リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study on metal-organic frameworks (MOFs) deposition onto cellulosic materials」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study on metal-organic frameworks (MOFs) deposition onto cellulosic materials

李, 志強 東京大学 DOI:10.15083/0002006389

2023.03.24

概要























志強(Li Zhiqiang)

金属有機構造体(MOF)は、配位結合を持つ多官能性有機リンカーによってリンクされた遷
移金属イオンで構成される新しいタイプの多孔性結晶材料で、表面積が大きく、細孔のサイズ調
整が可能であるため、近年注目を集めている。 MOF はその優れた特性により、ガスの吸着、
分離、センサー、触媒、抗菌剤などのさまざまな用途へ応用が広く検討されている。 MOF は
通常、粉末の形で存在するため、工業用材料として使用するためには、これらの結晶性粉末を特
定の形状に成形する必要がある。地球の植物資源に由来するセルロース系材料は、比強度が高く、
コストが低く、リサイクル性と生分解性があり、繊維表面に多くの官能基を持っているという特
徴がある。この研究は、MOF をセルロース材料に堆積させるための、環境に優しいかつ最適な
調製法を検討し、それらの物性等を検討したものであり、様々な応用も可能と考えられる。本研
究の手法により調製された MOF 機能化セルロース系材料は、より経済的かつより環境にやさし
いという利点を備え、高付加価値材料として今後の発展が期待される。
第 1 章では MOFs に関する広範な研究を紹介し、本論文の位置付けを行っている。
第 2 章では図 1 に示すように、銅との配位結合のリンカーソースとしてトリメシン塩を使用し
て、高収量パルプ繊維への Cu-BTC 金属有機フレームワークの複合材料を水溶液で調製した。

図 1 セルロース繊維に Cu-BTC を堆積する方法の模式図
リグノセルロース繊維に反応サイトを導入するため、カルボキシメチル化を行い、次に繊維上に
Cu-BTC 結晶をレイヤーバイレイヤー法で調製温度と時間を変数として堆積させた。調製された

複合材料は、ATR FT-IR、XRD、SEM、および比表面積アナライザーで分析した。
XRD パターンでは、成長層を増やすに従い、Cu-BTC の特徴的なピークが増加した。一方 CHF の
強度はだんだん少なくなった。これは、ファイバー表面への Cu-BTC の堆積が多くなり、Cu-BTC
膜が厚くなるためと考えられる。堆積率は、成長温度の上昇と成長時間の増加に伴ってわずかに
増加したが、成長層が増えると著しく増加した。合成された Cu-BTC @ CHF の比表面積は、コン
トロールの繊維と比較して大幅に向上し、特定のガス吸着能力を有する多孔質材料として使用で
きる可能性があると考えられる。
第3章では、図 2 のように 4 つの異なる手順(ワンポット、2 ステップ、LbL-org、LbL-wtr-org)
で、市販のろ紙に Cu-BTC 金属有機フレームワークを堆積させ、その主要な特性と特性を比較検
討した。調製されたろ紙は、SEM、EDS、ATR FT-IR、および XRD によって分析した。また堆積率
とガス吸着能力も評価した。堆積率は、ワンポット法では 1.31%であったが、2 ステップ法では
4.23%に増加した。さらに LbL-org で 31.49%、LbL-wtr-org で 39.38%とレイヤーの回数を増
やすに従い、著しい堆積率の向上が達成された。FT-IR からも同様にカルボキシメチル化ろ紙に
堆積した Cu-BTC 結晶が 2 ステップ法により増加し、LbL-wtr-org 法ではレイヤーの回数を増や
すことによって著しく堆積されたことが分かった。また LbL-wtr-org 法で調製されたろ紙は、
この中で最大のガス吸着能力を示した。この方法は、有機溶媒の使用量を減らし、環境に優しい
セルロースベースの材料に堆積する MOF の調製に最適な手法となると言える。

図 2 ろ紙に Cu-BTC を堆積させる 4 つの手法
第 4 章では、この論文で得られた結果と、今後の発展性について述べている。

これらの研究成果は、学術上応用上寄与するところが少なくない。よって、審査委員一同は本
論文が博士(農学)の学位論文として価値あるものと認めた。

この論文で使われている画像

参考文献

1. Yaghi, O M, O'Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J. Reticular

synthesis and the design of new materials. Nature, 2003. 423(6941): p. 705-714.

