リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Sectional Distribution Patterns of Cd, Ni, Zn, and Cu in the North Pacific Ocean: Relationships to Nutrients and Importance of Scavenging」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Sectional Distribution Patterns of Cd, Ni, Zn, and Cu in the North Pacific Ocean: Relationships to Nutrients and Importance of Scavenging

Zheng, Linjie Minami, Tomoharu Takano, Shotaro Ho, Tung‐Yuan Sohrin, Yoshiki 京都大学 DOI:10.1029/2020GB006558

2021.07

概要

The North Pacific Ocean is located at the end of the thermohaline circulation of deep water. This study reports on basin-scale full-depth sectional distributions of total dissolvable (td), dissolved (d), and labile particulate (lp) Cd, Ni, Zn, and Cu along three transects: the GEOTRACES transects GP18 (165°E) and GP02 (47°N), and along 160°W. We find that scavenging is an important factor that significantly affects the distributions of dZn, dNi, and dCu, of which the magnitude of influence increases in the order of Cd < Ni, Zn < Cu. The relationships between the four dissolved metals with Si(OH)₄ and PO₄ differed considerably from those in other oceans. The spot concentration ratio of dCd/PO₄ was 0.34 ± 0.02 nmol/μmol (n = 296) in waters >800 m deep, which is in the range of the phytoplankton Cd/P ratio. This is indicative of the dominant effect of water circulation and biological processes on dCd distribution. The dissolved metals (dMs) to PO₄ ratios of other examined metals were either partially or completely outside the range of typical biomass ratios. They generally increased with depth in waters >800 m deep; the magnitude of increase was the highest for Cu and moderate for Ni and Zn. Below 800 m, an increase in the apparent oxygen utilization from 150 to 300 μmol/kg was concurrent with a decrease in the dMs/PO4 ratios: 4 ± 3% for Cd, 21 ± 4% for Zn, 21 ± 3% for Ni, and 69 ± 7% for Cu.

この論文で使われている画像

参考文献

Archer, C., Vance, D., Milne, A., & Lohan, M. C. (2020). The oceanic biogeochemistry of nickel and its isotopes: New data from the South

Atlantic and the Southern Ocean biogeochemical divide. Earth and Planetary Science Letters, 535, 116118. https://doi.org/10.1016/j.

epsl.2020.116118

Baars, O., Abouchami, W., Galer, S. J. G., Boye, M., & Croot, P. L. (2014). Dissolved cadmium in the Southern Ocean: Distribution, speciation, and relation to phosphate. Limnology & Oceanography, 59(2), 385–399. https://doi.org/10.4319/lo.2014.59.2.0385

Balistrieri, L., Brewer, P. G., & Murray, J. W. (1981). Scavenging residence times of trace metals and surface chemistry of sinking particles

in the deep ocean. Deep-Sea Research A, 28(2), 101–121. https://doi.org/10.1016/0198-0149(81)90085-6

Bewers, J. M., & Yeats, P. A. (1977). Oceanic residence times of trace metals. Nature, 268(5621), 595–598. https://doi.org/10.1038/268595a0

Bostock, H. C., Opdyke, B. N., & Williams, M. J. M. (2010). Characterizing the intermediate depth waters of the Pacific Ocean using ∂13C

and other geochemical tracers. Deep-Sea Research I, 57(7), 847–859. https://doi.org/10.1016/j.dsr.2010.04.005

Boyle, E. A. (1988). Cadmium: Chemical tracer of deepwater paleoceanography. Paleoceanography, 3(4), 471–489. https://doi.org/10.1029/

pa003i004p00471

Boyle, E. A., Huested, S. S., & Jones, S. P. (1981). On the distribution of copper, nickel, and cadmium in the surface waters of the North

Atlantic and North Pacific Ocean. Journal of Geophysical Research, 86(C9), 8048–8066. https://doi.org/10.1029/jc086ic09p08048

17 of 20

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Global Biogeochemical Cycles

10.1029/2020GB006558

Boyle, E. A., Sclater, F., & Edmond, J. M. (1976). On the marine geochemistry of cadmium. Nature, 263(5572), 42–44.

https://doi.org/10.1038/263042a0

Boyle, E. A., Sclater, F., & Edmond, J. M. (1977). The distribution of dissolved copper in the Pacific. Earth and Planetary Science Letters,

37(1), 38–54. https://doi.org/10.1016/0012-821x(77)90144-3

Broecker, W. S., & Peng, T.-H. (1982). Tracers in the sea. Eldigio Press.

