リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Anionic Glycan Diversity in Waterfowl Egg Whites through Glycoblotting-based Sulphoglycomics Approach」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Anionic Glycan Diversity in Waterfowl Egg Whites through Glycoblotting-based Sulphoglycomics Approach

MONTALBAN, Bryan Murillo 北海道大学

2023.09.25

概要

Studies have shown the significance of sulfation of the non-reducing terminal epitopes of ...

この論文で使われている画像

参考文献

1.

Sakai, T., Nishimura, S. I., Naito, T., & Saito, M. (2017). Influenza A virus hemagglutinin

and neuraminidase act as novel motile machinery. Sci Rep 7,

2.

Horimoto, T., & Kawaoka, Y. (2005). Influenza: Lessons from past pandemics, warnings

from current incidents. Nat Rev Microbiol 3, 591–600

3.

Broszeit, F., van Beek, R. J., Unione, L., Bestebroer, T. M., Chapla, D., Yang, J. Y.,

Moremen, K. W., Herfst, S., Fouchier, R. A. M., de Vries, R. P., & Boons, G. J. (2021).

Glycan remodeled erythrocytes facilitate antigenic characterization of recent A/H3N2

influenza viruses. Nat Commun 12,

4.

Suzuki, N., Abe, T., & Natsuka, S. (2022). Structural analysis of N-glycans in chicken

trachea and lung reveals potential receptors of chicken influenza viruses. Sci Rep 12,

5.

Zhao, C., & Pu, J. (2022). Influence of Host Sialic Acid Receptors Structure on the Host

Specificity of Influenza Viruses. Viruses 14,

6.

Kobayashi, D., Hiono, T., Ichii, O., Nishihara, S., Takase-Yoden, S., Yamamoto, K.,

Kawashima, H., Isoda, N., & Sakoda, Y. (2022). Turkeys possess diverse Siaα2-3Gal

glycans that facilitate their dual susceptibility to avian influenza viruses isolated from

ducks and chickens. Virus Res 315,

7.

Yang, J., Cui, H., Teng, Q., Ma, W., Li, X., Wang, B., Yan, D., Chen, H., Liu, Q., & Li, Z.

(2019). Ducks induce rapid and robust antibody responses than chickens at early time

after intravenous infection with H9N2 avian influenza virus. Virol J 16,

8.

Vreman, S., Bergervoet, S. A., Zwart, R., Stockhofe-Zurwieden, N., & Beerens, N. (2022).

Tissue tropism and pathology of highly pathogenic avian influenza H5N6 virus in

chickens and Pekin ducks. Res Vet Sci 146, 1–4

9.

Sid, H., Hartmann, S., Winter, C., & Rautenschlein, S. (2017). Interaction of influenza A

viruses with oviduct explants of different avian species. Front Microbiol 8, 1–11

10.

Pillai, S. P. S., Saif, Y. M., & Lee, C. W. (2010). Detection of Influenza A Viruses in Eggs

Laid by Infected Turkeys. Avian Disease 54, 830–833

11.

Uchida, Y., Takemae, N., Tanikawa, T., Kanehira, K., & Saito, T. (2016). Transmission of

an H5N8-Subtype Highly Pathogenic Avian Influenza Virus from Infected Hens to Laid

Eggs. Avian Dis 60, 450–453

12.

Hiono, T., Okamatsu, M., Nishihara, S., Takase-Yoden, S., Sakoda, Y., & Kida, H. (2014).

A chicken influenza virus recognizes fucosylated α2,3 sialoglycan receptors on the

epithelial cells lining upper respiratory tracts of chickens. Virology 456–457, 131–138

13.

Gambaryan, A., Yamnikova, S., Lvov, D., Tuzikov, A., Chinarev, A., Pazynina, G.,

Webster, R., Matrosovich, M., & Bovin, N. (2005). Receptor specificity of influenza

viruses from birds and mammals: New data on involvement of the inner fragments of the

carbohydrate chain. Virology 334, 276–283

14.

Ichimiya, T., Okamatsu, M., Kinoshita, T., Kobayashi, D., Ichii, O., Yamamoto, N.,

Sakoda, Y., Kida, H., Kawashima, H., Yamamoto, K., Takase-Yoden, S., & Nishihara, S.

(2021). Sulfated glycans containing NeuAcα2-3Gal facilitate the propagation of human

H1N1 influenza A viruses in eggs. Virology 562, 29–39

15.

Ichimiya, T., Nishihara, S., Takase-Yoden, S., Kida, H., & Aoki-Kinoshita, K. (2014).

Frequent glycan structure mining of influenza virus data revealed a sulfated glycan motif

that increased viral infection. Bioinformatics 30, 706–711

16.

Broszeit, F., Tzarum, N., Zhu, X., Nemanichvili, N., Eggink, D., Leenders, T., Li, Z., Liu,

L., Wolfert, M. A., Papanikolaou, A., Martínez-Romero, C., Gagarinov, I. A., Yu, W.,

García-Sastre, A., Wennekes, T., Okamatsu, M., Verheije, M. H., Wilson, I. A., Boons, G.

