instability at supernova shocks”. In: MNRAS 392.4, pp. 1591– 1600. DOI: 10 . 1111 / j . 1365 - 2966 . 2008 . 14200 . x. arXiv: 0806 . 1223 [astro-ph].

Ambrocio-Cruz, P. et al. (Nov. 2017). “Kinematic study at the H α line in the north-eastern region of the Galactic supernova remnant IC 443”. In: MN- RAS 472, pp. 51–54. DOI: 10.1093/mnras/stx1936.

Archambault, S. et al. (Feb. 2017). “Gamma-Ray Observations of Tycho’s Su- pernova Remnant with VERITAS and Fermi”. In: ApJ 836, 23, p. 23. DOI: 10.3847/1538-4357/836/1/23. arXiv: 1701.06740 [astro-ph.HE].

Artyukh, V. S., V. V. Vitkevich, and R. D. Dagkesamanskii (1967). “Radio- Source Spectra at Meter Wavelengths.” In: AZh 44, p. 984.

Baade, W. and F. Zwicky (May 1934). “Cosmic Rays from Super-novae”. In: Proceedings of the National Academy of Science 20, pp. 259–263. DOI: 10 . 1073/pnas.20.5.259.

Ballet, J. et al. (May 2020). “Fermi Large Area Telescope Fourth Source Cata- log Data Release 2”. In: arXiv e-prints, arXiv:2005.11208, arXiv:2005.11208. arXiv: 2005.11208 [astro-ph.HE].

Bamba, A. et al. (Jan. 2008). “Suzaku Wide-Band Observations of SN1006”. In: PASJ 60, S153–S162. DOI: 10.1093/pasj/60.sp1.S153. arXiv: 0708.0073.

Baring, M. G. et al. (Mar. 1999). “Radio to Gamma-Ray Emission from Shell- Type Supernova Remnants: Predictions from Nonlinear Shock Acceler- ation Models”. In: ApJ 513, pp. 311–338. DOI: 10 .1086 / 306829. eprint: astro-ph/9810158.

Bell, A. R. (Jan. 1978a). “The acceleration of cosmic rays in shock fronts. I”. In: MNRAS 182, pp. 147–156. DOI: 10.1093/mnras/182.2.147.

— (Feb. 1978b). “The acceleration of cosmic rays in shock fronts. II”. In: MN- RAS 182, pp. 443–455. DOI: 10.1093/mnras/182.3.443.

— (Sept. 2004). “Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays”. In: MNRAS 353, pp. 550–558. DOI: 10.1111/ j.1365-2966.2004.08097.x.

Biermann, Peter L. et al. (Dec. 2010). “The Origin of Cosmic Rays: Explosions of Massive Stars with Magnetic Winds and Their Supernova Mechanism”. In: ApJ 725.1, pp. 184–187. DOI: 10.1088/0004-637X/725/1/184. arXiv: 1009.5592 [astro-ph.HE].

Blandford, R. D. and J. P. Ostriker (Apr. 1978). “Particle acceleration by astro- physical shocks”. In: ApJL 221, pp. L29–L32. DOI: 10.1086/182658.

Blasi, P. (Apr. 2004). “Nonlinear shock acceleration in the presence of seed particles”. In: Astroparticle Physics 21, pp. 45–57. DOI: 10.1016/j.astropartphys. 2003.10.008. eprint: astro-ph/0310507.

Blasi, P., S. Gabici, and G. Vannoni (Aug. 2005). “On the role of injection in kinetic approaches to non-linear particle acceleration at non-relativistic shock waves”. In: MNRAS 361, pp. 907–918. DOI: 10.1111/j.1365-2966. 2005.09227.x. eprint: astro-ph/0505351.

Blondin, J. M. and D. C. Ellison (Oct. 2001). “Rayleigh-Taylor Instabilities in Young Supernova Remnants Undergoing Efficient Particle Acceleration”. In: ApJ 560, pp. 244–253. DOI: 10.1086/322499. eprint: astro-ph/0104024.

Blumenthal, George R. and Robert J. Gould (Jan. 1970). “Bremsstrahlung, Synchrotron Radiation, and Compton Scattering of High-Energy Electrons Traversing Dilute Gases”. In: Reviews of Modern Physics 42.2, pp. 237–271. DOI: 10.1103/RevModPhys.42.237.

Borkowski, Kazimierz et al. (Aug. 1996). “A Circumstellar Shell Model for the Cassiopeia A Supernova Remnant”. In: ApJ 466, p. 866. DOI: 10.1086/ 177560.

Caprioli, D., E. Amato, and P. Blasi (June 2010). “Non-linear diffusive shock acceleration with free-escape boundary”. In: Astroparticle Physics 33, pp. 307–311. DOI: 10.1016/j.astropartphys.2010.03.001. arXiv: 0912.2714 [astro-ph.HE].

Caprioli, D., P. Blasi, and E. Amato (July 2009). “On the escape of particles from cosmic ray modified shocks”. In: MNRAS 396, pp. 2065–2073. DOI: 10.1111/j.1365-2966.2008.14298.x. arXiv: 0807.4259.

Caprioli, D. et al. (May 2009). “Dynamical feedback of self-generated mag- netic fields in cosmic ray modified shocks”. In: MNRAS 395, pp. 895–906. arXiv: 0807.4261.