Bruland, K. W. (1980). Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific. Earth and Planetary Science

Letters, 47(2), 176–198. https://doi.org/10.1016/0012-821x(80)90035-7

Bruland, K. W., Donat, J. R., & Hutchins, D. A. (1991). Interactive influences of bioactive trace metals on biological production in oceanic

waters. Limnology & Oceanography, 36(8), 1555–1577. https://doi.org/10.4319/lo.1991.36.8.1555

Bruland, K. W., Orians, K. J., & Cowen, J. P. (1994). Reactive trace metals in the stratified central North Pacific. Geochimica et Cosmochimica Acta, 58(15), 3171–3182. https://doi.org/10.1016/0016-7037(94)90044-2

Buck, K. N., & Bruland, K. W. (2005). Copper speciation in San Francisco Bay: A novel approach using multiple analytical windows. Marine Chemistry, 96(1), 185–198. https://doi.org/10.1016/j.marchem.2005.01.001

Cameron, V., & Vance, D. (2014). Heavy nickel isotope compositions in rivers and the oceans. Geochimica et Cosmochimica Acta, 128(0),

195–211. https://doi.org/10.1016/j.gca.2013.12.007

Chester, R., Murphy, K. J. T., Lin, F. J., Berry, A. S., Bradshaw, G. A., & Corcoran, P. A. (1993). Factors controlling the solubilities of trace

metals from non-remote aerosols deposited to the sea surface by the ‘dry’ deposition mode. Marine Chemistry, 42(2), 107–126. https://

doi.org/10.1016/0304-4203(93)90241-f

Collier, R., & Edmond, J. (1984). The trace element geochemistry of marine biogenic particulate matter. Progress in Oceanography, 13(2),

113–199. https://doi.org/10.1016/0079-6611(84)90008-9

Conway, T. M., & John, S. G. (2015). Biogeochemical cycling of cadmium isotopes along a high-resolution section through the North Atlantic Ocean. Geochimica et Cosmochimica Acta, 148(0), 269–283. https://doi.org/10.1016/j.gca.2014.09.032

Costa, K. M., Anderson, R. F., McManus, J. F., Winckler, G., Middleton, J. L., & Langmuir, C. H. (2018). Trace element (Mn, Zn, Ni, V) and

authigenic uranium (aU) geochemistry reveal sedimentary redox history on the Juan de Fuca Ridge, North Pacific Ocean. Geochimica

et Cosmochimica Acta, 236, 79–98. https://doi.org/10.1016/j.gca.2018.02.016

Croghan, C., & Egeghy, P. P. (2003). Methods of dealing with values below the limit of detection using SAS. Southern SAS User Group,

22, 24.

Cullen, J. T. (2006). On the nonlinear relationship between dissolved cadmium and phosphate in the modern global ocean: Could chronic iron limitation of phytoplankton growth cause the kink? Limnology & Oceanography, 51(3), 1369–1380. https://doi.org/10.4319/

lo.2006.51.3.1369

Danielsson, L.-G., Magnusson, B., & Westerlund, S. (1985). Cadmium, copper, iron, nickel and zinc in the north-east Atlantic Ocean. Marine Chemistry, 17(1), 23–41. https://doi.org/10.1016/0304-4203(85)90034-9

De Baar, H. J. W., Saager, P. M., Nolting, R. F., & van der Meer, J. (1994). Cadmium versus phosphate in the world ocean. Marine Chemistry,

46(3), 261–281. https://doi.org/10.1016/0304-4203(94)90082-5

Dunk, R. M., & Mills, R. A. (2006). The impact of oxic alteration on plume-derived transition metals in ridge flank sediments from the East

Pacific Rise. Marine Geology, 229(3), 133–157. https://doi.org/10.1016/j.margeo.2006.03.007

Elderfield, H. (2003). (Ed.), The oceans and marine geochemistry. Elsevier-Pergamon.