2. Kitagawa, S, Kitaura R, Noro S. Functional porous coordination polymers.

Angewandte Chemie International Edition, 2004. 43(18): p. 2334-2375.

3. Lu, W, Wei Z, Gu Z, Liu T, Park J et al. Tuning the structure and function of metal–

organic frameworks via linker design. Chemical Society Reviews, 2014. 43(16): p.

5561-5593.

4. Li, J-R, Kuppler R J, and Zhou H-C. Selective gas adsorption and separation in

metal–organic frameworks. Chemical Society Reviews, 2009. 38(5): p. 1477-1504.

5. Suh M P, Park H J, Prasad T K, Lim D-W. Hydrogen storage in metal–organic

frameworks. Chemical reviews, 2012. 112(2): p. 782-835.

6. Ma, L, C. Abney C, Lin W. Enantioselective catalysis with homochiral metal–organic

frameworks. Chemical Society Reviews, 2009. 38(5): p. 1248-1256.

7. Furukawa, H, Cordova K E, O’Keeffe M, Yaghi O M. The chemistry and applications

of metal-organic frameworks. Science, 2013. 341(6149): p. 1230444.

8. Horcajada, P, Gref R, Baati T, Allan P K, Maurin G et al. Metal–organic frameworks

in biomedicine. Chemical reviews, 2012. 112(2): p. 1232-1268.

9. Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastre J. Metal–

organic frameworks—prospective industrial applications. Journal of Materials

Chemistry, 2006. 16(7): p. 626-636.

80

10. Tranchemontagne D J, Hunt J R, Yaghi O M. Room temperature synthesis of metalorganic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0.

Tetrahedron, 2008. 64(36): p. 8553-8557.

11. Butova, V V, Soldatov M A, Guda A A, Lomachenko K A, Lamberti C. Metalorganic

frameworks:

structure,

properties,

methods

of

synthesis

and

characterization. Russian Chemical Reviews, 2016. 85(3): p. 280.

12. Lee Y R, Kim J, Ahn W S. Synthesis of metal-organic frameworks: A mini review.

Korean Journal of Chemical Engineering, 2013. 30(9): p. 1667-1680.

13. Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to

various MOF topologies, morphologies, and composites. Chemical reviews, 2011.

112(2): p. 933-969.

14. Bang J H. and Suslick K S. Applications of ultrasound to the synthesis of

nanostructured materials. Advanced materials, 2010. 22(10): p. 1039-1059.

15. Li H, Eddaoudi M, O'Keeffe M, Yaghi O M. Design and synthesis of an

exceptionally stable and highly porous metal-organic framework. nature, 1999.

402(6759): p. 276-279.

16. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi O M.

Systematic design of pore size and functionality in isoreticular MOFs and their

application in methane storage. Science, 2002. 295(5554): p. 469-472.

17. Caddick S. Microwave assisted organic reactions. Tetrahedron, 1995. 51(38): p.

10403-10432.

18. Jhung S H, Lee J H, Yoon J W, Hwang J S, Park S E, Chang J S. Selective

81

crystallization of CoAPO-34 and VAPO-5 molecular sieves under microwave

irradiation in an alkaline or neutral condition. Microporous and mesoporous

materials, 2005. 80(1-3): p. 147-152.

19. Kang K K, Park C H, and Ahn W S. Microwave preparation of a titaniumsubstituted mesoporous molecular sieve. Catalysis letters, 1999. 59(1): p. 45-49.

