リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Interaction of low-level cloud and sea surface temperature around oceanic frontal region in summertime North Pacific」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Interaction of low-level cloud and sea surface temperature around oceanic frontal region in summertime North Pacific

Takahashi Naoya 東北大学

2020.03.25

概要

Oceanic low-level clouds play a key role in modulating the Earth’s radiation budget, which generally have strong cooling effect due to their large albedo and warm cloud top temperature. Variability of the low-level cloud interacts strongly with the sea surface temperature (SST) via two-way physical processes between them. Through the stratification process of the atmospheric boundary layer, decreasing SST promotes the low-level cloud formation, which promotes cooling of the sea surface itself by more reflection of the solar radiation by the low-level cloud. As a result, a positive feedback exists between the radiative impact of the low-level cloud and SST, especially in summertime North Pacific (NP). Main problem about the relationship is “a dependence on timescale for a key trigger of the positive feedback loop, particularly for the role of SST”. Thus, we investigated the causal relationship between the low-level cloud properties and SST on various timescales based on the observational data analysis and numerical experiments using atmospheric regional model. We mainly focused on three timescales; 1) synoptic, 2) intra-seasonal, and 3) inter-annual. The goal of this study is to advance our understanding of the two-way processes and its timescale dependence in summertime NP.

First, we investigated the two-way physical processes on an intra-seasonal timescale in summertime (June to October) North Pacific (165-175˚E and 30-40˚N) based on satellite observational and reanalysis datasets from 2003 to 2016. The intra-seasonal timescale (20-100 days) is dominant not only for the low-level cloud cover (LCC), but also for LCC controlling factors such as SST, estimated inversion strength (EIS), and horizontal temperature advection (Tadv). Thus, there is a possibility of the two-way process between LCC and SST on this timescale. To reveal the detailed lead-lag relationship among these variables, we conducted phase composite analysis with a bandpass filter based on the intra-seasonal variability of LCC. The composite analysis suggests that intra-seasonal variability of LCC precedes to that of SST, and that horizontal dry-cold advection from the poleward region is a trigger for increasing LCC and decreasing SST. The increase of LCC anomaly corresponds to a positive relative humidity anomaly which is due to the decreasing saturated water vapor pressure by anomalous cold temperature advection within the boundary layer. Heat budget analysis of the ocean mixed-layer suggests that the horizontal dry-cold advection cools SST not only by enhancing latent heat release but also by decreasing downward shortwave radiation at the sea surface through a positive LCC anomaly. Determining the detailed lead-lag relationship between LCC and its controlling factors is an effective approach to understand the mechanisms of both low-level cloud evolution and air–sea interaction.

Second, we investigated the active role of the SST front in modulating oceanic low-level cloud properties in the Oyashio Extension during summertime based on a Weather Research and Forecasting numerical simulation. It is known that the SST front in wintertime modulate the atmospheric variability in the mid-latitudes, but it is not known whether the SST front in summertime does. To reveal the impact of SST anomaly associated with the front on the low-level cloud, we conducted two experiments with different bottom boundary conditions. The first was constrained by 0.25° daily SST data from July to August 2016 (CTL experiment) and the second by spatially smoothed SST without SST frontal characteristics in the same period (SMO experiment). The period- mean cloud water mixing ratio of marine fog near the sea surface in the CTL experiment was larger than that in the SMO experiment by 20%–40% on the northern flank of the SST front. This result indicated that the SST front affected the mean-state of the low-level cloud properties. The SST front also affected the synoptic variability of low-level cloud, and the magnitude of the effect depended on the meridional wind across the SST front. We found two competing physical processes modulating the marine fog properties around the SST front. First, a local cold SST anomaly on the northern flank reduced the saturated water vapor pressure near the surface, which are favorable for the marine fog formation (SST anomaly effect). Second, horizontal temperature advection from the warm to cold flanks of the SST front suppressed the marine fog formation, and the suppression was effective when the horizontal gradient of SST anomaly was large (SST frontal effect). Thus, the overall impact of the SST front on the marine fog properties depended on the local SST anomaly, the meridional wind across the front position, and the horizontal gradient of SST. Our results indicated the importance of SST frontal characteristics in summertime Oyashio Extension for the marine fog formation.

Finally, we investigated the active role of the variation of the summertime Oyashio Extension SST front in modulating low-level cloud properties (LCC, cloud optical thickness [COT], and shortwave cloud radiative effect [SWCRE]) on an inter-annual timescale, based on various observational datasets during 2003–2016. First, we examined the mechanism of summertime SST front variability. The strength of the SST front (SSSTF), defined as the maximum horizontal gradient of SST, has clear inter-annual variations. Frontogenesis equation analysis and regression analysis for oceanic subsurface temperature indicated that the inter-annual variation of the summertime SSSTF in the western North Pacific is strongly related to variabilities in the Kuroshio and Oyashio Extensions but not surface heat flux. The response of low-level cloud to intensified the SSSTF is that positive (negative) SWCRE with smaller LCC (larger COT) on the southern (northern) flank of the SST front which is induced by warm (cold) SST anomalies. The spatial scale of the low-level cloud response was larger than the SST frontal scale (~300 km), and the responses were strongly localized over the western boundary currents (i.e., Kuroshio and Oyashio Currents). The SST played the largest role in modulating low-level cloud among the controlling factors (i.e., EIS, Tadv) accounting for more than 40% of the variation. This implies the presence of active SST role in summertime. Using combined datasets, the present study provides observational evidence for the active role of summertime SST anomalies in the Oyashio and Kuroshio Extensions. Entire results in the present study provides new insight into two-way physical processes between low-level cloud and SST in the mid-latitudes.