Elderfield, H., & Rickaby, R. E. M. (2000). Oceanic Cd/P ratio and nutrient utilization in the glacial Southern Ocean. Nature, 405(6784),

305–310. https://doi.org/10.1038/35012507

Ellwood, M. J. (2008). Wintertime trace metal (Zn, Cu, Ni, Cd, Pb and Co) and nutrient distributions in the Subantarctic Zone between

40-52°S; 155-160°E. Marine Chemistry, 112(1–2), 107–117. https://doi.org/10.1016/j.marchem.2008.07.008

Ellwood, M. J., & Hunter, K. A. (2000). The incorporation of zinc and iron into the frustule of the marine diatom Thalassiosira pseudonana.

Limnology & Oceanography, 45(7), 1517–1524. https://doi.org/10.4319/lo.2000.45.7.1517

Elrod, V. A., Berelson, W. M., Coale, K. H., & Johnson, K. S. (2004). The flux of iron from continental shelf sediments: A missing source for

global budgets. Geophysical Research Letters, 31, L12307. https://doi.org/10.1029/2004gl020216

Emerson, S. R., & Hedges, J. I. (2008). Chemical Oceanography and the marine carbon cycle (p. 222). Cambridge University Press

Fischer, K., Dymond, J., Lyle, M., Soutar, A., & Rau, S. (1986). The benthic cycle of copper: Evidence from sediment trap experiments in the

eastern tropical North Pacific Ocean. Geochimica et Cosmochimica Acta, 50(7), 1535–1543. https://doi.org/10.1016/0016-7037(86)90327-3

Goldberg, E. D. (1954). Marine geochemistry 1. Chemical scavengers of the sea. The Journal of Geology, 62(3), 249–265. https://doi.

org/10.1086/626161

Ho, T.-Y., Wen, L. S., You, C. F., & Lee, D. C. (2007). The trace-metal composition of size-fractionated plankton in the South China Sea:

Biotic versus abiotic sources. Limnology & Oceanography, 52(5), 1776–1788. https://doi.org/10.4319/lo.2007.52.5.1776

Ho, T.-Y., You, C.-F., Chou, W.-C., Pai, S.-C., Wen, L.-S., & Sheu, D. D. (2009). Cadmium and phosphorus cycling in the water column

of the South China Sea: The roles of biotic and abiotic particles. Marine Chemistry, 115(1–2), 125–133. https://doi.org/10.1016/j.

marchem.2009.07.005

Hsu, S.-C., Wong, G., Gong, G. C., Shiah, F. K., Huang, Y. K., Kao, S. J., et al. (2010). Sources, solubility, and dry deposition of aerosol trace

elements over the East China Sea. Marine Chemistry, 120(1–4), 116–127. https://doi.org/10.1016/j.marchem.2008.10.003

Jacquot, J. E., & Moffett, J. W. (2015). Copper distribution and speciation across the International GEOTRACES Section GA03. Deep-Sea

Research II, 116(0), 187–207. https://doi.org/10.1016/j.dsr2.2014.11.013

Janssen, D. J., Abouchami, W., Galer, S. J. G., Purdon, K. B., & Cullen, J. T. (2019). Particulate cadmium stable isotopes in the subarctic

northeast Pacific reveal dynamic Cd cycling and a new isotopically light Cd sink. Earth and Planetary Science Letters, 515, 67–78. https://

doi.org/10.1016/j.epsl.2019.03.006

Janssen, D. J., Conway, T. M., John, S. G., Christian, J. R., Kramer, D. I., Pedersen, T. F., & Cullen, J. T. (2014). Undocumented water column

sink for cadmium in open ocean oxygen-deficient zones. Proceedings of National Academy of Sciences, 111(19), 6888–6893. https://doi.

org/10.1073/pnas.1402388111

Janssen, D. J., & Cullen, J. T. (2015). Decoupling of zinc and silicic acid in the subarctic northeast Pacific interior. Marine Chemistry, 177(1),

124–133. https://doi.org/10.1016/j.marchem.2015.03.014

John, S. G., & Conway, T. M. (2014). A role for scavenging in the marine biogeochemical cycling of zinc and zinc isotopes. Earth and Planetary Science Letters, 394, 159–167. https://doi.org/10.1016/j.epsl.2014.02.053

John, S. G., Helgoe, J., Townsend, E., Weber, T., DeVries, T., Tagliabue, A., et al. (2018). Biogeochemical cycling of Fe and Fe stable isotopes

in the Eastern Tropical South Pacific. Marine Chemistry, 201, 66–76. https://doi.org/10.1016/j.marchem.2017.06.003

ZHENG ET AL.