Caprioli, D. et al. (Sept. 2010). “Comparison of different methods for non- linear diffusive shock acceleration”. In: MNRAS 407, pp. 1773–1783. DOI: 10.1111/j.1365-2966.2010.17013.x. arXiv: 1005.2127 [astro-ph.HE].

Carlton, A. K. et al. (Aug. 2011). “Expansion of the Youngest Galactic Super- nova Remnant G1.9+0.3”. In: ApJL 737, L22, p. L22. DOI: 10.1088/2041- 8205/737/1/L22. arXiv: 1106.4498.

Case, Gary L. and Dipen Bhattacharya (Sept. 1998). “A New Σ-D Relation and Its Application to the Galactic Supernova Remnant Distribution”. In: ApJ 504.2, pp. 761–772. DOI: 10.1086/306089. arXiv: astro-ph/9807162 [astro-ph].

Castelletti, G. et al. (Aug. 2007). “The low-frequency radio emission and spec- trum of the extended SNR <ASTROBJ>W44</ASTROBJ>: new VLA ob- servations at 74 and 324 MHz”. In: A&A 471, pp. 537–549. DOI: 10.1051/0004-6361:20077062. eprint: astro-ph/0702746.

Castelletti, G. et al. (Oct. 2011). “High-resolution radio study of SNR IC 443 at low radio frequencies”. In: A&A 534, A21, A21. DOI: 10.1051/0004- 6361/201016081. arXiv: 1104.0205.

Cherenkov Telescope Array Consortium et al. (2019). Science with the Cherenkov Telescope Array. DOI: 10.1142/10986.

Chevalier, R. A. (Aug. 1982a). “Are young supernova remnants interacting with circumstellar gas”. In: ApJL 259, pp. L85–L89. DOI: 10.1086/183853.

— (July 1982b). “Self-similar solutions for the interaction of stellar ejecta with an external medium”. In: ApJ 258, pp. 790–797. DOI: 10.1086/160126.

— (Sept. 1983). “Blast waves with cosmic-ray pressure”. In: ApJ 272, pp. 765– 772. DOI: 10.1086/161338.

Chevalier, Roger A. and Claes Fransson (Nov. 2006). “Circumstellar Emission from Type Ib and Ic Supernovae”. In: ApJ 651.1, pp. 381–391. DOI: 10 . 1086/507606. arXiv: astro-ph/0607196 [astro-ph].

Clark, D. H. and J. L. Caswell (Feb. 1976). “A study of galactic supernova remnants, based on Molonglo-Parkes observational data.” In: MNRAS 174, pp. 267–305. DOI: 10.1093/mnras/174.2.267.

Condon, B. et al. (Dec. 2017). “Detection of Two TeV Shell-type Remnants at GeV Energies with FERMI LAT: HESS J1731-347 and SN 1006”. In: ApJ 851, 100, p. 100. DOI: 10.3847/1538- 4357/aa9be8. arXiv: 1711.05499 [astro-ph.HE].

DeLaney, T. and L. Rudnick (June 2003). “The First Measurement of Cas- siopeia A’s Forward Shock Expansion Rate”. In: ApJ 589, pp. 818–826. DOI: 10.1086/374813. eprint: astro-ph/0303399.

Devin, J. et al. (Nov. 2020). “High-energy gamma-ray study of the dynam- ically young SNR G150.3+4.5”. In: A&A 643, A28, A28. DOI: 10 .1051 / 0004-6361/202038503. arXiv: 2009.08397 [astro-ph.HE].

Drury, L. (Sept. 1983). “On particle acceleration in supernova remnants”. In: SSRv 36, pp. 57–60. DOI: 10.1007/BF00171901.

Duncan, A. R. and D. A. Green (Dec. 2000). “The supernova remnant RX J0852.0-4622: radio characteristics and implications for SNR statistics”. In: A&A 364, pp. 732–740. eprint: astro-ph/0009289.

Dwarkadas, V. V. and R. A. Chevalier (Apr. 1998). “Interaction of Type IA Supernovae with Their Surroundings”. In: ApJ 497, pp. 807–823. DOI: 10. 1086/305478.

Elias, J. H. et al. (Sept. 1985). “Type I supernovae in the infrared and their use as distance indicators.” In: ApJ 296, pp. 379–389. DOI: 10.1086/163456.

Ellison, D. C. et al. (Jan. 2012). “Core-collapse Model of Broadband Emission from SNR RX J1713.7-3946 with Thermal X-Rays and Gamma Rays from Escaping Cosmic Rays”. In: ApJ 744, 39, p. 39. DOI: 10.1088/0004-637X/ 744/1/39. arXiv: 1109.0874 [astro-ph.HE].

Ertl, T. et al. (Feb. 2020). “The Explosion of Helium Stars Evolved with Mass Loss”. In: ApJ 890.1, 51, p. 51. DOI: 10.3847/1538-4357/ab6458. arXiv: 1910.01641 [astro-ph.HE].

Fang, J. and L. Zhang (Mar. 2008). “Non-thermal emission from old super- nova remnants”. In: MNRAS 384, pp. 1119–1128. DOI: 10.1111/j.1365- 2966.2007.12766.x. arXiv: 0711.4173.

Fermi, E. (Apr. 1949). “On the Origin of the Cosmic Radiation”. In: Physical Review 75, pp. 1169–1174. DOI: 10.1103/PhysRev.75.1169.