参考文献

Argo. (2000). Argo float data and metadata from Global Data Assembly Centre (Argo GDAC). SEANOE. https://doi.org/10.17882/42182

Babić, K., Adler, B., Kalthoff, N., Andersen, H., Dione, C., Lohou, F., et al. (2018). The observed diurnal cycle of nocturnal low-level stratus clouds over southern West Africa: a case study. Atmospheric Chemistry and Physics Discussions, 1–29. https://doi.org/10.5194/acp-2018-776

Bony, S., & Dufrense, J.-L. (2005). Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophysical Research Letters, 32(20), L20806. https://doi.org/10.1029/2005GL023851

Bretherton, C. S., Blossey, P. N., & Jones, C. R. (2013). Mechanisms of marine low cloud sensitivity to idealized climate perturbations: A single-LES exploration extending the CGILS cases. Journal of Advances in Modeling Earth Systems. https://doi.org/10.1002/jame.20019

Brient, F., & Bony, S. (2013). Interpretation of the positive low-cloud feedback predicted by a climate model under global warming. Climate Dynamics, 40(9–10), 2415–2431. https://doi.org/10.1007/s00382-011-1279-7

Chelton, D. B. (2005). The Impact of SST Specification on ECMWF Surface Wind Stress Fields in the Eastern Tropical Pacific. Journal of Climate, 18(4), 530–550. https://doi.org/10.1175/JCLI- 3275.1

Cohen, A. E., Cavallo, S. M., Coniglio, M. C., & Brooks, H. E. (2015). A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments. Weather and Forecasting, 30(3), 591–612. https://doi.org/10.1175/WAF-D-14-00105.1

Cronin, M. F., Bond, N. A., Thomas Farrar, J., Ichikawa, H., Jayne, S. R., Kawai, Y., et al. (2013). Formation and erosion of the seasonal thermocline in the Kuroshio Extension Recirculation Gyre. Deep Sea Research Part II: Topical Studies in Oceanography, 85, 62–74. https://doi.org/10.1016/j.dsr2.2012.07.018

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.828

de Szoeke, S. P., Verlinden, K. L., Yuter, S. E., & Mechem, D. B. (2016). The time scales of variability of marine low clouds. Journal of Climate, 29(18), 6463–6481. https://doi.org/10.1175/JCLI-D-15-0460.1

Dudhia, J. (1989). Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. Journal of the Atmospheric Sciences, 46(20), 3077–3107. https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2

Ek, M. B., & Mahrt, L. (1994). Daytime Evolution of Relative Humidity at the Boundary Layer Top. Monthly Weather Review, 122(12), 2709–2721. https://doi.org/10.1175/1520-0450

Frankignoul, C., & Hasselmann, K. (1977). Stochastic climate models, Part II Application to sea- surface temperature anomalies and thermocline variability. Tellus, 29(4), 289–305. https://doi.org/10.1111/j.2153-3490.1977.tb00740.x

Frankignoul, C., & Reynolds, R. W. (1983). Testing a Dynamical Model for Mid-Latitude Sea Surface Temperature Anomalies. Journal of Physical Oceanography, 13(7), 1131–1145. https://doi.org/10.1175/1520-0485(1983)013<1131:TADMFM>2.0.CO;2

Frankignoul, C. (1985). Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes. Reviews of Geophysics, 23(4), 357. https://doi.org/10.1029/RG023i004p00357

Frankignoul, C., Sennéchael, N., Kwon, Y.-O., & Alexander, M. A. (2011). Influence of the Meridional Shifts of the Kuroshio and the Oyashio Extensions on the Atmospheric Circulation. Journal of Climate, 24(3), 762–777. https://doi.org/10.1175/2010JCLI3731.1

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., et al. (2017). The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 30(14), 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1

Harrison, E. F., Minnis, P., Barkstrom, B. R., Ramanathan, V., Cess, R. D., & Gibson, G. G. (1990). Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. Journal of Geophysical Research, 95(D11). https://doi.org/10.1029/jd095id11p18687

Hartmann, D. L., & Short, D. A. (1980). On the Use of Earth Radiation Budget Statistics for Studies of Clouds and Climate. Journal of the Atmospheric Sciences, 37(6), 1233–1250. https://doi.org/10.1175/1520-0469(1980)037<1233:OTUOER>2.0.CO;2

Hong, S.-Y., Noh, Y., & Dudhia, J. (2006). A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Monthly Weather Review, 134(9), 2318–2341. https://doi.org/10.1175/MWR3199.1

Hosoda, S., Ohira, T., & Nakamura, T. (2008). A monthly mean dataset of global oceanic temperature (Vol. 8).