18 of 20

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Global Biogeochemical Cycles

10.1029/2020GB006558

Johnson, K. S., Gordon, R. M., & Coale, K. H. (1997). What controls dissolved iron concentrations in the world ocean? Marine Chemistry,

57(3), 137–161. https://doi.org/10.1016/s0304-4203(97)00043-1

Kim, T., Obata, H., Kondo, Y., Ogawa, H., & Gamo, T. (2015). Distribution and speciation of dissolved zinc in the western North Pacific and

its adjacent seas. Marine Chemistry, 173, 330–341. https://doi.org/10.1016/j.marchem.2014.10.016

Kim, T., Obata, H., Nishioka, J., & Gamo, T. (2017). Distribution of dissolved zinc in the western and central subarctic North Pacific. Global

Biogeochemical Cycles, 31, 1454–1468. https://doi.org/10.1002/2017gb005711

Kudo, I., Kokubun, H., & Matsunaga, K. (1996). Cadmium in the southwest Pacific Ocean two factors significantly affecting the Cd–PO4

relationship in the ocean. Marine Chemistry, 54(1), 55–67. https://doi.org/10.1016/0304-4203(95)00100-x

Kuss, J., & Kremling, K. (1999). Spatial variability of particle associated trace elements in near-surface waters of the North Atlantic (30°N/60°W to 60°N/2°W), derived by large volume sampling. Marine Chemistry, 68(1–2), 71–86. https://doi.org/10.1016/

s0304-4203(99)00066-3

Lam, P. J., & Bishop, J. K. B. (2008). The continental margin is a key source of iron to the HNLC North Pacific Ocean. Geophysical Research

Letters, 35, L07608. https://doi.org/10.1029/2008gl033294

Landing, W. M., & Bruland, K. W. (1987). The contrasting biogeochemistry of iron and manganese in the Pacific Ocean. Geochimica et

Cosmochimica Acta, 51(1), 29–43. https://doi.org/10.1016/0016-7037(87)90004-4

Lane, E. S., Semeniuk, D. M., Strzepek, R. F., Cullen, J. T., & Maldonado, M. T. (2009). Effects of iron limitation on intracellular cadmium

of cultured phytoplankton: Implications for surface dissolved cadmium to phosphate ratios. Marine Chemistry, 115(3), 155–162. https://

doi.org/10.1016/j.marchem.2009.07.008

Li, Y.-H. (1981). Ultimate removal mechanisms of elements from the ocean. Geochimica et Cosmochimica Acta, 45(10), 1659–1664. https://

doi.org/10.1016/0016-7037(81)90001-6

Liao, W. H., Takano, S., Yang, S. C., Huang, K. F., Sohrin, Y., & Ho, T. Y. (2020). Zn isotope composition in the water column of the

northwestern Pacific Ocean: The importance of external sources. Global Biogeochemical Cycles, 34, e2019GB006379. https://doi.

org/10.1029/2019gb006379

Little, S. H., Vance, D., Siddall, M., & Gasson, E. (2013). A modeling assessment of the role of reversible scavenging in controlling oceanic

dissolved Cu and Zn distributions. Global Biogeochemical Cycles, 27, 780–791, https://doi.org/10.1002/gbc.20073

Lohan, M. C., Aguilar-Islas, A. M., Franks, R. P., & Bruland, K. W. (2005). Determination of iron and copper in seawater at pH 1.7 with

a new commercially available chelating resin, NTA Superflow. Analytica Chimica Acta, 530(1), 121–129. https://doi.org/10.1016/j.

aca.2004.09.005

Löscher, B. M., De Jong, J. T. M., & De Baar, H. J. W. (1998). The distribution and preferential biological uptake of cadmium at 6°W in the

Southern Ocean. Marine Chemistry, 62(3–4), 259–286. https://doi.org/10.1016/s0304-4203(98)00045-0

Mackey, D. J., O'Sullivan, J. E., Watson, R. J., & Dal Pont, G. (2002). Trace metals in the Western Pacific: Temporal and spatial variability

in the concentrations of Cd, Cu, Mn and Ni. Deep-Sea Research I, 49(12), 2241–2259. https://doi.org/10.1016/s0967-0637(02)00124-3