20. Jhung S H, Chang J S, Hwang Y K, Park S E. Crystal morphology control of AFI

type molecular sieves with microwave irradiation. Journal of Materials Chemistry,

2004. 14(2): p. 280-285.

21. Jhung, S H, Lee J, and Chang J S. Microwave synthesis of a nanoporous hybrid

material, chromium trimesate. Bulletin of the Korean Chemical Society, 2005. 26(6):

p. 880-881.

22. Choi J S, Son W J, Kim J, Ahn W S. Metal–organic framework MOF-5 prepared by

microwave heating: Factors to be considered. Microporous and Mesoporous

Materials, 2008. 116(1-3): p. 727-731.

23. Martinez Joaristi A, Juan-Alcañiz J, Serra-Crespo P, Kapteijn F, Gascon J.

Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic

frameworks. Crystal Growth & Design, 2012. 12(7): p. 3489-3498.

24. Pichon, A, Lazuen-Garay A, and James S L. Solvent-free synthesis of a microporous

metal–organic framework. CrystEngComm, 2006. 8(3): p. 211-214.

25. Friščić T. New opportunities for materials synthesis using mechanochemistry.

Journal of Materials Chemistry, 2010. 20(36): p. 7599-7605.

26. Garay A L, Pichon A, and James S L. Solvent-free synthesis of metal complexes.

82

Chemical Society Reviews, 2007. 36(6): p. 846-855.

27. Qiu L G, Li Z Q, Wu Y, Wang W, Xu T, Jiang X. Facile synthesis of nanocrystals of

a microporous metal–organic framework by an ultrasonic method and selective

sensing of organoamines. Chemical communications, 2008(31): p. 3642-3644.

28. Li Z Q, Qiu L G, Xu T, Wu Y, Wang W, Wu Z Y, Jiang X. Ultrasonic synthesis of

the microporous metal–organic framework Cu3(BTC)2 at ambient temperature and

pressure: an efficient and environmentally friendly method. Materials Letters, 2009.

63(1): p. 78-80.

29. Kuppler R J, Timmons D J, Fang Q R, Li J R, Makal T A, et al. Potential applications

of metal-organic frameworks. Coordination Chemistry Reviews, 2009. 253(23-24):

p. 3042-3066.

30. Ma S, Wang X S, Collier C D, Manis E S, Zhou H C. Ultramicroporous Metal−

Organic Framework Based on 9, 10-Anthracenedicarboxylate for Selective Gas

Adsorption. Inorganic chemistry, 2007. 46(21): p. 8499-8501.

31. Couck S, Denayer J F, Baron G V, Rémy T, Gascon J, Kapteijn F. An aminefunctionalized MIL-53 metal− organic framework with large separation power for

CO2 and CH4. Journal of the American Chemical Society, 2009. 131(18): p. 63266327.

32. Alaerts L, Séguin E, Poelman H, Thibault‐Starzyk F, Jacobs P A, De Vos D E.

Probing the Lewis Acidity and Catalytic Activity of the Metal–Organic Framework

[Cu3(BTC)2](BTC=Benzene‐1, 3, 5‐tricarboxylate). Chemistry-A European Journal,

2006. 12(28): p. 7353-7363.

83

33. Schröder F, Esken D, Cokoja M, Van Den Berg M W, Lebedev O I, et al. Ruthenium

nanoparticles inside porous [Zn4O (bdc) 3] by hydrogenolysis of adsorbed [Ru

(cod)(cot)]: a solid-state reference system for surfactant-stabilized ruthenium

colloids. Journal of the American Chemical Society, 2008. 130(19): p. 6119-6130.

34. Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, O'Keeffe M, Yaghi O M.

Hydrogen storage in microporous metal-organic frameworks. Science, 2003.

300(5622): p. 1127-1129.