Ferrand, G. and S. Safi-Harb (May 2012). “A census of high-energy observa- tions of Galactic supernova remnants”. In: Advances in Space Research 49, pp. 1313–1319. DOI: 10 .1016 / j.asr.2012 .02 .004. arXiv: 1202 .0245 [astro-ph.HE].

Filippenko, Alexei V. (Jan. 1997). “Optical Spectra of Supernovae”. In: ARA&A 35, pp. 309–355. DOI: 10.1146/annurev.astro.35.1.309.

Fukui, Y. et al. (Feb. 2012). “A Detailed Study of the Molecular and Atomic Gas toward the γ-Ray Supernova Remnant RX J1713.7-3946: Spatial TeV γ-Ray and Interstellar Medium Gas Correspondence”. In: ApJ 746, 82, p. 82. DOI: 10.1088/0004-637X/746/1/82. arXiv: 1107.0508.

Gaensler, B. M. and B. J. Wallace (Sept. 2003). “A Multifrequency Radio Study of Supernova Remnant G292.0+1.8 and Its Pulsar Wind Nebula”. In: ApJ 594, pp. 326–339. DOI: 10.1086/376861. eprint: astro-ph/0305168.

Gaggero, D. et al. (Apr. 2018). “Time evolution of gamma rays from super- nova remnants”. In: MNRAS 475, pp. 5237–5245. DOI: 10.1093/mnras/ sty140. arXiv: 1710.05038 [astro-ph.HE].

Ginzburg, V. L. and S. I. Syrovatskii (1964). The Origin of Cosmic Rays. Giordano, F. et al. (Jan. 2012). “Fermi Large Area Telescope Detection of the Young Supernova Remnant Tycho”. In: ApJL 744, L2, p. L2. DOI: 10.1088/ 2041-8205/744/1/L2. arXiv: 1108.0265 [astro-ph.HE].

Giuliani, A. et al. (Dec. 2011). “Neutral Pion Emission from Accelerated Pro- tons in the Supernova Remnant W44”. In: ApJL 742, L30, p. L30. DOI: 10.1088/2041-8205/742/2/L30. arXiv: 1111.4868 [astro-ph.HE].

Gök, F. and A. Sezer (Jan. 2012). “Ejecta detection in the middle-aged Galactic supernova remnant G296.1-0.5 observed with Suzaku”. In: MNRAS 419, pp. 1603–1609. DOI: 10.1111/j.1365-2966.2011.19822.x. arXiv: 1109. 3971 [astro-ph.HE].

Gonzalez, M. and S. Safi-Harb (Feb. 2003). “New Constraints on the Energet- ics, Progenitor Mass, and Age of the Supernova Remnant G292.0+1.8 Con- taining PSR J1124-5916”. In: ApJL 583, pp. L91–L94. DOI: 10.1086/368122. eprint: astro-ph/0301193.

Green, D. A. (June 2017). “VizieR Online Data Catalog: A Catalogue of Galac- tic Supernova Remnants (Green 2017)”. In: VizieR Online Data Catalog, VII/278, pp. VII/278.

Gvaramadze, V. V. et al. (Apr. 2017). “IRAS 18153-1651: an H II region with a possible wind bubble blown by a young main-sequence B star”. In: MN- RAS 466.2, pp. 1857–1867. DOI: 10.1093/mnras/stw3257. arXiv: 1612. 03916 [astro-ph.SR].

H. E. S. S. Collaboration et al. (Feb. 2015). “H.E.S.S. reveals a lack of TeV emission from the supernova remnant Puppis A”. In: A&A 575, A81, A81. DOI: 10.1051/0004-6361/201424805. arXiv: 1412.6997 [astro-ph.HE].

H. E. S. S. Collaboration et al. (Apr. 2018). “H.E.S.S. observations of RX J1713.7- 3946 with improved angular and spectral resolution: Evidence for gamma- ray emission extending beyond the X-ray emitting shell”. In: A&A 612, A6, A6. DOI: 10.1051/0004-6361/201629790. arXiv: 1609.08671 [astro-ph.HE].

H. E. S. S. Collaboration et al. (Apr. 2018). “Population study of Galactic su- pernova remnants at very high γ-ray energies with H.E.S.S.” In: A&A 612, A3, A3. DOI: 10 .1051 /0004 - 6361 /201732125. arXiv: 1802 .05172 [astro-ph.HE].

Haug, E. (Sept. 1975). “Bremsstrahlung and pair production in the field of free electrons.” In: Zeitschrift Naturforschung Teil A 30, pp. 1099–1113. DOI: 10.1515/zna-1975-0901.

Helder, E. A. et al. (Oct. 2013). “Proper motions of Hα filaments in the su- pernova remnant RCW 86”. In: MNRAS 435, pp. 910–916. DOI: 10.1093/ mnras/stt993. arXiv: 1306.3994 [astro-ph.HE].

H.E.S.S. Collaboration et al. (June 2014). “TeV γ-ray observations of the young synchrotron-dominated SNRs G1.9+0.3 and G330.2+1.0 with H.E.S.S.” In: MNRAS 441, pp. 790–799. DOI: 10.1093/mnras/stu459. arXiv: 1404.1613 [astro-ph.HE].

H.E.S.S. Collaboration et al. (Apr. 2018a). “Deeper H.E.S.S. observations of Vela Junior (RX J0852.0-4622): Morphology studies and resolved spec- troscopy”. In: A&A 612, A7, A7. DOI: 10.1051/0004- 6361/201630002. arXiv: 1611.01863 [astro-ph.HE].