Mahowald, N. M., Hamilton, D. S., Mackey, K. R. M., Moore, J. K., Baker, A. R., Scanza, R. A., & Zhang, Y. (2018). Aerosol trace metal

leaching and impacts on marine microorganisms. Nature Communications, 9(1), 2614. https://doi.org/10.1038/s41467-018-04970-7

Metz, S., Trefry, J. H., & Nelsen, T. A. (1988). History and geochemistry of a metalliferous sediment core from the Mid-Atlantic Ridge at

26°N. Geochimica et Cosmochimica Acta, 52(10), 2369–2378. https://doi.org/10.1016/0016-7037(88)90294-3

Middag, R., van Heuven, S. M. A. C., Bruland, K. W., & De Baar, H. J. W. (2018). The relationship between cadmium and phosphate in the

Atlantic Ocean unraveled. Earth and Planetary Science Letters, 492, 79–88. https://doi.org/10.1016/j.epsl.2018.03.046

Minami, T., Konagaya, W., Zheng, L., Takano, S., Sasaki, M., Murata, R., et al. (2015). An off-line automated preconcentration system with

ethylenediaminetriacetate chelating resin for the determination of trace metals in seawater by high-resolution inductively coupled

plasma mass spectrometry. Analytica Chimica Acta, 854, 183–190. https://doi.org/10.1016/j.aca.2014.11.016

Monteiro, P. M. S., & Orren, M. J. (1985). Trace metals in the Southern Ocean: On the geochemistry of copper. Marine Chemistry, 15(4),

345–355. https://doi.org/10.1016/0304-4203(85)90045-3

Morel, F. M. M., Milligan, A. J., & Saito, M. A. (2003). Marine bioinorganic chemistry: The role of trace metals in the oceanic cycles of major

nutrients. In H. Elderfield, & K. K. Turekian (Eds.), The oceans and marine geochemistry (pp. 113–143). Elsevier-Pergamon. https://doi.

org/10.1016/b0-08-043751-6/06108-9

Nishioka, J., & Obata, H. (2017). Dissolved iron distribution in the western and central subarctic Pacific: HNLC water formation and biogeochemical processes. Limnology & Oceanography, 62(5), 2004–2022. https://doi.org/10.1002/lno.10548

Noriki, S., & Tsunogai, S. (1992). Directly observed particulate fluxes of Cd, Ni and Cu in pelagic oceans: Implication of two different

settling particles. Marine Chemistry, 37(1), 105–115. https://doi.org/10.1016/0304-4203(92)90059-j

Price, N. M., & Morel, F. M. M. (1991). Colimitation of phytoplankton growth by nickel and nitrogen. Limnology & Oceanography, 36(6),

1071–1077. https://doi.org/10.4319/lo.1991.36.6.1071

Quay, P., Cullen, J., Landing, W., & Morton, P. (2015). Processes controlling the distributions of Cd and PO4 in the ocean. Global Biogeochemical Cycles, 29, 830–841. https://doi.org/10.1002/2014gb004998

Redfield, A. C., Ketchum, B. H., & Richards, F. A. (1963). In M. N. Hill (Ed.), The influence of organisms on the composition of sea-water in

the Sea. ( pp. 26-77). Wiley.

Roshan, S., DeVries, T., Wu, J., & Chen, G. (2018). The internal cycling of zinc in the ocean. Global Biogeochemical Cycles, 32, 1833–1849.

https://doi.org/10.1029/2018gb006045

Roshan, S., & Wu, J. (2015a). Cadmium regeneration within the North Atlantic. Global Biogeochemical Cycles, 29, 2082–2094. https://doi.

org/10.1002/2015gb005215

Roshan, S., & Wu, J. (2015b). The distribution of dissolved copper in the tropical-subtropical north Atlantic across the GEOTRACES GA03

transect. Marine Chemistry, 176, 189–198. https://doi.org/10.1016/j.marchem.2015.09.006

Rudnick, R. L., & Gao, S. (2005). Composition of the Continental Crust. In H. D. Holland, & K. K. Turekian (Eds.), The Crust (3 ed.), The

Crust, Elsevier-Pergamon, 1–64. https://doi.org/10.1016/b0-08-043751-6/03016-4

Saager, P. M., De Baar, H. J. W., & Howland, R. J. (1992). Cd, Zn, Ni and Cu in the Indian Ocean. Deep-Sea Research A, 39(1), 9–35. https://

doi.org/10.1016/0198-0149(92)90017-n

Sarmiento, J. L., & Gruber, N. (2006). Ocean Biogeochemical Dynamics. Princeton University Press.