35. Zhao D, Yuan D, and Zhou H C. The current status of hydrogen storage in metal–

organic frameworks. Energy & Environmental Science, 2008. 1(2): p. 222-235.

36. Noro S I, Kitagawa S, Kondo M, Seki K. A new, methane adsorbent, porous

coordination

polymer

[{CuSiF6(4,4′‐bipyridine)2}n].

Angewandte

Chemie

International Edition, 2000. 39(12): p. 2081-2084.

37. Soppimath K S, Aminabhavi T M, Kulkarni A R, Rudzinski W E. Biodegradable

polymeric nanoparticles as drug delivery devices. Journal of controlled release,

2001. 70(1-2): p. 1-20.

38. Horcajada P, Márquez-Alvarez C, Rámila A, Pérez-Pariente J, Vallet-Regí M.

Controlled release of Ibuprofen from dealuminated faujasites.

Solid State

Sciences, 2006. 8(12): p. 1459-1465.

39. Horcajada P, Serre C, Vallet‐Regí M, Sebban M, Taulelle F, Férey G. Metal–organic

frameworks as efficient materials for drug delivery. Angewandte Chemie

International Edition, 2006. 45(36): p. 5974-5978.

40. Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, et al. A rationale

84

for the large breathing of the porous aluminum terephthalate (MIL‐53) upon

hydration. Chemistry-A European Journal, 2004. 10(6): p. 1373-1382.

41. Horcajada P, Serre C, Maurin G, Ramsahye N A, Balas F, Vallet-Regi M, et al.

Flexible porous metal-organic frameworks for a controlled drug delivery. Journal

of the American Chemical Society, 2008. 130(21): p. 6774-6780.

42. Wyszogrodzka G, Marszałek B, Gil B, Dorożyński P. Metal-organic frameworks:

mechanisms of antibacterial action and potential applications. Drug Discovery

Today, 2016. 21(6): p. 1009-1018.

43. Abbasi A R, Akhbari K, and Morsali A. Dense coating of surface mounted CuBTC

metal–organic framework nanostructures on silk fibers, prepared by layer-by-layer

method under ultrasound irradiation with antibacterial activity. Ultrasonics

sonochemistry, 2012. 19(4): p. 846-852.

44. Aguado S, Quirós J, Canivet J, Farrusseng D, Boltes K, Rosal R. Antimicrobial

activity of cobalt imidazolate metal–organic frameworks. Chemosphere, 2014. 113:

p. 188-192.

45. Bazer-Bachi D, Assié L, Lecocq V, Harbuzaru B, Falk, V. Towards industrial use of

metal-organic framework: impact of shaping on the MOF properties. Powder

Technology, 2014. 255: p. 52-59.

46. Ahmed I and Jhung S H. Composites of metal–organic frameworks: preparation and

application in adsorption. Materials today, 2014. 17(3): p. 136-146.

47. Liu Y, Ng Z., Khan E A, Jeong H K., Ching C B, Lai Z. Synthesis of continuous

MOF-5 membranes on porous α-alumina substrates. Microporous and Mesoporous

85

Materials, 2009. 118(1): p. 296-301.

48. Huang A, Dou W, and Caro J. Steam-stable zeolitic imidazolate framework ZIF-90

membrane with hydrogen selectivity through covalent functionalization. Journal of

the American Chemical Society, 2010. 132(44): p. 15562-15564.

49. Shekhah O. Layer-by-layer method for the synthesis and growth of surface mounted

metal-organic frameworks (SURMOFs). Materials, 2010. 3(2): p. 1302-1315.

50. Shekhah O, Wang H, Kowarik S, Schreiber F, Paulus M, Tolan M, et al. Step-bystep route for the synthesis of metal− organic frameworks. Journal of the American

Chemical Society, 2007. 129(49): p. 15118-15119.

51. Li Y S, Bux H, Feldhoff A, Li G L, Yang W S, Caro J. Controllable synthesis of

metal–organic frameworks: From MOF nanorods to oriented MOF membranes.