J., & de Vries, R. P. (2019). N-Glycolylneuraminic Acid as a Receptor for Influenza A

Viruses. Cell Rep 27, 3284-3294.e6

17.

Hincke, M. T., Da Silva, M., Guyot, N., Gautron, J., McKee, M. D., Guabiraba-Brito, R.,

& Réhault-Godbert, S. (2019). Dynamics of Structural Barriers and Innate Immune

Components during Incubation of the Avian Egg: Critical Interplay between Autonomous

Embryonic Development and Maternal Anticipation. J Innate Immun 11, 111–124

18.

Hirose, K., Amano, M., Hashimoto, R., Lee, Y. C., & Nishimura, S. I. (2011). Insight into

glycan diversity and evolutionary lineage based on comparative avio-N-glycomics and

sialic acid analysis of 88 egg whites of galloanserae. Biochemistry 50, 4757–4774

19.

Laskowski, M., Kato, I., Ardelt, W., Cook, J., Denton, A., Empie, M. W., Kohr, W. J.,

Soon, #, Park, J., Parks, K., Schatzley, B. L., Schoenberger, O. L., Tashiro, M., Vichot,

G., Whatley, H. E., Wieczorek, A., & Wieczorek, M. (1987). Ovomucoid Third Domains

from 100 Avian Species: Isolation, Sequences, and Hypervariability of Enzyme-Inhibitor

Contact Residues. Biochemistry 26, 202–221

20.

Laskowski, M., Apostol, I., Ardelt, W., Cook, J., Giletto, A., Kelly, C. A., Lu, W., Park,

S. J., Qasim, M. A., Whatley, H. E., Wieczorek, A., & Wynn, R. (1990). Amino Acid

Sequences of Ovomucoid Third Domain from 25 Additional Species of Birds. J Protein

Chem 9,

21.

Apostol, I., Giletto, A., Komiyama, T., Zhang, W., & Laskowski, M. (1993). Amino Acid

Sequences of Ovomucoid Third Domains from 27 Additional Species of Birds. J Protein

Chem 12,

22.

Sibley, C. G., & Monroe, B. L. (1990). Distribution and Taxonomy of Birds of the World

(Yale University Press, New Haven, CT.)

23.

Sibley, C. G., & Monroe, B. L. (1993). A Supplement to Distribution and Taxonomy of

Birds of the Worlds (Yale University Press, New Haven, CT)

24.

Sanes, J. T., Hinou, H., Lee, Y. C., & Nishimura, S. I. (2019). Glycoblotting of Egg White

Reveals Diverse N-Glycan Expression in Quail Species. J Agric Food Chem 67, 531–540

25.

Gizaw, S. T., Ohashi, T., Tanaka, M., Hinou, H., & Nishimura, S. I. (2016). Glycoblotting

method allows for rapid and efficient glycome profiling of human Alzheimer’s disease

brain, serum and cerebrospinal fluid towards potential biomarker discovery. Biochim

Biophys Acta Gen Subj 1860, 1716–1727

26.

Miura, Y., Shinohara, Y., Furukawa, J. I., Nagahori, N., & Nishimura, S. I. (2007). Rapid

and simple solid-phase esterification of sialic acid residues for quantitative glycomics by

mass spectrometry. Chemistry - A European Journal 13, 4797–4804

27.

Yu, S.-Y., Snovida, S., & Khoo, K.-H. (2020). Permethylation and Microfractionation of

Sulfated Glycans for MS Analysis. Bio Protoc 10, 1–13

28.

Yu, S. Y., Wu, S. W., Hsiao, H. H., & Khoo, K. H. (2009). Enabling techniques and

strategic workflow for sulfoglycomics based on mass spectrometry mapping and

sequencing of permethylated sulfated glycans. Glycobiology 19, 1136–1149

29.

Hinou, H. (2019). Aniline derivative/DHB/alkali metal matrices for reflectron mode

MALDI-TOF and TOF/TOF MS analysis of unmodified sialylated oligosaccharides and

glycopeptides. Int J Mass Spectrom 443, 109–115

30.

Barada, E., & Hinou, H. (2022). BOA/DHB/Na: An Efficient UV-MALDI Matrix for

High-Sensitivity and Auto-Tagging Glycomics. Int J Mol Sci 23, 12510

31.

Chen, J. Y., Huang, H. H., Yu, S. Y., Wu, S. J., Kannagi, R., & Khoo, K. H. (2018).

Concerted mass spectrometry-based glycomic approach for precision mapping of sulfo

sialylated N-glycans on human peripheral blood mononuclear cells and lymphocytes.

Glycobiology 28, 9–20

32.

Kuo, C. W., Guu, S. Y., & Khoo, K. H. (2018). Distinctive and Complementary MS 2

Fragmentation Characteristics for Identification of Sulfated Sialylated N-Glycopeptides

by nanoLC-MS/MS Workflow. J Am Soc Mass Spectrom 29, 1166–1178

33.