Hosoda, S., Nonaka, M., Sasai, Y., & Sasaki, H. (2016). Early summertime interannual variability in surface and subsurface temperature in the North Pacific. In “Hot Spots” in the Climate System (pp. 91–107). Tokyo: Springer Japan. https://doi.org/10.1007/978-4-431-56053-1_6

Isoguchi, O., Kawamura, H., & Oka, E. (2006). Quasi-stationary jets transporting surface warm waters across the transition zone between the subtropical and the subarctic gyres in the North Pacific. Journal of Geophysical Research, 111(C10), C10003. https://doi.org/10.1029/2005JC003402

Janjić, Z. I. (1994). The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Monthly Weather Review, 122(5), 927–945. https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2

Jiang, Y., Zhang, S., Xie, S., Chen, Y., & Liu, H. (2019). Effects of a Cold Ocean Eddy on Local Atmospheric Boundary Layer Near the Kuroshio Extension: In Situ Observations and Model Experiments. Journal of Geophysical Research: Atmospheres, 2018JD029382. https://doi.org/10.1029/2018JD029382

Johnson, G. C., Schmidtko, S., & Lyman, J. M. (2012). Relative contributions of temperature and salinity to seasonal mixed layer density changes and horizontal density gradients. Journal of Geophysical Research: Oceans, 117(C4), n/a-n/a. https://doi.org/10.1029/2011JC007651

Kain, J. S. (2004). The Kain–Fritsch Convective Parameterization: An Update. Journal of Applied Meteorology, 43(1), 170–181. https://doi.org/10.1175/1520- 0450(2004)043<0170:TKCPAU>2.0.CO;2

Kato, S., Rose, F. G., Rutan, D. A., Thorsen, T. J., Loeb, N. G., Doelling, D. R., et al. (2018). Surface Irradiances of Edition 4.0 Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Data Product. Journal of Climate, 31(11), 4501–4527. https://doi.org/10.1175/JCLI-D-17-0523.1

Kawai, H., Koshiro, T., Endo, H., Arakawa, O., & Hagihara, Y. (2016). Changes in marine fog in a warmer climate. Atmospheric Science Letters, 17(10), 548–555. https://doi.org/10.1002/asl.691

Kawai, H., Koshiro, T., & Webb, M. J. (2017). Interpretation of factors controlling low cloud cover and low cloud feedback using a unified predictive index. Journal of Climate, 30(22), 9119– 9131. https://doi.org/10.1175/JCLI-D-16-0825.1

Kawai, Y., Miyama, T., Iizuka, S., Manda, A., Yoshioka, M. K., Katagiri, S., et al. (2015). Marine atmospheric boundary layer and low-level cloud responses to the Kuroshio Extension front in the early summer of 2012: three-vessel simultaneous observations and numerical simulations. Journal of Oceanography, 71(5), 511–526. https://doi.org/10.1007/s10872-014-0266-0

Kawamura, R., Murakami, T., & Wang, B. (1996). Tropical and Mid-latitude 45-Day Perturbations over the Western Pacific During the Northern Summer. Journal of the Meteorological Society of Japan. Ser. II, 74(6), 867–890. https://doi.org/10.2151/jmsj1965.74.6_867

Kazmin, A. S. (2016). The Frontal System at the Boundary of the East China Sea : Its Variability and Response to Large-Scale Atmospheric Forcing, 56(4), 509–513. https://doi.org/10.1134/S000143701604007X

Kerr, R. A. (2000). A North Atlantic Climate Pacemaker for the Centuries. Science, 288(5473), 1984–1985. https://doi.org/10.1126/science.288.5473.1984

Kida, S., Mitsudera, H., Aoki, S., Guo, X., Ito, S. I., Kobashi, F., et al. (2016). Oceanic fronts and jets around Japan: A review. Hot Spots in the Climate System: New Developments in the Extratropical Ocean-Atmosphere Interaction Research, 1–30. https://doi.org/10.1007/978-4- 431-56053-1_1

Kilpatrick, T., Schneider, N., & Qiu, B. (2014). Boundary Layer Convergence Induced by Strong Winds across a Midlatitude SST Front*. Journal of Climate, 27(4), 1698–1718. https://doi.org/10.1175/JCLI-D-13-00101.1

Kilpatrick, T., Schneider, N., & Qiu, B. (2016). Atmospheric Response to a Midlatitude SST Front: Alongfront Winds. Journal of the Atmospheric Sciences, 73(9), 3489–3509. https://doi.org/10.1175/JAS-D-15-0312.1

Klein, S. A., & Hartmann, D. L. (1993). The Seasonal Cycle of Low Stratiform Clouds. Journal of Climate, 6(8), 1587–1606. https://doi.org/10.1175/1520- 0442(1993)006<1587:TSCOLS>2.0.CO;2