Advanced Materials, 2010. 22(30): p. 3322-3326.

52. Gascon J, Aguado S, Kapteijn F. Manufacture of dense coatings of Cu3(BTC)2

(HKUST-1) on α-alumina. Microporous and Mesoporous Materials, 2008. 113(13): p. 132-138.

53. Demessence A, Boissière C, Grosso D, Horcajada P, Serre C, et al. Adsorption

properties in high optical quality nanoZIF-8 thin films with tunable thickness.

Journal of Materials Chemistry, 2010. 20(36): p. 7676-7681.

54. Usman M, Mendiratta S, Lu K L. Semiconductor metal–organic frameworks:

Future low‐bandgap materials. Advanced Materials, 2017. 29(6): p. 1605071.

55. Lohe M R, Gedrich K, Freudenberg T, Kockrick E, Dellmann T, Kaskel S. Heating

and separation using nanomagnet-functionalized metal–organic frameworks.

86

Chemical Communications, 2011. 47(11): p. 3075-3077.

56. Hasenknopf B. Polyoxometalates: introduction to a class of inorganic compounds

and their biomedical applications. Front. Biosci, 2005. 10(275): p. 10.2741.

57. Maksimchuk N V, Kovalenko K A, Arzumanov S S, Chesalov Y A, Melgunov M S,

et al. Hybrid polyoxotungstate/MIL-101 materials: synthesis, characterization, and

catalysis of H2O2-based alkene epoxidation. Inorganic chemistry, 2010. 49(6): p.

2920-2930.

58. Maksimchuk N V, Kovalenko K A, Fedin V P, Kholdeeva O A. Heterogeneous

Selective Oxidation of Alkenes to α, β‐Unsaturated Ketones over Coordination

Polymer MIL‐101. Advanced Synthesis & Catalysis, 2010. 352(17): p. 2943-2948.

59. Kuang X, Wu X, Yu R, Donahue J P, Huang J, Lu C Z. Assembly of a metal–organic

framework by sextuple intercatenation of discrete adamantane-like cages. Nature

chemistry, 2010. 2(6): p. 461-465.

60. Uemura T, Kitagawa K, Horike S, Kawamura T, Kitagawa S, Mizuno M, Endo K.

Radical polymerisation of styrene in porous coordination polymers. Chemical

communications, 2005(48): p. 5968-5970.

61. Lee H J, Cho W and Oh M. Advanced fabrication of metal–organic frameworks:

template-directed formation of polystyrene@ ZIF-8 core–shell and hollow ZIF-8

microspheres. Chemical Communications, 2012. 48(2): p. 221-223.

62. Furukawa S, Hirai K, Nakagawa K, Takashima Y, Matsuda R, Tsuruoka T, et al.

Heterogeneously hybridized porous coordination polymer crystals: fabrication of

heterometallic core–shell single crystals with an in‐plane rotational epitaxial

87

relationship. Angewandte Chemie International Edition, 2009. 48(10): p. 17661770.

63. Koh K, Wong-Foy A G, Matzger A J. MOF@MOF: microporous core–shell

architectures. Chemical Communications, 2009(41): p. 6162-6164.

64. Gurunathan T, Mohanty S, Nayak S K. A review of the recent developments in

biocomposites based on natural fibres and their application perspectives.

Composites Part A: Applied Science and Manufacturing, 2015. 77: p. 1-25.

65. Updegraff D M. Semimicro determination of cellulose inbiological materials.

Analytical biochemistry, 1969. 32(3): p. 420-424.

66. Kim M L, Otal E H, Hinestroza J P. Cellulose meets reticular chemistry: interactions

between cellulosic substrates and metal–organic frameworks. Cellulose, 2019.

26(1): p. 123-137.

67. Ozer R, Hinestroza J. One-step growth of isoreticular luminescent metal–organic

frameworks on cotton fibers. RSC Advances, 2015. 5(20): p. 15198-15204.