Schlitzer, R. (2015). Ocean data View. https://odv.awi.de

Schlitzer, R., Anderson, R. F., Dodas, E. M., Lohan, M., Geibert, W., Tagliabue, A., et al. (2018). The GEOTRACES Intermediate Data Product 2017. Chemical Geology, 493, 210–223. https://doi.org/10.1016/j.chemgeo.2018.05.040

Sclater, F. R., Boyle, E., & Edmond, J. M. (1976). On the marine geochemistry of nickel. Earth and Planetary Science Letters, 31(1), 119–128.

https://doi.org/10.1016/0012-821x(76)90103-5

ZHENG ET AL.

19 of 20

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Global Biogeochemical Cycles

10.1029/2020GB006558

Sherrell, R. M., & Boyle, E. A. (1992). The trace metal composition of suspended particles in the oceanic water column near Bermuda.

Earth and Planetary Science Letters, 111, 155–174. https://doi.org/10.1016/0012-821x(92)90176-v

Sunda, W. (2012). Feedback interactions between trace metal nutrients and Phytoplankton in the Ocean. Frontiers in Microbiology, 3, 204.

https://doi.org/10.3389/fmicb.2012.00204

Sunda, W. G. (1989). Trace metal interactions with marine Phytoplankton. Biological Oceanography, 6(5–6), 411–442. https://doi.org/10.1

080/01965581.1988.10749543

Tagliabue, A., Bowie, A. R., DeVries, T., Ellwood, M. J., Landing, W. M., Milne, A., et al. (2019). The interplay between regeneration and

scavenging fluxes drives ocean iron cycling. Nature Communications, 10(1), 4960. https://doi.org/10.1038/s41467-019-12775-5

Takano, S., Tanimizu, M., Hirata, T., & Sohrin, Y. (2014). Isotopic constraints on biogeochemical cycling of copper in the ocean. Nature

Communications, 5. https://doi.org/10.1038/ncomms6663

Talley, L. D. (1993). Distribution and formation of North Pacific Intermediate Water. Journal of Physical Oceanography, 23(3), 517–537.

https://doi.org/10.1175/1520-0485(1993)023<0517:dafonp>2.0.co;2

Talley, L. D., Pickard, G. L., Emery, W. J., & Swift, J. H. (2011). Descriptive Physical Oceanography: An introduction (6th ed.). Elsevier

Treguer, P., Nelson, D. M., van Bennekom, A. J., DeMaster, D. J., Leynaert, A., & Queguiner, B. (1995). The silica balance in the world ocean:

A reestimate. Science, 268, 375–379. https://doi.org/10.1126/science.268.5209.375

Twining, B. S., & Baines, S. B. (2013). The trace metal composition of marine Phytoplankton. Annual Review of Marine Science, 5(1),

191–215. https://doi.org/10.1146/annurev-marine-121211-172322

van der Loeff, M. R., Helmers, E., & Kattner, G. (1997). Continuous transects of cadmium, copper, and aluminum in surface waters of the

Atlantic Ocean, 50°N to 50°S: Correspondance and contrast with nutrient-like behavior. Geochimica et Cosmochimica Acta, 61, 47–61.

https://doi.org/10.1016/s0016-7037(96)00333-x

Vance, D., De Souza, G. F., Zhao, Y., Cullen, J. T., & Lohan, M. C. (2019). The relationship between zinc, its isotopes, and the major nutrients in the North-East Pacific. Earth and Planetary Science Letters, 525, 115748. https://doi.org/10.1016/j.epsl.2019.115748

Vance, D., Little, S. H., De Souza, G. F., Khatiwala, S., Lohan, M. C., & Middag, R. (2017). Silicon and zinc biogeochemical cycles coupled

through the Southern Ocean. Nature Geoscience. 10(3), 202–206. https://doi.org/10.1038/ngeo2890