H.E.S.S. Collaboration et al. (Apr. 2018b). “Detailed spectral and morpho- logical analysis of the shell type supernova remnant RCW 86”. In: A&A 612, A4, A4. DOI: 10 .1051 /0004 - 6361 /201526545. arXiv: 1601 .04461 [astro-ph.HE].

Hewitt, J. W. et al. (Nov. 2012). “Fermi-LAT and WMAP Observations of the Puppis A Supernova Remnant”. In: ApJ 759, 89, p. 89. DOI: 10.1088/0004- 637X/759/2/89.

Hui, C. Y. and W. Becker (Feb. 2009). “Exploring the X-ray emission proper- ties of the supernova remnant G67.7+1.8 and its central X-ray sources”. In: A&A 494, pp. 1005–1012. DOI: 10.1051/0004-6361:200810789. arXiv: 0812.2186.

Iłkiewicz, Krystian et al. (June 2019). “Wind Roche lobe overflow as a way to make Type Ia supernovae from the widest symbiotic systems”. In: MN- RAS 485.4, pp. 5468–5473. DOI: 10 . 1093 / mnras / stz760. arXiv: 1812 . 02602 [astro-ph.SR].

Jones, Frank C. (Mar. 1968). “Calculated Spectrum of Inverse-Compton-Scattered Photons”. In: Physical Review 167.5, pp. 1159–1169. DOI: 10.1103/PhysRev. 167.1159.

Kafexhiu, Ervin et al. (Dec. 2014). “Parametrization of gamma-ray produc- tion cross sections for p p interactions in a broad proton energy range from the kinematic threshold to PeV energies”. In: PhRvD 90.12, 123014, p. 123014. DOI: 10.1103/PhysRevD.90.123014. arXiv: 1406.7369 [astro-ph.HE].

Kamae, T. et al. (Aug. 2006). “Parameterization of γ, e+/−, and Neutrino Spectra Produced by p-p Interaction in Astronomical Environments”. In: ApJ 647, pp. 692–708. DOI: 10.1086/505189. eprint: astro-ph/0605581.

Kasen, Daniel and S. E. Woosley (Oct. 2009). “Type II Supernovae: Model Light Curves and Standard Candle Relationships”. In: ApJ 703.2, pp. 2205– 2216. DOI: 10.1088/0004-637X/703/2/2205. arXiv: 0910.1590 [astro-ph.CO].

Katsuda, S. et al. (Feb. 2010). “X-ray Measured Dynamics of Tycho’s Super- nova Remnant”. In: ApJ 709, pp. 1387–1395. DOI: 10.1088/0004-637X/709/2/1387. arXiv: 1001.2484 [astro-ph.HE].

Katsuda, Satoru et al. (Nov. 2015). “Evidence for Thermal X-Ray Line Emis- sion from the Synchrotron-dominated Supernova Remnant RX J1713.7- 3946”. In: ApJ 814.1, 29, p. 29. DOI: 10.1088/0004-637X/814/1/29. arXiv: 1510.04025 [astro-ph.HE].

Keohane, J. W. et al. (Jan. 2007). “A Near-Infrared and X-Ray Study of W49 B: A Wind Cavity Explosion”. In: ApJ 654, pp. 938–944. DOI: 10.1086/ 509311. eprint: astro-ph/0609533.

Koch, H. W. and J. W. Motz (Oct. 1959). “Bremsstrahlung Cross-Section For- mulas and Related Data”. In: Reviews of Modern Physics 31.4, pp. 920–955. DOI: 10.1103/RevModPhys.31.920.

Kothes, R. et al. (Oct. 2006). “A catalogue of Galactic supernova remnants from the Canadian Galactic plane survey. I. Flux densities, spectra, and polarization characteristics”. In: A&A 457, pp. 1081–1093. DOI: 10.1051/ 0004-6361:20065062.

Koyama, K. et al. (Nov. 1995). “Evidence for shock acceleration of high-energy electrons in the supernova remnant SN1006”. In: Nature 378.6554, pp. 255–258. DOI: 10.1038/378255a0.

Krause, Oliver et al. (May 2008). “The Cassiopeia A Supernova Was of Type IIb”. In: Science 320.5880, p. 1195. DOI: 10.1126/science.1155788. arXiv: 0805.4557 [astro-ph].

Lazendic, J. S. et al. (Feb. 2004). “A High-Resolution Study of Nonthermal Radio and X-Ray Emission from Supernova Remnant G347.3-0.5”. In: ApJ 602, pp. 271–285. DOI: 10.1086/380956. eprint: astro-ph/0310696.

Lee, S.-H., D. C. Ellison, and S. Nagataki (May 2012a). “A Generalized Model of Nonlinear Diffusive Shock Acceleration Coupled to an Evolving Super- nova Remnant”. In: ApJ 750, 156, p. 156. arXiv: 1203.3614 [astro-ph.HE].

Lee, S.-H. et al. (June 2015). “Modeling Bright γ-Ray and Radio Emission at Fast Cloud Shocks”. In: ApJ 806, 71, p. 71. DOI: 10.1088/0004-637X/806/1/71. arXiv: 1504.05313 [astro-ph.HE].