Ceroni, A., Maass, K., Geyer, H., Geyer, R., Dell, A., & Haslam, S. M. (2008).

GlycoWorkbench: A tool for the computer-assisted annotation of mass spectra of glycans.

J Proteome Res 7, 1650–1659

34.

Cooper, C. A., Gasteiger, E., & Packer, N. H. (2001). GlycoMod-A software tool for

determining glycosylation compositions from mass spectro-metric data. Proteomics 1,

340–349

35.

Montalban, B. M., & Hinou, H. (2023). Glycoblotting enables seamless and

straightforward workflow for MALDI-TOF/MS-based sulphoglycomics of N- and Oglycans. Proteomics, 1–10

36.

Wille, M., Lisovski, S., Roshier, D., Ferenczi, M., Hoye, B. J., Leen, T., Warner, S.,

Fouchier, R. A. M., Hurt, A. C., Holmes, E. C., & Klaassen, M. (2023). Strong host

phylogenetic and ecological effects on host competency for avian influenza in Australian

wild birds. Proceedings of the Royal Society B: Biological Sciences 290, 1–9

37.

van Dijk, J. G., Verhagen, J. H., Wille, M., & Waldenström, J. (2018). Host and virus

ecology as determinants of influenza A virus transmission in wild birds. Curr Opin Virol

28, 26–36

38.

Garamszegi, L. Z., & Møller, A. P. (2007). Prevalence of avian influenza and host ecology.

Proceedings of the Royal Society B: Biological Sciences 274, 2003–2012

39.

Springer, S. A., & Gagneux, P. (2016). Glycomics: revealing the dynamic ecology and

evolution of sugar molecules. J Proteomics 135, 90–100

40.

Olsen, B., Munster, V. J., Wallensten, A., Waldenström, J., Osterhaus, A. D. M. E., &

Fouchier, R. A. M. (2006). Global Patterns of Influenza A Virus in Wild Birds. Science

(1979) 312, 384–388

41.

Gonzalez, J., Düttmann, H., & Wink, M. (2009). Phylogenetic relationships based on two

mitochondrial genes and hybridization patterns in Anatidae. J Zool 279, 310–318

42.

Donne-Gousse, C., Laudet, V., & Hanni, C. (2002). A molecular phylogeny of

anseriformes based on mitochondrial DNA analysis. Molecular Phylogenetics and

Evolution 23, 339–356

43.

Sun, Z., Pan, T., Hu, C., Sun, L., Ding, H., Wang, H., Zhang, C., Jin, H., Chang, Q., Kan,

X., & Zhang, B. (2017). Rapid and recent diversification patterns in Anseriformes birds:

Inferred from molecular phylogeny and diversification analyses. PLoS One 12, 1–21

44.

Tamura, K., & Nei, M. (1993). Estimation of the Number of Nucleotide Substitutions in

the Control Region of Mitochondrial DNA in Humans and Chimpanzees ’. Mol Biol Evol

10, 512–526

45.

Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary

Genetics Analysis Version 11. Mol Biol Evol 38, 3022–3027

3.6

Supplementary Information

Table S3.1. The list of egg whites from various species of Order Anseriformes (4 families, 27

genera, 66 species) used in this study. Classification was based on Sibley’s DNA-DNA

hybridization[22, 23].

Sample

ID

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

D14

D15

D16

D17

D18

D19

D20

D21

D22

D23

D24

D25

D26

D27

D28

D29

D30

D31

D32

D33

D34

D35

D36

D37

D38

D39

D40

D41

D42

D43

D44

D45

D46

D47

D48

D49

D50

D51

D52

D53

D54

D55

D56

Scientific name

Aix galericulata

Anas platyrhynchos

Lophodytes cucullatus

Aythya americana

Anas versicolor

Anser anser

Anser indicus

Dendrocygna eytoni

Tadorna radjah

Sarkidiornis melanotos

Anseranas semipalmata

Aix sponsa

Alopochen aegyptiaca

Anas platyrhynchos domesticus

Anser anser domesticus (America)

Anser anser domesticus (France)

Anser anser domesticus (Germany)

Anser canagicus

Anser cygnoides domesticus

Anser cygnoides domesticus

Anser cygnoides domesticus

Anser erythropus

Callonetta leucophrys

Dendrocygna arborea

Lophonetta speculariodes

Netta rufina

Oxyura jamaicensis

Chloephaga picta picta

Branta leucopsis

Branta sandvicensis

Anas gibberifrons

Anas laysanensis

Anas luzonica

Anas rubripes

Anas clypeata

Oxyura vittata

Anas melleri

Oxyura australis

Branta canadensis maxima

Dendrocygna viduata

Anser brachyrhynchus

Chauna torquata

Thalassornis leuconotos

Tadorna tadornoides

Chenonetta jubata

Somateria mollissima

Anser albifrons

Mergus serrator

Aythya affinis

Dendrocygna autumnalis

Clangula hyemalis

Anas discors

Oxyura punctata

Anas strepera

Heteronetta atricapilla

Anas superciliosa

Family

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Dendrocygnidae

Anatidae

Anatidae

Anseranatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Dendrocygnidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Dendrocygnidae