68. Abdelhameed R M, Abdel-Gawad H, Elshahat M, Emam H E. Cu–BTC@cotton

composite: design and removal of ethion insecticide from water. RSC Advances,

2016. 6(48): p. 42324-42333.

69. Duan C, Meng X, Liu C, Lu W, Liu J, Dai L, et al. Carbohydrates-rich corncobs

supported metal-organic frameworks as versatile biosorbents for dye removal and

microbial inactivation. Carbohydrate Polymers, 2019. 222: p. 115042.

70. Dufresne A. Cellulose nanomaterial reinforced polymer nanocomposites. Current

Opinion in Colloid & Interface Science, 2017. 29: p. 1-8.

88

71. Dufresne A. Nanocellulose: a new ageless bionanomaterial. Materials today, 2013.

16(6): p. 220-227.

72. da Silva Pinto M, Sierra-Avila C A, Hinestroza J P. In situ synthesis of a Cu-BTC

metal–organic framework (MOF 199) onto cellulosic fibrous substrates: cotton.

Cellulose, 2012. 19(5): p. 1771-1779.

73. Rubin H N, Neufeld B H, Reynolds M M. Surface-Anchored Metal–Organic

Framework–Cotton Material for Tunable Antibacterial Copper Delivery. ACS

applied materials & interfaces, 2018. 10(17): p. 15189-15199.

74. Abdelhameed R M, Rehan M, Emam H E. Figuration of Zr-based MOF@ cotton

fabric composite for potential kidney application. Carbohydrate polymers, 2018.

195: p. 460-467.

75. Abdelhameed R M, Kamel O M, Amr A, Rocha J, Silva A M. Antimosquito activity

of a titanium–organic framework supported on fabrics. ACS applied materials &

interfaces, 2017. 9(27): p. 22112-22120.

76. Wang N, Ouyang X K, Yang L Y, Omer A M. Fabrication of a magnetic cellulose

nanocrystal/metal–organic framework composite for removal of Pb (II) from water.

ACS Sustainable Chemistry & Engineering, 2017. 5(11): p. 10447-10458.

77. Yang Q, Zhang M, Song S, Yang B. Surface modification of PCC filled cellulose

paper by MOF-5 (Zn3(BDC)2) metal-organic frameworks for use as soft gas

adsorption composite materials. Cellulose, 2017. 24(7): p. 3051-3060.

78. Ko J, Kim S K, Yoon Y, Cho K H, Song W, Kim T H, et al. Eco-friendly cellulose

based solid electrolyte with high performance and enhanced low humidity

89

performance by hybridizing with aluminum fumarate MOF. Materials Today

Energy, 2018. 9: p. 11-18.

79. Chen G, Koros W J, Jones C W. Hybrid polymer/UiO-66 (Zr) and polymer/NaY

fiber sorbents for mercaptan removal from natural gas. ACS applied materials &

interfaces, 2016. 8(15): p. 9700-9709.

80. Hou J, Luan Y, Huang X, Gao H, Yang M, Lu Y. Facile synthesis of

Cu3(BTC)2/cellulose acetate mixed matrix membranes and their catalytic

applications in continuous flow process. New Journal of Chemistry, 2017. 41(17):

p. 9123-9129.

81. Hou X, Zhou H, Zhang J, Cai Y, Huang F, Wei Q. High Adsorption Pearl‐Necklace‐

Like Composite Membrane Based on Metal–Organic Framework for Heavy Metal

Ion Removal. Particle & Particle Systems Characterization, 2018. 35(6): p. 1700438.

82. Pimentel B R, Fultz A W, Presnell K V, Lively R P. Synthesis of water-sensitive

metal–organic frameworks within fiber sorbent modules. Industrial & Engineering

Chemistry Research, 2017. 56(17): p. 5070-5077.