Lee, Shiu-Hang, Donald C. Ellison, and Shigehiro Nagataki (May 2012b). “A Generalized Model of Nonlinear Diffusive Shock Acceleration Coupled to an Evolving Supernova Remnant”. In: ApJ 750.2, 156, p. 156. DOI: 10. 1088/0004-637X/750/2/156. arXiv: 1203.3614 [astro-ph.HE].

Li, Weidong et al. (June 2007). “On the Progenitors of Two Type II-P Super- novae in the Virgo Cluster”. In: ApJ 661.2, pp. 1013–1024. DOI: 10.1086/ 516747. arXiv: astro-ph/0701049 [astro-ph].

Lovchinsky, I. et al. (Apr. 2011). “A Chandra Observation of Supernova Rem- nant G350.1-0.3 and Its Central Compact Object”. In: ApJ 731, 70, p. 70. DOI: 10.1088/0004-637X/731/1/70. arXiv: 1102.5333 [astro-ph.HE].

Mackey, Jonathan et al. (Jan. 2015). “Wind bubbles within H ii regions around slowly moving stars”. In: A&A 573, A10, A10. DOI: 10.1051/0004-6361/ 201424716. arXiv: 1410.0019 [astro-ph.GA].

Maeda, K. et al. (July 2015). “Type IIb Supernova 2013df Entering into an Interaction Phase: A Link between the Progenitor and the Mass Loss”. In: ApJ 807.1, 35, p. 35. DOI: 10.1088/0004-637X/807/1/35. arXiv: 1504. 06668 [astro-ph.SR].

Maeda, Y. et al. (Dec. 2009). “Suzaku X-Ray Imaging and Spectroscopy of Cassiopeia A”. In: PASJ 61, pp. 1217–1228. DOI: 10.1093/pasj/61.6.1217. arXiv: 0912.5020 [astro-ph.HE].

Matsumoto, Yosuke et al. (Sept. 2017). “Electron Surfing and Drift Accelera- tions in a Weibel-Dominated High-Mach-Number Shock”. In: Phys. Rev. Lett. 119 (10), p. 105101. DOI: 10.1103/PhysRevLett.119.105101. URL: https://link.aps.org/doi/10.1103/PhysRevLett.119.105101.

Matzner, Christopher D. and Christopher F. McKee (Jan. 1999). “The Expul- sion of Stellar Envelopes in Core-Collapse Supernovae”. In: ApJ 510.1, pp. 379–403. DOI: 10.1086/306571. arXiv: astro-ph/9807046 [astro-ph].

Mohamed, S., J. Mackey, and N. Langer (May 2012). “3D simulations of Betel- geuse’s bow shock”. In: A&A 541, A1, A1. DOI: 10 .1051/0004 - 6361 / 201118002. arXiv: 1109.1555 [astro-ph.SR].

Mohamed, S. and Ph. Podsiadlowski (Jan. 2012). “Mass Transfer in Mira-type Binaries”. In: Baltic Astronomy 21, pp. 88–96. DOI: 10.1515/astro-2017- 0362.

Nicholl, M. et al. (Oct. 2015). “On the diversity of superluminous supernovae: ejected mass as the dominant factor”. In: MNRAS 452, pp. 3869–3893. DOI: 10.1093/mnras/stv1522. arXiv: 1503.03310 [astro-ph.SR].

Nikolic´, S. et al. (Apr. 2013). “An Integral View of Fast Shocks Around Super- nova 1006”. In: Science 340, pp. 45–48. DOI: 10.1126/science.1228297. arXiv: 1302.4328 [astro-ph.HE].

Ohira, Yutaka and Kunihito Ioka (Mar. 2011). “Cosmic-ray Helium Harden- ing”. In: ApJL 729.1, L13, p. L13. DOI: 10.1088/2041-8205/729/1/L13.

Ouchi, Ryoma and Keiichi Maeda (May 2017). “Radii and Mass-loss Rates of Type IIb Supernova Progenitors”. In: ApJ 840.2, 90, p. 90. DOI: 10.3847/ 1538-4357/aa6ea9. arXiv: 1705.02430 [astro-ph.HE].

Planck Collaboration et al. (Feb. 2016). “Planck intermediate results. XXXI. Microwave survey of Galactic supernova remnants”. In: A&A 586, A134, A134. DOI: 10.1051/0004-6361/201425022. arXiv: 1409.5746.

Poveda, A. and L. Woltjer (Mar. 1968). “Supernovae and Supernova Rem- nants”. In: AJ 73, p. 65. DOI: 10.1086/110600.

Prinz, T. and W. Becker (Aug. 2012). “Exploring the supernova remnant G308.4-1.4”. In: A&A 544, A7, A7. DOI: 10.1051/0004-6361/201219086. arXiv: 1202.4677 [astro-ph.HE].

Ptuskin, Vladimir, Vladimir Zirakashvili, and Eun-Suk Seo (July 2010). “Spec- trum of Galactic Cosmic Rays Accelerated in Supernova Remnants”. In: ApJ 718.1, pp. 31–36. DOI: 10.1088/0004-637X/718/1/31. arXiv: 1006. 0034 [astro-ph.CO].

Rakowski, C. E., J. P. Hughes, and P. Slane (Feb. 2001). “Two New Ejecta- dominated Galactic Supernova Remnants: G337.2-0.7 and G309.2-0.6”. In: ApJ 548, pp. 258–268. DOI: 10.1086/318680. eprint: astro-ph/0010091.