Anatidae

Anhimidae

Dendrocygnidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Dendrocygnidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Sub-Family

Anatinae

Anatinae

Anatinae

Anatinae

Anatinae

Anserinae

Anserinae

Dendrocygninae

Anserinae

Anserinae

Anseranatidae

Anatinae

Anserinae

Anatinae

Anserinae

Anserinae

Anserinae

Anserinae

Anserinae

Anserinae

Anserinae

Anserinae

Anatinae

Dendrocygninae

Anatinae

Anatinae

Oxyurinae

Anserinae

Anserinae

Anserinae

Anatinae

Anatinae

Anatinae

Anatinae

Anatinae

Oxyurinae

Anatinae

Oxyurinae

Anserinae

Dendrocygninae

Anserinae

Anhimidae

Dendrocygninae

Anserinae

Anatinae

Anatinae

Anserinae

Anatinae

Anatinae

Dendrocygninae

Anatinae

Anatinae

Oxyurinae

Anatinae

Anatinae

Anatinae

Common Name

Mandarin Duck

Mallard Duck

Hooded Mergenser

Red head

Silver Teal

Graylag Goose

Bar Headed Goose

Plumed Whistling Duck

White Headed Shelduck

Knob-billed Goose

Magpie Goose

Wood Duck

Egyptian Goose

White Call Duck

Buff Goose

Dewlap Toulouse Goose

Embdens Goose

Emperor Goose

African Goose

White China Goose

Brown China Goose

Lesser white-fronted Goose

Ringed Teal

West Indian Whistling Duck

Crested Duck

Red Crested Pochard

Ruddy duck

Magellan Goose

Barnacle Goose

Hawaiian Goose

Indonesian Teal

Laysan Duck

Philippine Duck

American Black Duck

Northern Shoveler

Lake Duck

Meller's Duck

Blue-billed Duck

Canada Goose

White-faced Whistling Duck

Pink-footed Goose

Southern Screamer

White-backed Duck

Australian Shelduck

Australian Wood Duck

Common Eider

Greater whitefronted Goose

Red-breasted Merganser

Lesser Scaup

Black-bellied whistling Duck

Longtailed Duck

Blue-winged Teal

Gadwall

Black-headed Duck

Pacific black Duck

D57

D58

D59

D60

D61

D62

D63

D64

D65

D66

D67

D68

D69

D70

D71

D72

Anser caerulescens

Aythya fuligula

Aythya ferina

Anas formosa

Dendrocygna bicolor

Anas querquedula

Malacorhynchus membranaceus

Anas hottentota

Anas georgica

Biziura lobata

Cygnus atratus

Aythya australis

Amazonetta brasiliensis

Lophonetta cristata

Anas crecca

Tadorna tadorna

Anatidae

Anatidae

Anatidae

Anatidae

Dendrocygnidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anatidae

Anserinae

Anatinae

Anatinae

Anatinae

Dendrocygninae

Anatinae

Anatinae

Anatinae

Anatinae

Oxyurinae

Cygninae

Anatinae

Anatinae

Anatinae

Anatinae

Anserinae

Snow Goose

Tufted Duck

Common Pochard

Baikal Teal

Fulvous Whistling Duck

Garganey

Pink-eared Duck

Hottentot Teal

Yellow-billed Pintail

Musk Duck

Black swan

Hardhead

Brazilian Teal

Common Teal

Common Shelduck

Table S3.2. List of 89 acidic N-glycans identified from the egg whites of 79 waterfowl species.

Glycan structures were inferred from glycan composition based on the observed monoisotopic

masses.

Glycan

ID

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

A16

A17

A18

A19

A20

A21

A22

A23

A24

A25

A26

A27

A28

A29

A30

A31

A32

A33

A34

A35

A36

A37

A38

A39

A40

A41

A42

A43

A44

A45

A46

A47

A48

A49

A50

A51

A52

A53

A54

A55

A56

A57

A58

Observed

mass, m/z

[M – H]1094.339

1108.327

1135.373

1149.392

1256.320

1270.431

1295.303

1297.420

1311.445

1338.419

1352.412

1418.430

1432.469

1441.498

1443.485

1459.475

1473.505

1500.497

1514.530

1580.496

1589.525

1594.528

1603.574

1605.533

1621.533

1635.542

1646.558

1662.556

1676.605

1703.584

1717.608

1749.602

1751.599

1764.667

1765.618

1767.620

1783.585

1792.814

1797.610

1806.657

1808.607

1824.608

1838.661

1865.620

1879.661

1888.924

1906.655

1920.682

1945.612

1952.677

1954.866

1959.599

1970.726

1986.667

2000.577

2009.653

2011.663

2027.682

Calculated

Glycoform Mass

[M – BOA]