83. Au-Duong A-N, Lee C-K. Flexible metal–organic framework-bacterial cellulose

nanocomposite for iodine capture. Crystal Growth & Design, 2018. 18(1): p. 356363.

84. Ashour R M, Abdel-Magied A F, Wu Q, Olsson R T, Forsberg K. Green Synthesis

of Metal-Organic Framework Bacterial Cellulose Nanocomposites for Separation

Applications. Polymers, 2020. 12(5): p. 1104.

85. Zhu H, Yang X, Cranston E D, Zhu S. Flexible and Porous Nanocellulose Aerogels

90

with High Loadings of Metal–Organic‐Framework Particles for Separations

Applications. Advanced Materials, 2016. 28(35): p. 7652-7657.

86. Matsumoto M, Kitaoka T. Ultraselective Gas Separation by Nanoporous Metal−

Organic Frameworks Embedded in Gas‐Barrier Nanocellulose Films. Advanced

Materials, 2016. 28(9): p. 1765-1769.

87. Lu H, Zhang L, Wang B, Long Y, Zhang M, Ma J, et al. Cellulose-supported

magnetic Fe3O4-MOF composites for enhanced dye removal application. Cellulose,

2019. 26(8): p. 4909-4920.

88. Küsgens, P, Siegle S, Kaskel S. Crystal Growth of the Metal-Organic Framework

Cu3(BTC)2 on the Surface of Pulp Fibers. Advanced Engineering Materials, 2009.

11(1‐2): p. 93-95.

89. Rodríguez H S, Hinestroza J P, Ochoa‐Puentes C, Sierra C A, Soto C Y.

Antibacterial activity against Escherichia coli of Cu‐BTC (MOF‐199) metal‐

organic framework immobilized onto cellulosic fibers. Journal of Applied Polymer

Science, 2014. 131(19): p. 40815.

90. Neufeld M J, Harding J L, Reynolds M M. Immobilization of Metal–Organic

Framework Copper (II) Benzene-1, 3, 5-tricarboxylate (CuBTC) onto Cotton Fabric

as a Nitric Oxide Release Catalyst. ACS applied materials & interfaces, 2015. 7(48):

p. 26742-26750.

91. Su Z, Zhang M, Lu Z, Song S, Zhao Y, Hao Y. Functionalization of cellulose fiber

by in situ growth of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals for

preparing a cellulose-based air filter with gas adsorption ability. Cellulose, 2018.

91

25(3): p. 1997-2008.

92. Park J, Oh M. Construction of flexible metal–organic framework (MOF) papers

through MOF growth on filter paper and their selective dye capture. Nanoscale,

2017. 9(35): p. 12850-12854.

93. Ma S, Zhou H-C. Gas storage in porous metal–organic frameworks for clean energy

applications. Chemical Communications, 2010. 46(1): p. 44-53.

94. Britt D, Tranchemontagne D, Yaghi O M. Metal-organic frameworks with high

capacity and selectivity for harmful gases. Proceedings of the National Academy of

Sciences, 2008. 105(33): p. 11623-11627.

95. DeCoste J B, Peterson G W. Metal–organic frameworks for air purification of toxic

chemicals. Chemical reviews, 2014. 114(11): p. 5695-5727.

96. Kreno L E, Leong K, Farha O K, Allendorf M, Van Duyne R P, Hupp J T. Metalorganic framework materials as chemical sensors. Chemical reviews, 2011. 112(2):

p. 1105-1125.

97. Farrusseng D, Aguado S, Pinel C. Metal-organic frameworks: opportunities for

catalysis. Angewandte Chemie International Edition, 2009. 48(41): p. 7502-7513.

98. Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Metal-organic

framework materials as catalysts. Chemical Society Reviews, 2009. 38(5): p. 14501459.

99. Quirós J, Boltes K, Aguado S, de Villoria R G, Vilatela J J, Rosal R. Antimicrobial

metal–organic frameworks incorporated into electrospun fibers. Chemical

Engineering Journal, 2015. 262: p. 189-197.