Reynolds, M. T. et al. (Apr. 2013). “G306.3-0.9: A Newly Discovered Young Galactic Supernova Remnant”. In: ApJ 766, 112, p. 112. DOI: 10 .1088 / 0004-637X/766/2/112. arXiv: 1303.3546 [astro-ph.HE].

Reynoso, E. M., S. Cichowolski, and A. J. Walsh (Jan. 2017). “A high-resolution H I study towards the supernova remnant Puppis A and its environ- ments”. In: MNRAS 464, pp. 3029–3039. DOI: 10.1093/mnras/stw2219. arXiv: 1609.01779.

Roger, R. S. et al. (Apr. 1986). “G291.0-0.1, a centrally bright supernova rem- nant, in Carina”. In: MNRAS 219, pp. 815–822. DOI: 10.1093/mnras/219. 4.815.

Rybicki, George B. and Alan P. Lightman (1986). Radiative Processes in Astro- physics.

Sánchez-Ayaso, E. et al. (Apr. 2013). “XMM-Newton and Chandra observa- tions of G272.2-3.2. Evidence of stellar ejecta in the central region”. In: A&A 552, A52, A52. DOI: 10.1051/0004-6361/201219709. arXiv: 1301.1507 [astro-ph.HE].

Sasaki, M. et al. (Sept. 2018). “Infrared and X-ray study of the Galactic SNR G15.9+0.2”. In: MNRAS 479, pp. 3033–3041. DOI: 10.1093/mnras/sty1596. arXiv: 1806.11365 [astro-ph.HE].

Schinnerer, E. et al. (Nov. 2004). “The VLA-COSMOS Survey. I. Radio Iden- tifications from the Pilot Project”. In: AJ 128.5, pp. 1974–1989. DOI: 10 . 1086/424860. arXiv: astro-ph/0408149 [astro-ph].

Sedov, L. I. (1959). Similarity and Dimensional Methods in Mechanics.

Sezer, A., T. Ergin, and R. Yamazaki (Apr. 2017). “Suzaku analysis of the su- pernova remnant G306.3-0.9 and the gamma-ray view of its neighbour- hood”. In: MNRAS 466, pp. 3434–3441. DOI: 10 .1093 / mnras / stw3331.arXiv: 1701.00102 [astro-ph.HE].

Simpson, Chris et al. (Apr. 2012). “Radio imaging of the Subaru/XMM-Newton Deep Field- III. Evolution of the radio luminosity function beyond z= 1”. In: MNRAS 421.4, pp. 3060–3083. DOI: 10 .1111 / j.1365 - 2966 .2012 .20529.x. arXiv: 1201.3225 [astro-ph.CO].

Sinitsina, V. G. and V. Y. Sinitsina (June 2015). “Results of observations of shell supernova remnants at ultrahigh energies with the SHALON mir- ror Cherenkov telescopes”. In: Bulletin of the Lebedev Physics Institute 42, pp. 169–175. DOI: 10.3103/S1068335615060032. arXiv: 1602.01694 [astro-ph.HE].

Slane, P. et al. (Mar. 2014). “A CR-hydro-NEI Model of the Structure and Broadband Emission from Tycho’s Supernova Remnant”. In: ApJ 783, 33, p. 33. DOI: 10.1088/0004-637X/783/1/33. arXiv: 1401.2556 [astro-ph.HE].

Smartt, S. J. (Apr. 2015). “Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars”. In: PASA 32, e016, e016. DOI: 10.1017/pasa.2015.17. arXiv: 1504.02635 [astro-ph.SR].

Smith, Nathan (2017). “Interacting Supernovae: Types IIn and Ibn”. In: Hand- book of Supernovae. Ed. by Athem W. Alsabti and Paul Murdin, p. 403. DOI: 10.1007/978-3-319-21846-5\_38.

Smith, Nathan et al. (Apr. 2011). “Observed fractions of core-collapse super- nova types and initial masses of their single and binary progenitor stars”. In: MNRAS 412.3, pp. 1522–1538. DOI: 10 .1111 / j.1365 - 2966 .2011 .17229.x. arXiv: 1006.3899 [astro-ph.HE].

Spitzer, Lyman (1965). Physics of fully ionized gases.

Sturner, S. J. et al. (Dec. 1997). “Temporal Evolution of Nonthermal Spec- tra from Supernova Remnants”. In: ApJ 490, pp. 619–632. DOI: 10.1086/ 304894.

Sukhbold, Tuguldur and S. E. Woosley (Mar. 2014). “The Compactness of Presupernova Stellar Cores”. In: ApJ 783.1, 10, p. 10. DOI: 10.1088/0004- 637X/783/1/10. arXiv: 1311.6546 [astro-ph.SR].

Sukhbold, Tuguldur et al. (Apr. 2016). “Core-collapse Supernovae from 9 to 120 Solar Masses Based on Neutrino-powered Explosions”. In: ApJ 821.1, 38, p. 38. DOI: 10 .3847/0004-637X/821/1/38. arXiv: 1510 . 04643 [astro-ph.HE].

Sutherland, Ralph S. and M. A. Dopita (Sept. 1993). “Cooling Functions for Low-Density Astrophysical Plasmas”. In: ApJS 88, p. 253. DOI: 10.1086/ 191823.

Suzuki, Hiromasa et al. (Oct. 2020). “Study on the escape timescale of high- energy particles from supernova remnants through thermal X-ray prop- erties”. In: PASJ 72.5, 72, p. 72. DOI: 10.1093/pasj/psaa061. arXiv: 2006. 03382 [astro-ph.HE].