Klein, S. A. (1997). Synoptic Variability of Low-Cloud Properties and Meteorological Parameters in the Subtropical Trade Wind Boundary Layer. Journal of Climate, 10(8), 2018–2039. https://doi.org/10.1175/1520-0442(1997)010<2018:SVOLCP>2.0.CO;2

Klein, S. A., Hall, A., Norris, J. R., & Pincus, R. (2017). Low-Cloud Feedbacks from Cloud- Controlling Factors: A Review. Surveys in Geophysics, 38(6), 1307–1329. https://doi.org/10.1007/s10712-017-9433-3

Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., et al. (2015). The JRA-55 reanalysis: General specifications and basic characteristics. Journal of the Meteorological Society of Japan, 93(1), 5–48. https://doi.org/10.2151/jmsj.2015-001

Koračin, D., Dorman, C. E., Lewis, J. M., Hudson, J. G., Wilcox, E. M., & Torregrosa, A. (2014). Marine fog: A review. Atmospheric Research, 143, 142–175. https://doi.org/10.1016/j.atmosres.2013.12.012

Koshiro, T., & Shiotani, M. (2014). Relationship between Low Stratiform Cloud Amount and Estimated Inversion Strength in the Lower Troposphere over the Global Ocean in Terms of Cloud Types. Journal of the Meteorological Society of Japan. Ser. II, 92(1), 107–120. https://doi.org/10.2151/jmsj.2014-107

Koshiro, T., Yukimoto, S., & Shiotani, M. (2017). Interannual variability in low stratiform cloud amount over the summertime north pacific in terms of cloud types. Journal of Climate, 30(16), 6107–6121. https://doi.org/10.1175/JCLI-D-16-0898.1

Kubar, T. L., Waliser, D. E., Li, J. L., & Jiang, X. (2012). On the annual cycle, variability, and correlations of oceanic low-topped clouds with large-scale circulation using aqua MODIS and ERA-interim. Journal of Climate, 25(18), 6152–6174. https://doi.org/10.1175/JCLI-D-11- 00478.1

Kuwano-Yoshida, A., & Minobe, S. (2017). Storm-track response to SST fronts in the Northwestern Pacific Region in an AGCM. Journal of Climate, 30(3), 1081–1102. https://doi.org/10.1175/JCLI-D-16-0331.1

Kwon, Y. O., Alexander, M. A., Bond, N. A., Frankignoul, C., Nakamura, H., Qiu, B., & Thompson, L. A. (2010). Role of the gulf Stream and Kuroshio-Oyashio systems in large-scale atmosphere- ocean interaction: A review. Journal of Climate. https://doi.org/10.1175/2010JCLI3343.1

Li, J., Huang, J., Stamnes, K., Wang, T., Lv, Q., & Jin, H. (2015). A global survey of cloud overlap based on CALIPSO and CloudSat measurements. Atmospheric Chemistry and Physics, 15(1), 519–536. https://doi.org/10.5194/acp-15-519-2015

Liu, J. W., Xie, S. P., Norris, J. R., & Zhang, S. P. (2014). Low-level cloud response to the gulf stream front in winter using CALIPSO. Journal of Climate. https://doi.org/10.1175/JCLI-D-13- 00469.1

Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., & Francis, R. C. (1997). A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production. Bulletin of the American Meteorological Society, 78(6), 1069–1079. https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2

Mauger, G. S., & Norris, J. R. (2010). Assessing the impact of meteorological history on subtropical cloud fraction. Journal of Climate. https://doi.org/10.1175/2010JCLI3272.1

McCoy, D. T., Eastman, R., Hartmann, D. L., & Wood, R. (2017). The Change in Low Cloud Cover in a Warmed Climate Inferred from AIRS, MODIS, and ERA-Interim. Journal of Climate, 30(10), 3609–3620. https://doi.org/10.1175/JCLI-D-15-0734.1

Middlemas, E. A., Clement, A. C., Medeiros, B., & Kirtman, B. (2019). Cloud Radiative Feedbacks and El Niño–Southern Oscillation. Journal of Climate, 32(15), 4661–4680. https://doi.org/10.1175/JCLI-D-18-0842.1

Middlemas, E. A., Clement, A. C., & Medeiros, B. (2019). Contributions of atmospheric and oceanic feedbacks to subtropical northeastern sea surface temperature variability. Climate Dynamics, 53(11), 6877–6890. https://doi.org/10.1007/s00382-019-04964-1

Minobe, S., Kuwano-Yoshida, A., Komori, N., Xie, S. P., & Small, R. J. (2008). Influence of the Gulf Stream on the troposphere. Nature, 452(7184), 206–209. https://doi.org/10.1038/nature06690

Minobe, S., Miyashita, M., Kuwano-Yoshida, A., Tokinaga, H., & Xie, S.-P. (2010). Atmospheric Response to the Gulf Stream: Seasonal Variations*. Journal of Climate, 23(13), 3699–3719. https://doi.org/10.1175/2010JCLI3359.1