972.274

972.284

1013.301

1013.310

1134.327

1134.336

1159.368

1175.353

1175.363

1216.380

1216.390

1296.380

1293.389

1305.426

1321.411

1337.406

1337.416

1378.433

1378.442

1458.432

1467.469

1458.442

1467.479

1483.464

1499.459

1499.469

1524.491

1540.486

1540.495

1581.512

1581.522

1613.537

1629.522

1628.502

1629.532

1645.517

1661.512

1670.549

1661.521

1670.558

1686.544

1702.538

1702.548

1743.565

1743.575

1766.543

1784.592

1784.601

1823.565

1816.616

1832.601

1823.574

1848.596

1864.591

1864.601

1873.638

1889.623

1905.618

Mass

Error,

ppm

-10.8

-30.5

-4.2

4.8

-66.7

14.1

-109.5

-7.5

3.7

-28.2

-40.5

-18.9

2.4

-3.3

-1.9

-5.3

8.1

-8.5

7.5

-8.1

-13.1

5.5

11.4

-4.8

-1.7

-2.2

-5.9

-4.1

19.8

-2.8

5.6

-6.8

0.1

50.0

5.3

14.8

-2.1

105.0

6.6

12.5

-7.6

-3.7

19.5

-11.7

4.8

161.1

-7.2

2.3

-15.3

-7.9

96.3

-26.5

26.9

-0.5

-50.2

-30.7

-18.1

-6.1

Monosaccharide composition

Hex3 HexNAc2 Su1

Hex3 HexNAc2 Pho1

Hex2 HexNAc3 Su1

Hex2 HexNAc3 Pho1

Hex4 HexNAc2 Su1

Hex4 HexNAc2 Pho1

Hex2 HexNAc3 dHex1 Pho1

HexNAc1 Su1 + Man3 GlcNAc2

HexNAc1 Pho1 + Man3 GlcNAc2

Hex2 HexNAc4 Su1

Hex2 HexNAc4 Pho1

Hex2 Su1 + Man3 GlcNAc2

Hex2 Pho1 + Man3 GlcNAc2

Unknown structure

HexNAc1 dHex1 Su1 + Man3 GlcNAc2

Hex1 HexNAc1 Su1 + Man3 GlcNAc2

Hex1 HexNAc1 Pho1 + Man3 GlcNAc2

HexNAc2 Su1 + Man3 GlcNAc2

HexNAc2 Pho1 + Man3 GlcNAc2

Hex3 Su1 + Man3 GlcNAc2

HexNAc1 dHex2 Su1 + Man3 GlcNAc2

Hex3 Pho1 + Man3 GlcNAc2

HexNAc1 dHex2 Pho1 + Man3 GlcNAc2

Hex1 HexNAc1 dHex1 Su1 + Man3 GlcNAc2

Hex2 HexNAc1 Su1 + Man3 GlcNAc2

Hex2 HexNAc1 Pho1 + Man3 GlcNAc2

HexNAc2 dHex1 Su1 + Man3 GlcNAc2

Hex1 HexNAc2 Su1 + Man3 GlcNAc2

Hex1 HexNAc2 Pho1 + Man3 GlcNAc2

HexNac3 Su1 + Man3 GlcNAc2

HexNac3 Pho1 + Man3 GlcNAc2

Unknown structure

Hex1 HexNAc1 dHex2 Su1 + Man3 GlcNAc2

Hex1 HexNAc1 NeuAc1 Su1 + Man3 GlcNAc2

Hex1 HexNAc1 dHex2 Pho1 + Man3 GlcNAc2

Hex2 HexNAc1 dHex1 Su1 + Man3 GlcNAc2

Hex3 HexNAc1 Su1 + Man3 GlcNAc2

HexNAc2 dHex2 Su1 + Man3 GlcNAc2

Hex3 HexNAc1 Pho1 + Man3 GlcNAc2

HexNAc2 dHex2 Pho1 + Man3 GlcNAc2

Hex1 HexNAc2 dHex1 Su1 + Man3 GlcNAc2

Hex2 HexNAc2 Su1 + Man3 GlcNAc2

Hex2 HexNAc2 Pho1 + Man3 GlcNAc2

Hex1 HexNAc3 Su1 + Man3 GlcNAc2

Hex1 HexNAc3 Pho1 + Man3 GlcNAc2

Hex4 dHex1 Su1 + Man3 GlcNAc2

HexNAc4 Su1 + Man3 GlcNAc2

HexNAc4 Pho1 + Man3 GlcNAc2

Hex4 HexNAc1 Su1 + Man3 GlcNAc2

HexNAc2 dHex3 Pho1 + Man3 GlcNAc2

Hex1 HexNAc2 dHex2 Su1 + Man3 GlcNAc2

Hex4 HexNAc1 Pho1 + Man3 GlcNAc2

Hex2 HexNAc2 dHex1 Su1 + Man3 GlcNAc2

Hex3 HexNAc2 Su1 + Man3 GlcNAc2

Hex3 HexNAc2 Pho1 + Man3 GlcNAc2

HexNAc3 dHex2 Pho1 + Man3 GlcNAc2

Hex1 HexNAc3 dHex1 Su1 + Man3 GlcNAc2

Hex2 HexNAc3 Su1 + Man3 GlcNAc2

Glyconnect

Database

Links

Glyconnect

Glyconnect

Glyconnect

Glyconnect

Glyconnect

Glyconnect

Glyconnect

Glyconnect

Glyconnect

Glyconnect

Glyconnect