Tanaka, T. et al. (Oct. 2008). “Study of Nonthermal Emission from SNR RX J1713.7-3946 with Suzaku”. In: ApJ 685, pp. 988–1004. DOI: 10 . 1086 / 591020. arXiv: 0806.1490.

Tanaka, T. et al. (Oct. 2011). “Gamma-Ray Observations of the Supernova Remnant RX J0852.0-4622 with the Fermi Large Area Telescope”. In: ApJL 740, L51, p. L51. DOI: 10.1088/2041-8205/740/2/L51. arXiv: 1109.4658 [astro-ph.HE].

Tanaka, Takaaki et al. (Sept. 2020). “Shock-Cloud Interaction in the South- western Rim of RX J1713.7-3946 Evidenced by Chandra X-Ray Observa- tions”. In: ApJL 900.1, L5, p. L5. DOI: 10.3847/2041-8213/abaef0. arXiv: 2008.05581 [astro-ph.HE].

Tang, Z., S. P. Reynolds, and S. M. Ressler (Dec. 2016). “X-Ray and Gamma- Ray Emission from Middle-aged Supernova Remnants In cavities. I. Spher- ical Symmetry”. In: ApJS 227, 28, p. 28. DOI: 10.3847/1538-4365/227/2/28. arXiv: 1701.05615 [astro-ph.HE].

Tauris, Thomas M. and Gerrit J. Savonije (Oct. 1999). “Formation of millisec- ond pulsars. I. Evolution of low-mass X-ray binaries with P_orb> 2 days”. In: A&A 350, pp. 928–944. arXiv: astro-ph/9909147 [astro-ph].

Tavani, M. et al. (Feb. 2010). “Direct Evidence for Hadronic Cosmic-Ray Ac- celeration in the Supernova Remnant IC 443”. In: ApJL 710, pp. L151– L155. DOI: 10.1088/2041-8205/710/2/L151. arXiv: 1001.5150 [astro-ph.HE].

Townsend, R. H. D. (Apr. 2009). “An Exact Integration Scheme for Radiative Cooling in Hydrodynamical Simulations”. In: ApJS 181.2, pp. 391–397. DOI: 10.1088/0067-0049/181/2/391. arXiv: 0901.3146 [astro-ph.SR].

Troja, E. et al. (Dec. 2014). “Swift/BAT Detection of Hard X-Rays from Ty- cho’s Supernova Remnant: Evidence for Titanium-44”. In: ApJL 797, L6, p. L6. DOI: 10.1088/2041-8205/797/1/L6. arXiv: 1411.0991 [astro-ph.HE].

Truelove, J. K. and C. F. McKee (Feb. 1999). “Evolution of Nonradiative Su- pernova Remnants”. In: ApJS 120, pp. 299–326. DOI: 10.1086/313176.

Tsuji, N. and Y. Uchiyama (Dec. 2016). “Expansion measurements of super- nova remnant RX J1713.7-3946”. In: PASJ 68, 108, p. 108. DOI: 10.1093/pasj/psw102. arXiv: 1609.07886 [astro-ph.HE].

Uchida, H. et al. (Dec. 2012). “Recombining Plasma and Hard X-Ray Filament in the Mixed-Morphology Supernova Remnant W 44”. In: PASJ 64, 141, p. 141. DOI: 10.1093/pasj/64.6.141. arXiv: 1208.0113 [astro-ph.HE].

van den Heuvel, E. P. J. (Jan. 2009). “The Formation and Evolution of Rela- tivistic Binaries”. In: Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence. Ed. by Monica Colpi et al. Vol. 359. Astrophysics and Space Science Library, p. 125. DOI: 10.1007/978-1-4020-9264-0\_4.

Vartanyan, David et al. (July 2021). “Binary-stripped Stars as Core-collapse Supernovae Progenitors”. In: ApJL 916.1, L5, p. L5. DOI: 10.3847/2041- 8213/ac0b42. arXiv: 2104.03317 [astro-ph.SR].

Vink, J. (Dec. 2008). “The Kinematics of Kepler’s Supernova Remnant as Re- vealed by Chandra”. In: ApJ 689, pp. 231–241. DOI: 10 . 1086 / 592375. arXiv: 0803.4011.

Wang, Bo et al. (Sept. 2021). “Ultracompact X-ray binaries with He star com- panions”. In: MNRAS 506.3, pp. 4654–4666. DOI: 10.1093/mnras/stab2032. arXiv: 2106.01369 [astro-ph.HE].

Wang, C.-Y. and R. A. Chevalier (Mar. 2001). “Instabilities and Clumping in Type IA Supernova Remnants”. In: ApJ 549, pp. 1119–1134. DOI: 10.1086/ 319439. eprint: astro-ph/0005105.

Wang, W. and Z. Li (July 2016). “Hard X-Ray Emissions from Cassiopeia A Observed by INTEGRAL”. In: ApJ 825, 102, p. 102. DOI: 10.3847/0004-637X/825/2/102. arXiv: 1605.00360 [astro-ph.HE].

Warren, D. C. and J. M. Blondin (Mar. 2013). “Three-dimensional numeri- cal investigations of the morphology of Type Ia SNRs”. In: MNRAS 429, pp. 3099–3113. DOI: 10.1093/mnras/sts566. arXiv: 1210.7790.