Miyamoto, A., Nakamura, H., & Miyasaka, T. (2018). Influence of the Subtropical High and Storm Track on Low-Cloud Fraction and Its Seasonality over the South Indian Ocean. Journal of Climate, 31(10), 4017–4039. https://doi.org/10.1175/JCLI-D-17-0229.1

Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research: Atmospheres, 102(D14), 16663–16682. https://doi.org/10.1029/97JD00237

Moisan, J. R., & Niiler, P. P. (1998). The Seasonal Heat Budget of the North Pacific: Net Heat Flux and Heat Storage Rates (1950–1990). Journal of Physical Oceanography, 28(3), 401–421. https://doi.org/10.1175/1520-0485(1998)028<0401:TSHBOT>2.0.CO;2

Mori, M., & Watanabe, M. (2008). The Growth and Triggering Mechanisms of the PNA: A MJO- PNA Coherence. Journal of the Meteorological Society of Japan, 86(1), 213–236. https://doi.org/10.2151/jmsj.86.213

Morioka, Y., Tozuka, T., & Yamagata, T. (2010). Climate variability in the southern Indian Ocean as revealed by self-organizing maps. Climate Dynamics, 35(6), 1075–1088. https://doi.org/10.1007/s00382-010-0843-x

Myers, T. A., & Norris, J. R. (2013). Observational Evidence That Enhanced Subsidence Reduces Subtropical Marine Boundary Layer Cloudiness. Journal of Climate, 26(19), 7507–7524. https://doi.org/10.1175/JCLI-D-12-00736.1

Myers, T. A., & Norris, J. R. (2015). On the relationships between subtropical clouds and meteorology in observations and CMIP3 and CMIP5 models. Journal of Climate, 28(8), 2945– 2967. https://doi.org/10.1175/JCLI-D-14-00475.1

Myers, T. A., & Norris, J. R. (2016). Reducing the uncertainty in subtropical cloud feedback. Geophysical Research Letters, 43(5), 2144–2148. https://doi.org/10.1002/2015GL067416

Myers, T. A., Mechoso, C. R., & Deflorio, M. J. (2017). Coupling between marine boundary layer clouds and summer- to-summer sea surface temperature variability over the North Atlantic and Pacific. Climate Dynamics, 0(0), 1–15. https://doi.org/10.1007/s00382-017-3651-8

Nakamura, H., & Yamagata, T. (1999). Beyond El Niño. (A. Navarra, Ed.), Climate in Flux. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-58369-8

Nakamura, H., & Kazmin, A. S. (2003). Decadal changes in the North Pacific oceanic frontal zones as revealed in ship and satellite observations. Journal of Geophysical Research, 108(C3), 3078. https://doi.org/10.1029/1999JC000085

Nakamura, H., Sampe, T., Tanimoto, Y., & Shimpo, A. (2004). Observed Associations Among Storm Tracks, Jet Streams and Midlatitude Oceanic Fronts. In Geophysical Monograph Series (Vol. 147, pp. 329–345). https://doi.org/10.1029/147GM18

Nakamura, H., Sampe, T., Goto, A., Ohfuchi, W., & Xie, S.-P. (2008). On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophysical Research Letters, 35(15), L15709. https://doi.org/10.1029/2008GL034010

Nakanishi, M., & Niino, H. (2006). An Improved Mellor–Yamada Level-3 Model: Its Numerical Stability and Application to a Regional Prediction of Advection Fog. Boundary-Layer Meteorology, 119(2), 397–407. https://doi.org/10.1007/s10546-005-9030-8

Nakanishi, M., & Niino, H. (2009). Development of an Improved Turbulence Closure Model for the Atmospheric Boundary Layer. Journal of the Meteorological Society of Japan, 87(5), 895–912. https://doi.org/10.2151/jmsj.87.895

Newman, M., Alexander, M. A., Ault, T. R., Cobb, K. M., Deser, C., Di Lorenzo, E., et al. (2016). The Pacific decadal oscillation, revisited. Journal of Climate. https://doi.org/10.1175/JCLI-D- 15-0508.1

Norris, J. R., & Leovy, C. B. (1994). Interannual Variability in Stratiform Cloudiness and Sea Surface Temperature. Journal of Climate, 7(12), 1915–1925. https://doi.org/10.1175/1520- 0442(1994)007<1915:IVISCA>2.0.CO;2

Norris, J. R., Zhang, Y., & Wallace, J. M. (1998). Role of Low Clouds in Summertime Atmosphere– Ocean Interactions over the North Pacific. Journal of Climate, 11(10), 2482–2490. https://doi.org/10.1175/1520-0442(1998)011<2482:ROLCIS>2.0.CO;2

Norris, J. R. (2000). Interannual and interdecadal variability in the storm track, cloudiness, and sea surface temperature over the summertime North Pacific. Journal of Climate, 13(2), 422–430. https://doi.org/10.1175/1520-0442(2000)013<0422:IAIVIT>2.0.CO;2