Glyconnect

Glyconnect

Glyconnect

Glyconnect

Glyconnect

Glyconnect

Glyconnect

Glyconnect

Glyconnect

Glyconnect

A59

A60

A61

A62

A63

A64

A65

A66

A67

A68

A69

A70

A71

A72

A73

A74

A75

A76

A77

A78

A79

A80

A81

A82

A83

A84

A85

A86

A87

A88

A89

2041.713

2050.704

2068.719

2082.738

2109.758

2114.753

2129.999

2146.364

2148.660

2158.155

2171.782

2189.759

2203.771

2212.764

2230.794

2244.834

2271.838

2278.900

2287.809

2320.103

2374.818

2392.895

2406.937

2433.956

2449.933

2479.957

2555.030

2569.031

2596.066

2758.164

2920.151

1905.627

1928.596

1946.644

1946.654

1987.671

1978.669

1993.634

2010.659

2026.644

2035.681

2035.690

2067.671

2067.680

2090.649

2108.697

2108.707

2149.724

2156.707

2165.744

2197.734

2252.702

2270.750

2270.760

2311.777

2327.797

2343.801

2432.803

2432.812

2473.829

2635.882

2797.935

4.3

15.2

-1.0

3.3

5.0

3.4

135.3

-173.2

-28.3

184.1

6.9

5.1

6.5

17.2

8.8

22.5

16.2

51.0

-5.2

126.0

16.6

28.3

41.8

42.1

24.4

31.9

58.9

55.4

61.6

74.5

47.7

Hex2 HexNAc3 Pho1 + Man3 GlcNAc2

Hex5 dHex1 Su1 + Man3 GlcNAc2

Hex1 HexNAc4 Su1 + Man3 GlcNAc2

Hex1 HexNAc4 Pho1 + Man3 GlcNAc2

HexNAc5 Su1 + Man3 GlcNAc2

Hex1 HexNAc2 dHex3 Pho1 + Man3 GlcNAc2

Hex2 HexNAc2 NeuAc1 Su1 + Man3 GlcNAc2

Hex3 HexNAc2 dHex1 Pho1 + Man3 GlcNAc2

Hex4 HexNAc2 Su1 + Man3 GlcNAc2

Hex1 HexNAc3 dHex2 Su1 + Man3 GlcNAc2

Hex1 HexNAc3 dHex2 Pho1 + Man3 GlcNAc2

Hex3 HexNAc3 Su1 + Man3 GlcNAc2

Hex3 HexNAc3 Pho1 + Man3 GlcNAc2

Hex6 dHex1 Su1 + Man3 GlcNAc2

Hex2 HexNAc4 Su1 + Man3 GlcNAc2

Hex2 HexNAc4 Pho1 + Man3 GlcNAc2

Hex1 HexNAc5 Su1 + Man3 GlcNAc2

Hex3 HexNAc2 dHex2 Su1 + Man3 GlcNAc2

HexNAc3 dHex4 Su1 + Man3 GlcNAc2

Hex2 HexNAc3 dHex2 Su1 + Man3 GlcNAc2

Hex7 dHex1 Su1 + Man3 GlcNAc2

Hex3 HexNAc4 Su1 + Man3 GlcNAc2

Hex3 HexNAc4 Pho1 + Man3 GlcNAc2

Hex2 HexNAc5 Su1 + Man3 GlcNAc2

Hex1 HexNAc3 dHex4 Su1 + Man3 GlcNAc2

Hex2 HexNAc3 dHex3 Pho1 + Man3 GlcNAc2

Hex4 HexNAc4 Su1 + Man3 GlcNAc2

Hex4 HexNAc4 Pho1 + Man3 GlcNAc2

Hex3 HexNAc5 Su1 + Man3 GlcNAc2

Hex4 HexNAc5 Su1 + Man3 GlcNAc2

Hex5 HexNAc5 Su1 + Man3 GlcNAc2

Glyconnect

Glyconnect

Glyconnect

*Monosaccharide nomenclatures are based on the SNFG: Hexose (Hex), N-acetyl hexosamine (HexNAc),

Mannose (Man), N-acetyl glucosamine (GlcNAc), Fucose (dHex), Sulfate (Su), and Phosphate (Pho). The

number of units corresponding to each monosaccharide are indicated after each abbreviation.

*The links to the Glyconnect database of the Swiss Institute of Bioinformatics are provided for selected

monoisotopic peaks found in the database.

*From the 89 monoisotopic masses, 55 sulfated and 34 phosphorylated N-glycans were identified based on

their glycan composition and MS/MS analysis. Fucosylated acidic N-glycan structures were also found in

trace abundance relative to un-fucosylated acidic N-glycans.