Wang, R. M., Archer, C., Bowie, A. R., & Vance, D. (2019). Zinc and nickel isotopes in seawater from the Indian Sector of the Southern

Ocean: The impact of natural iron fertilization versus Southern Ocean hydrography and biogeochemistry. Chemical Geology, 511, 452–

464. https://doi.org/10.1016/j.chemgeo.2018.09.010

Weber, T., John, S., Tagliabue, A., & DeVries, T. (2018). Biological uptake and reversible scavenging of zinc in the global ocean. Science,

361(6397), 72–76. https://doi.org/10.1126/science.aap8532

Whitfield, M., & Turner, D. R. (1987). The Role of particles in regulating the composition of seawater. In W. Stumm (Ed.), Aquatic surface

chemistry (pp. 457–493). John Wiley & Sons

Wu, J., & Roshan, S. (2015). Cadmium in the North Atlantic: Implication for global cadmium–phosphorus relationship. Deep-Sea Research

II, 116(0), 226–239. https://doi.org/10.1016/j.dsr2.2014.11.007

Wyatt, N. J., Milne, A., Woodward, E. M. S., Rees, A. P., Browning, T. J., Bouman, H. A., et al. (2014). Biogeochemical cycling of dissolved zinc along the GEOTRACES South Atlantic transect GA10 at 40 S. Global Biogeochemical Cycles, 28, 44–56. https://doi.

org/10.1002/2013gb004637

Xie, R. C., Galer, S. J. G., Abouchami, W., & Frank, M. (2019). Limited impact of eolian and riverine sources on the biogeochemical cycling

of Cd in the tropical Atlantic. Chemical Geology, 511, 371–379. https://doi.org/10.1016/j.chemgeo.2018.10.018

Xie, R. C., Galer, S. J. G., Abouchami, W., Rijkenberg, M. J. A., De Jong, J., De Baar, H. J. W., & Andreae, M. O. (2015). The cadmium–phosphate relationship in the western South Atlantic — The importance of mode and intermediate waters on the global systematics. Marine

Chemistry, 177(1), 110–123. https://doi.org/10.1016/j.marchem.2015.06.011

Yang, S.-C., Zhang, J., Sohrin, Y., & Ho, T.-Y. (2018). Cadmium cycling in the water column of the Kuroshio-Oyashio Extension region:

Insights from dissolved and particulate isotopic composition. Geochimica et Cosmochimica Acta, 233, 66–80. https://doi.org/10.1016/j.

gca.2018.05.001

Yasuda, I. (1997). The origin of the North Pacific intermediate water. Journal of Geophysical Research, 102(C1), 893–909. https://doi.

org/10.1029/96jc02938

Yuan, X., & Talley, L. D. (1996). The subarctic frontal zone in the North Pacific: Characteristics of frontal structure from climatological data

and synoptic surveys. Journal of Geophysical Research, 101(C7), 16491–16508. https://doi.org/10.1029/96jc01249

Zhang, R., Jensen, L. T., Fitzsimmons, J. N., Sherrell, R. M., & John, S. (2019). Dissolved cadmium and cadmium stable isotopes in the

western Arctic Ocean. Geochimica et Cosmochimica Acta, 258, 258–273. https://doi.org/10.1016/j.gca.2019.05.028

Zheng, L., Minami, T., Konagaya, W., Chan, C. Y., Tsujisaka, M., Takano, S., et al. (2019). Distinct basin-scale-distributions of aluminum,

manganese, cobalt, and lead in the North Pacific Ocean. Geochimica et Cosmochimica Acta, 254, 102–121. https://doi.org/10.1016/j.

gca.2019.03.038

Zheng, L., Minami, T., Takano, S., Minami, H., & Sohrin, Y. (2017). Distribution and stoichiometry of Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and

Pb in seawater around the Juan de Fuca Ridge. Journal of Oceanography, 73(5), 669–685. https://doi.org/10.1007/s10872-017-0424-2

Zheng, L., & Sohrin, Y. (2019). Major lithogenic contributions to the distribution and budget of iron in the North Pacific Ocean. Scientific

Reports, 9(1), 11652. https://doi.org/10.1038/s41598-019-48035-1

ZHENG ET AL.

20 of 20

...

参考文献をもっと見る