Warren, J. S. et al. (Nov. 2005). “Cosmic-Ray Acceleration at the Forward Shock in Tycho’s Supernova Remnant: Evidence from Chandra X-Ray Ob- servations”. In: ApJ 634, pp. 376–389. DOI: 10.1086/496941. eprint: astro- ph/0507478.

Wheeler, J. Craig and Robert P. Harkness (Jan. 1986). “Physical models of su- pernovae and the distance scale.” In: Galaxy Distances and Deviations from Universal Expansion. Ed. by Barry F. Madore and R. Brent Tully. Vol. 180. NATO Advanced Study Institute (ASI) Series C, pp. 45–54.

Williams, B. J. et al. (June 2013). “Azimuthal Density Variations around the Rim of Tycho’s Supernova Remnant”. In: ApJ 770, 129, p. 129. DOI: 10. 1088/0004-637X/770/2/129. arXiv: 1305.0567 [astro-ph.HE].

Williams, B. J. et al. (Mar. 2018). “A Deep X-Ray View of the Synchrotron- dominated Supernova Remnant G330.2+1.0”. In: ApJ 855, 118, p. 118. DOI: 10.3847/1538-4357/aaadb6. arXiv: 1802.02804 [astro-ph.HE].

Woosley, S. E. (June 2019). “The Evolution of Massive Helium Stars, Including Mass Loss”. In: ApJ 878.1, 49, p. 49. DOI: 10.3847/1538- 4357/ab1b41. arXiv: 1901.00215 [astro-ph.SR].

Woosley, S. E. and A. Heger (Apr. 2007). “Nucleosynthesis and remnants in massive stars of solar metallicity”. In: PhR 442.1-6, pp. 269–283. DOI: 10. 1016/j.physrep.2007.02.009. arXiv: astro-ph/0702176 [astro-ph].

Woosley, S. E. and Alexander Heger (Sept. 2015). “The Remarkable Deaths of 9-11 Solar Mass Stars”. In: ApJ 810.1, 34, p. 34. DOI: 10.1088/0004-637X/810/1/34. arXiv: 1505.06712 [astro-ph.SR].

Woosley, S. E., Tuguldur Sukhbold, and H. T. Janka (June 2020). “The Birth Function for Black Holes and Neutron Stars in Close Binaries”. In: ApJ 896.1, 56, p. 56. DOI: 10 .3847 / 1538 - 4357 / ab8cc1. arXiv: 2001 .10492 [astro-ph.HE].

Woosley, S. E., Tuguldur Sukhbold, and D. N. Kasen (June 2021). “Model Light Curves for Type Ib and Ic Supernovae”. In: ApJ 913.2, 145, p. 145. DOI: 10.3847/1538-4357/abf3be. arXiv: 2009.06868 [astro-ph.HE].

Xin, Y.-L. et al. (July 2017). “Revisiting SNR Puppis A with Seven Years of Fermi Large Area Telescope Observations”. In: ApJ 843, 90, p. 90. DOI: 10.3847/1538-4357/aa74bb. arXiv: 1703.03911 [astro-ph.HE].

Yasuda, Haruo and Shiu-Hang Lee (May 2019). “Time Evolution of Broad- band Nonthermal Emission from Supernova Remnants in Different Cir- cumstellar Environments”. In: ApJ 876.1, 27, p. 27. DOI: 10.3847/1538- 4357/ab13ab. arXiv: 1903.10226 [astro-ph.HE].

Yasuda, Haruo, Shiu-Hang Lee, and Keiichi Maeda (Oct. 2021). “Dark Age of Type II Supernova Remnants”. In: ApJL 919.2, L16, p. L16. DOI: 10.3847/ 2041-8213/ac24ac. arXiv: 2109.04032 [astro-ph.HE].

Yoon, Sung-Chul (Oct. 2017). “Towards a better understanding of the evolu- tion of Wolf-Rayet stars and Type Ib/Ic supernova progenitors”. In: MN- RAS 470.4, pp. 3970–3980. DOI: 10.1093/mnras/stx1496. arXiv: 1706. 04716 [astro-ph.SR].

Yuan, Q., S. Liu, and X. Bi (Dec. 2012). “An Attempt at a Unified Model for the Gamma-Ray Emission of Supernova Remnants”. In: ApJ 761, 133, p. 133. DOI: 10.1088/0004-637X/761/2/133. arXiv: 1203.0085 [astro-ph.HE].

Yuan, Yajie et al. (Dec. 2013). “Fermi Large Area Telescope Detection of a Break in the Gamma-Ray Spectrum of the Supernova Remnant Cassiopeia A”. In: ApJ 779.2, 117, p. 117. DOI: 10.1088/0004-637X/779/2/117. arXiv: 1310.8287 [astro-ph.HE].

Zhu, H., W. W. Tian, and P. Zuo (Oct. 2014). “Supernova Remnant W49B and Its Environment”. In: ApJ 793, 95, p. 95. DOI: 10.1088/0004-637X/793/2/95. arXiv: 1407.8260 [astro-ph.SR].

Zirakashvili, V. N. and V. S. Ptuskin (Dec. 2012). “Numerical simulations of diffusive shock acceleration in SNRs”. In: Astroparticle Physics 39, pp. 12–21. DOI: 10 .1016 / j.astropartphys .2011 .09 .003. arXiv: 1109 .4482 [astro-ph.HE].

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る