*Glycoform mass is the mass of unlabeled N-glycan structure denoted as [M-BOA], BOA is

benzyloxyamine with a molecular mass of 123.0684 Da.

Table S3.3. Waterfowl classification based on their virus prevalence.

Duck ID

D2

D56

D34

D71

D31

D54

D52

D45

D12

D68

D72

D44

D63

D39

D47

D06

Species

Anas platyrhynchos

Anas superciliosa

Anas rubripes

Anas creeca

Anas gibberifrons

Anas strepera

Anas discors

Chenonetta jubata

Aix sponsa

Aythya australis

Tadorna tadorna

Tadorna tadornoides

M. Membranaceus

Branta canadensis

Anser albifrons

Anser anser

PCA

Group

VP

Values

12.9

5.7

18.1

4.0

5.8

1.5

11.2

2.0

2.2

2.8

6.5

5.0

6.3

0.8

2.2

1.1

VP

Classification

HVP

HVP

HVP

LVP

HVP

LVP

HVP

LVP

LVP

LVP

HVP

LVP

HVP

LVP

LVP

LVP

*Each waterfowl species was classified either as a high virus prevalence (HVP) or low virus prevalence

(LVP). Classification was based on the average virus prevalence (5.5%). LVP < 5.50% < HVP.

*Virus prevalence data of the 16 species shown on the table was taken from the work of Wille, M. et al.

[36] and Olsen, B. et al. [40].

Table S3.4. GenBank accession numbers for various genes of the 72 Anseriformes species

in this study.

Sample

ID

D01

D02

D03

D04

D05

D06

D07

D08

D09

D10

D11

D12

D13

D14

D15

D16

D17

D18

D19

D20

D21

D22

D23

D24

D25

D26

D27

D28

D29

D30

D31

D32

D33

D34

D35

D36

D37

D38

D39

D40

D41

D42

D43

D44

D45

D46

D47

D48

D49

D50

D51

D52

D53

Scientific name

Aix galericulata

Anas platyrhynchos

Lophodytes cucullatus

Aythya americana

Anas versicolor

Anser anser

Anser indicus

Dendrocygna eytoni

Tadorna radjah

Sarkidiornis melanotos

Anseranas semipalmata

Aix sponsa

Alopochen aegyptiaca

Anas platyrhynchos domesticus

Anser anser domesticus (America)

Anser anser domesticus (France)

Anser anser domesticus (Germany)

Anser canagica

Anser cygnoides domesticus

Anser cygnoides domesticus

Anser cygnoides domesticus

Anser erythropus

Callonetta leucophrys

Dendrocygna arborea

Lophonetta speculariodes

Netta rufina

Oxyura jamaicensis

Chloephaga picta

Branta leucopsis

Branta sandvicensis

Anas gibberifrons

Anas laysanensis

Anas luzonica

Anas rubripes

Anas clypeata

Oxyura vittata

Anas melleri

Oxyura australis

Branta canadensis

Dendrocygna viduata

Anser brachyrhynchus

Chauna torquata

Thalassornis leuconotos

Tadorna tadornoides

Chenonetta jubata

Somateria mollissima

Anser albifrons

Mergus serrator

Aythya affinis

Dendrocygna autumnalis

Clangula hyemalis

Anas discors

Oxyura punctata

CO1

Cty b

ND2

JN703260

Mk262361

FJ028237

MN356217

AY666569

Mf580159

EU585604

EU585609

EU585650

NC_000877

AF059094

EU585613

EU585619

EU585647

EU585665

EU585660

NC_005933

EU585605

EU585606

EU585667

EU585672

EU585713

NC_000877

AF059154

EU585676

EU585682

EU585710

EU585728

EU585723

DQ432849

LC145060

EU585615

EU585616

EU585678

EU585679

GU571729

FJ027277

EU161871

EU914157

EU585680

AF059157

JN801488

GQ482234

AY666448

FJ027353

GU571283

JF498832

JQ174015

JF498830

KT151721

AY666211

GU571236

JQ175648

AF059102

EU585657

EU585658

AF515262

EU585630

EU585632

AF059076

AF059078

AF059079

AF059088

AF059062

EU585659

AF059080

AF119167

EU585629

EU585649

EU585614

AY274030

AF059162

EU585720

EU585721

AF515266

EU585693

EU585695

AF059136

AF059138

AF059139

AF059148

AF059122

EU585722

AF059140

AY747867

EU585692

EU585712

EU585677

AY274053

EU585666

AF059100

EU585661

EU585612

EU585655

EU585621

EU585729

AF059160

EU585724

EU585675

EU585718

EU585684

EU585638

EU914146

EU585701

AF059128

DQ434316

FJ027121

GU571243

GU571246

MZ153330

GU571280

FJ027502

GU571244

AY140730

U97738

JN801436

GU571620

DQ433314

GU571482

DQ434308

FJ027495

GU571339

AY666325

Complete

mtDNA

KF437906

MN720361

NC_000877

NC_011196

NC_025654

MN356217

EU585668

EU585669

NC_023832

NC_024922

MW574354

NC_028346

NC_007011

NC_052807

MW849292

NC_004539

MZ365040

MW849278

D54

D55

D56

D57

D58

D59

D60

D61

D62

D63

D64

D65

D66

D68

D67

D69

D70

D71

D72

OG1

OG2

Anas strepera (Mareca strepera)