Norris, J. R., & Klein, S. A. (2000). Low cloud type over the ocean from surface observations. Part III: Relationship to vertical motion and the regional surface synoptic environment. Journal of Climate, 13(1), 245–256. https://doi.org/10.1175/1520-0442(2000)013<0245:LCTOTO>2.0.CO;2

Ogawa, F., Nakamura, H., Nishii, K., Miyasaka, T., & Kuwano-Yoshida, A. (2012). Dependence of the climatological axial latitudes of the tropospheric westerlies and storm tracks on the latitude of an extratropical oceanic front. Geophysical Research Letters, 39(5), 1–5. https://doi.org/10.1029/2011GL049922

Ogawa, F., & Spengler, T. (2019). Prevailing surface wind direction during air–sea heat exchange. Journal of Climate, 32(17), 5601–5617. https://doi.org/10.1175/JCLI-D-18-0752.1

Ohishi, S., Tozuka, T., & Cronin, M. F. (2017). Frontogenesis in the Agulhas Return Current Region Simulated by a High-Resolution CGCM. Journal of Physical Oceanography. https://doi.org/10.1175/JPO-D-17-0038.1

Okajima, S., Nakamura, H., Nishii, K., Miyasaka, T., & Kuwano-Yoshida, A. (2014). Assessing the importance of prominent warm SST anomalies over the midlatitude north pacific in forcing large-scale atmospheric anomalies during 2011 summer and autumn. Journal of Climate. https://doi.org/10.1175/JCLI-D-13-00140.1

O’Neill, L. W., Chelton, D. B., Esbensen, S. K., & Wentz, F. J. (2005). High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas Return Current. Journal of Climate, 18(14), 2706–2723. https://doi.org/10.1175/JCLI3415.1

Otkin, J. A., & Greenwald, T. J. (2008). Comparison of WRF Model-Simulated and MODIS-Derived Cloud Data. Monthly Weather Review, 136(6), 1957–1970. https://doi.org/10.1175/2007MWR2293.1

Pan, L.-L., & Li, T. (2008). Interactions between the tropical ISO and midlatitude low-frequency flow. Climate Dynamics, 31(4), 375–388. https://doi.org/10.1007/s00382-007-0272-7

Paulson, C. A., & Simpson, J. J. (1977). Irradiance Measurements in the Upper Ocean. Journal of Physical Oceanography, 7(6), 952–956. https://doi.org/10.1175/1520- 0485(1977)007<0952:IMITUO>2.0.CO;2

Platnick, S. (2015). MYD08 _ D3 - MODIS / Aqua Aerosol Cloud Water Vapor Ozone Daily L3 Global 1Deg CMG. https://doi.org/10.5067/MODIS/MYD08_D3.061

Power, S., Casey, T., Folland, C., Colman, A., & Mehta, V. (1999). Inter-decadal modulation of the impact of ENSO on Australia. Climate Dynamics, 15(5), 319–324. https://doi.org/10.1007/s003820050284

Qiu, B., & Kelly, K. A. (1993). Upper-Ocean Heat Balance in the Kuroshio Extension Region. Journal of Physical Oceanography, 23(9), 2027–2041. https://doi.org/10.1175/1520- 0485(1993)023<2027:UOHBIT>2.0.CO;2

Qiu, B. (2001). Kuroshio and Oyashio Currents. Encyclopedia of Ocean Sciences: Second Edition, 1413–1425. https://doi.org/10.1016/B978-012374473-9.00350-7

Qiu, B., Chen, S., & Schneider, N. (2017). Dynamical links between the decadal variability of the Oyashio and Kuroshio Extensions. Journal of Climate, 30(23), 9591–9605. https://doi.org/10.1175/JCLI-D-17-0397.1

Qu, X., Hall, A., Klein, S. A., & Caldwell, P. M. (2014). On the spread of changes in marine low cloud cover in climate model simulations of the 21st century. Climate Dynamics, 42(9–10), 2603–2626. https://doi.org/10.1007/s00382-013-1945-z

Qu, X., Hall, A., Klein, S. A., & DeAngelis, A. M. (2015). Positive tropical marine low-cloud cover feedback inferred from cloud-controlling factors. Geophysical Research Letters, 42(18), 7767– 7775. https://doi.org/10.1002/2015GL065627

Radel, G., Mauritsen, T., Stevens, B., Dommenget, D., Matei, D., Bellomo, K., & Clement, A. (2016). Amplification of El Nino by cloud longwave coupling to atmospheric circulation. Nature Geoscience, 9(2), 106–110. https://doi.org/10.1038/ngeo2630

Ramanathan, V., Cess, R. D., Harrison, E. F., Minnis, P., Barkstrom, B. R., Ahmad, E., & Hartmann, D. (1989). Cloud-radiative forcing and climate: Results from the earth radiation budget experiment. Science, 243(4887), 57–63. https://doi.org/10.1126/science.243.4887.57

Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., & Wang, W. (2002). An improved in situ and satellite SST analysis for climate. Journal of Climate. https://doi.org/10.1175/1520- 0442(2002)015<1609:AIISAS>2.0.CO;2

Roemmich, D., & Gilson, J. (2009). The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Progress in Oceanography, 82(2), 81–100. https://doi.org/10.1016/j.pocean.2009.03.004

Schmidtko, S., Johnson, G. C., & Lyman, J. M. (2013). MIMOC: A global monthly isopycnal upper- ocean climatology with mixed layers. Journal of Geophysical Research: Oceans, 118(4), 1658– 1672. https://doi.org/10.1002/jgrc.20122

Seethala, C., Norris, J. R., & Myers, T. A. (2015). How Has Subtropical Stratocumulus and Associated Meteorology Changed since the 1980s?*. Journal of Climate, 28(21), 8396–8410. https://doi.org/10.1175/JCLI-D-15-0120.1

Skamarock, W.C., Klemp, J. B., Dudhia, J., Gill, D. O., Zhiquan, L., Berner, J., et al. (2019). A Description of the Advanced Research WRF Model Version 4 NCAR Technical Note. National Center for Atmospheric Research, 145. https://doi.org/10.5065/1dfh-6p97

Skamarock, William C., & Klemp, J. B. (2008). A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. Journal of Computational Physics, 227(7), 3465– 3485. https://doi.org/10.1016/j.jcp.2007.01.037

Skamarock, William C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., & Powers, J. G. (2008). A Description of the Advanced Research WRF Version 3. National Center for Atmospheric Research. https://doi.org/https://opensky.ucar.edu/islandora/object/technotes:500

Small, R. J., DeSzoeke, S. P., Xie, S. P., O’Neill, L., Seo, H., Song, Q., et al. (2008). Air–sea interaction over ocean fronts and eddies. Dynamics of Atmospheres and Oceans, 45(3–4), 274–319. https://doi.org/10.1016/j.dynatmoce.2008.01.001

Smirnov, D., Newman, M., Alexander, M. A., Kwon, Y. O., & Frankignoul, C. (2015). Investigating the local atmospheric response to a realistic shift in the Oyashio sea surface temperature front. Journal of Climate. https://doi.org/10.1175/JCLI-D-14-00285.1

Sugimoto, S., Kobayashi, N., & Hanawa, K. (2014). Quasi-Decadal Variation in Intensity of the Western Part of the Winter Subarctic SST Front in the Western North Pacific: The Influence of Kuroshio Extension Path State. Journal of Physical Oceanography. https://doi.org/10.1175/JPO-D-13-0265.1

Takahashi, N. & Hayasaka, T. Air-sea interactions among oceanic low-level cloud, sea surface temperature, and atmospheric circulation on intra-seasonal timescale in summertime North Pacific based on satellite data analysis. under review in Journal of Climate.

Tanimoto, Y., Nakamura, H., Takashi Kagimoto, & Shozo Yamane. (2003). An active role of extratropical sea surface temperature anomalies in determining anomalous turbulent heat flux. Journal of Geophysical Research, 108(C10), 3304. https://doi.org/10.1029/2002JC001750

Tanimoto, Y., Xie, S. P., Kai, K., Okajima, H., Tokinaga, H., Murayama, T., et al. (2009). Observations of marine atmospheric boundary layer transitions across the summer Kuroshio extension. Journal of Climate, 22(6), 1360–1374. https://doi.org/10.1175/2008JCLI2420.1

Tanimoto, Y., Kanenari, T., Tokinaga, H., & Xie, S. P. (2011). Sea level pressure minimum along the Kuroshio and its extension. Journal of Climate. https://doi.org/10.1175/2011JCLI4062.1

Terai, C. R., Klein, S. A., & Zelinka, M. D. (2016). Constraining the low-cloud optical depth feedback at middle and high latitudes using satellite observations. Journal of Geophysical Research: Atmospheres, 121(16), 9696–9716. https://doi.org/10.1002/2016JD025233

Terai, C. R., Zhang, Y., Klein, S. A., Zelinka, M. D., Chiu, J. C., & Min, Q. (2019). Mechanisms Behind the Extratropical Stratiform Low-Cloud Optical Depth Response to Temperature in ARM Site Observations. Journal of Geophysical Research: Atmospheres, 124(4), 2127–2147. https://doi.org/10.1029/2018JD029359

Thompson, G., Field, P. R., Rasmussen, R. M., & Hall, W. D. (2008). Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Monthly Weather Review, 136(12), 5095–5115. https://doi.org/10.1175/2008MWR2387.1

Tokinaga, H., Tanimoto, Y., Xie, S. P., Sampe, T., Tomita, H., & Ichikawa, H. (2009). Ocean frontal effects on the vertical development of clouds over the western North Pacific: In situ and satellite observations. Journal of Climate, 22(16), 4241–4260. https://doi.org/10.1175/2009JCLI2763.1