Heteronetta atricapilla

Anas superciliosa

Anser caerulescens

Aythya fuligula

Aythya ferina

Anas formosa

Dendrocygna bicolor

Anas querquedula

Malacorhynchus membranaceus

Anas hottentota (Anas punctata)

Anas georgica

Biziura lobata

Cygnus atratus

Aythya australis

Amazonetta brasiliensis

Lophonetta cristata

Anas crecca

Tadorna tadorna

Gallus gallus

Struthio camelus

GQ481327

FJ027649

JN801396

DQ434537

JF499099

JF499098

JN703250

GQ481326

FJ027096

NC_012843

MW151626

FJ027059

KC771255

KU140668

LC145063

EU574791

AF059169

AF059092

FJ423758

KU697802

EU585623

AF059073

EU585646

EU585610

EU585651

EU585608

AF059075

EU585627

EU585641

EU585622

AF059054

AF059152

AF059064

AF059113

AF195631

MZ545713

NC_045373

EU585687

EU585686

AF059133

EU585709

EU585673

EU585714

EU585671

AF059135

EU585690

EU585704

EU585685

AF059115

NC_024595

NC_024602

NC_015482

EU585670

AF059173

NC_022452

NC_024750

NC_040902

NC_002785

NC_012843

*Accession numbers of the mitochondrial gene sequences of the cytochrome b (Cty b),

cytochrome oxidase subunit 1 (CO1), NADH dehydrogenase subunit 2 (ND2) and the complete

mitochondrial DNA (mtDNA) was taken from GenBank.

Figure S3.1. The evolutionary history was inferred by using the Maximum Likelihood method and Tamura-Nei model. The tree with the highest log likelihood (11550.63) is shown. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise

distances estimated using the Tamura-Nei model, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model

evolutionary rate differences among sites (5 categories (+G, parameter = 0.4430)). The rate variation model allowed for some sites to be evolutionarily invariable

([+I], 27.02% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. This analysis involved 62 nucleotide sequences.

There were a total of 992 positions in the final dataset. Evolutionary analyses were conducted in MEGA11.

Figure S3.2. The evolutionary history was inferred by using the Maximum Likelihood method and Tamura-Nei model. The tree with the highest log likelihood (5786.80) is shown. The percentage of trees in which the associated taxa clustered together is shown below the branches. Initial tree(s) for the heuristic search were

obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Tamura-Nei model, and then selecting

the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G,

parameter = 0.3642)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. This analysis involved 18 nucleotide sequences.

There were a total of 1082 positions in the final dataset. Evolutionary analyses were conducted in MEGA11.

Chapter 4

Concluding Remarks

This study addresses the challenges of analyzing sulfated N- and O-glycans in complex

biological samples. We present a comprehensive workflow that integrates the strengths of

Glycoblotting as a complementary purification, enrichment, methylation, and labeling technique

for MALDI-TOF MS-based sulphoglycomics. Glycoblotting demonstrates its efficiency as a

glycan enrichment platform, while the on-bead methyl esterification using MTT successfully

overcomes the obstacles related to trace abundance, sample loss, and the presence of sialic acid.

Notably, the on-bead methyl esterification step of Glycoblotting facilitates the discrimination

between sulfated glycans and sialylated glycans and the differentiation of isomeric glycans

containing sulfate or phosphate groups. This streamlined workflow enables efficient enrichment

and detection of trace sulfated and phosphorylated N-glycans, offering a simplified approach to

MALDI-TOF MS-based sulphoglycomics.

Moreover, employing the Glycoblotting-based sulphoglycomics approach, we uncovered

a diverse array of sulfated and phosphorylated N-glycans in waterfowl egg whites, providing

valuable insights into the differential expressions of acidic N-glycans in egg whites. We observed

distinct variations in the expressions of acidic N-glycans among the four families (Anhimidae,

Anseranatidae, Dendrocygnidae, and Anatinae) within the order Anseriformes. By examining

sulfated trans-Gal(+) and trans-Gal(-) N-glycan structures and phosphorylated N-glycans, we

successfully differentiate waterfowl species. Remarkably, waterfowl species with a high virus

prevalence exhibit elevated phosphorylated hybrid and high-mannose N-glycans expression.

These findings emphasize the significance of phosphorylated and sulfated N-glycans in

comprehending the transmission and evolution of IAV within avian populations.

Further studies can be conducted to expand the application of the Glycoblotting-based

sulphoglycomics workflow to other biological samples and species. In addition, investigations

into the functional roles of specific sulfated and phosphorylated N-glycans ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る