Tozuka, T., & Cronin, M. F. (2014). Role of mixed layer depth in surface frontogenesis: The Agulhas Return Current front. Geophysical Research Letters, 41(7), 2447–2453. https://doi.org/10.1002/2014GL059624

Tozuka, T., Cronin, M. F., & Tomita, H. (2017). Surface frontogenesis by surface heat fluxes in the upstream Kuroshio Extension region. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-10268-3

Tozuka, T., Ohishi, S., & Cronin, M. F. (2018). A metric for surface heat flux effect on horizontal sea surface temperature gradients. Climate Dynamics, 51(1–2), 547–561. https://doi.org/10.1007/s00382-017-3940-2

Wang, L., Li, T., & Zhou, T. (2012). Intraseasonal SST Variability and Air–Sea Interaction over the Kuroshio Extension Region during Boreal Summer*. Journal of Climate, 25(5), 1619–1634. https://doi.org/10.1175/JCLI-D-11-00109.1

Wang, L., Li, T., Zhou, T., & Rong, X. (2013). Origin of the intraseasonal variability over the north pacific in boreal summer. Journal of Climate, 26(4), 1211–1229. https://doi.org/10.1175/JCLI- D-11-00704.1

Wei, W., Li, W., Deng, Y., Yang, S., Jiang, J. H., Huang, L., & Liu, W. T. (2018). Dynamical and thermodynamical coupling between the North Atlantic subtropical high and the marine boundary layer clouds in boreal summer. Climate Dynamics. https://doi.org/10.1007/s00382- 017-3750-6

Wielicki B. A., B. A., Barkstrom, B. R. Harrison, E. F. Lee, R. B., et al. (1996). Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System Experiment. Bulletin of the American Meteorological Society, 77(5), 853–868.

Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E. G., & König-Langlo, G. (2013). The global energy balance from a surface perspective. Climate Dynamics, 40(11–12), 3107–3134. https://doi.org/10.1007/s00382-012-1569-8

Wood, R., & Bretherton, C. S. (2006). On the Relationship between Stratiform Low Cloud Cover and Lower-Tropospheric Stability. Journal of Climate, 19(24), 6425–6432. https://doi.org/10.1175/JCLI3988.1

Wood, R. (2012). Stratocumulus Clouds. Monthly Weather Review, 140(8), 2373–2423. https://doi.org/10.1175/MWR-D-11-00121.1

Wu, B., Lin, X., & Qiu, B. (2018). Meridional Shift of the Oyashio Extension Front in the Past 36 Years. Geophysical Research Letters, 45(17), 9042–9048. https://doi.org/10.1029/2018GL078433

Wu, R., & Kinter, J. L. (2010). Atmosphere-ocean relationship in the midlatitude North Pacific: Seasonal dependence and east-west contrast. Journal of Geophysical Research Atmospheres, 115(6), 1–12. https://doi.org/10.1029/2009JD012579

Xie, S. (2004). Satellite Observations of Cool Ocean–Atmosphere Interaction. Bulletin of the American Meteorological Society, 85(2), 195–208. https://doi.org/10.1175/BAMS-85-2-195

Xu, H., Xie, S., & Wang, Y. (2005). Subseasonal Variability of the Southeast Pacific Stratus Cloud Deck*. Journal of Climate, 18(1), 131–142. https://doi.org/10.1175/JCLI3250.1

Xu, H., Tokinaga, H., & Xie, S. P. (2010). Atmospheric effects of the Kuroshio large meander during 2004-05. Journal of Climate. https://doi.org/10.1175/2010JCLI3267.1

Yasunari, T. (1979). Cloudiness Fluctuations Associated with the Northern Hemisphere Summer Monsoon. Journal of the Meteorological Society of Japan. Ser. II, 57(3), 227–242. https://doi.org/10.2151/jmsj1965.57.3_227

Yu, L., Jin Xiangze, & Weller, A. R. (2008). Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and Sensible Heat Fluxes, Ocean Evaporation, and Related Surface Meteorological Variables. Woods Hole Oceanographic Institution OAFlux Project Technical Report (OA-2008-01). https://doi.org/10.1007/s00382- 011-1115-0

Zelinka, M. D., & Hartmann, D. L. (2012). Climate feedbacks and their implications for poleward energy flux changes in a warming climate. Journal of Climate, 25(2), 608–624. https://doi.org/10.1175/JCLI-D-11-00096.1

Zelinka, M. D., Grise, K. M., Klein, S. A., Zhou, C., DeAngelis, A. M., & Christensen, M. W. (2018). Drivers of the Low-Cloud Response to Poleward Jet Shifts in the North Pacific in Observations and Models. Journal of Climate, 31(19), 7925–7947. https://doi.org/10.1175/JCLI-D-18-0114.1

Zhai, C., Jiang, J. H., & Su, H. (2015). Long-term cloud change imprinted in seasonal cloud variation: More evidence of high climate sensitivity. Geophysical Research Letters, 42(20), 8729–8737. https://doi.org/10.1002/2015GL065911

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る