92

100. Aguado S, Canivet J, Farrusseng D. Facile shaping of an imidazolate-based MOF

on ceramic beads for adsorption and catalytic applications. Chemical

Communications, 2010. 46(42): p. 7999-8001.

101. Hermes S, Zacher D, Baunemann A, Wöll C, Fischer R A. Selective growth and

MOCVD loading of small single crystals of MOF-5 at alumina and silica surfaces

modified with organic self-assembled monolayers. Chemistry of materials, 2007.

19(9): p. 2168-2173.

102. Duan, C, Meng J, Wang X, Meng X, Sun X, Xu Y, et al. Synthesis of novel

cellulose-based antibacterial composites of Ag nanoparticles@metal-organic

frameworks@carboxymethylated fibers. Carbohydrate Polymers, 2018. 193: p.

82-88.

103. Wang C, Qian X, An X. In situ green preparation and antibacterial activity of

copper-based

metal–organic

frameworks/cellulose

fibers

(HKUST-1/CF)

composite. Cellulose, 2015. 22(6): p. 3789-3797.

104. Bunge M A, Ruckart K N, Leavesley S, Peterson G W, Nguyen N, West K N,

Glover T G. Modification of fibers with nanostructures using reactive dye

chemistry. Industrial & Engineering Chemistry Research, 2015. 54(15): p. 38213827.

105. Lange L E, Obendorf S K. Functionalization of cotton fiber by partial

etherification and self-assembly of polyoxometalate encapsulated in Cu3(BTC)2

metal–organic framework. ACS applied materials & interfaces, 2015. 7(7): p.

3974-3980.

93

106. Zhu L, Zong L, Wu X, Li M, Wang H, You J, Li C. Shapeable Fibrous Aerogels of

Metal-Organic-Frameworks Templated with Nanocellulose for Rapid and LargeCapacity Adsorption. ACS nano, 2018. 12(5): p. 4462-4468.

107. Sánchez-Sánchez M, Getachew N, Díaz K, Díaz-García M, Chebude Y, Díaz I.

Synthesis of metal–organic frameworks in water at room temperature: salts as

linker sources. Green Chemistry, 2015. 17(3): p. 1500-1509.

108. Lu L, Hu C, Zhu Y, Zhang H, Li R, Xing Y. Multi-functional finishing of cotton

fabrics by water-based layer-by-layer assembly of metal–organic framework.

Cellulose, 2018. 25(7): p. 4223-4238.

109. Tham H M, Japip S, Hua D, Chung T S. Green Layer‐by‐layer Method for the

Preparation of Polyacrylonitrile‐Supported Zn(BDC) Membranes. ChemSusChem,

2018. 11(15): p. 2612-2619.

110. Nan J, Dong X, Wang W, Jin W, Xu N. Step-by-step seeding procedure for

preparing HKUST-1 membrane on porous α-alumina support. Langmuir, 2011.

27(8): p. 4309-4312.

111. Konduri M K, Kong F, Fatehi P. Production of carboxymethylated lignin and its

application as a dispersant. European Polymer Journal, 2015. 70: p. 371-383.

112. Emam H E, El-Bisi M. Merely Ag nanoparticles using different cellulose fibers as

removable reductant. Cellulose, 2014. 21(6): p. 4219-4230.

113. Fardim P, Holmbom B. Fast determination of anionic groups in different pulp

fibers by methylene blue sorption. TAPPI Membership Directory, 2003. 2(10): p.

28-32.

94

114. Shoulaifar T K, DeMartini N, Ivaska A, Fardim P, Hupa M. Measuring the

concentration of carboxylic acid groups in torrefied spruce wood. Bioresource

technology, 2012. 123: p. 338-343.

115. DeCoste J B, Peterson G W, Schindler B J, Killops K L, Browe M A, Mahle J J.

The effect of water adsorption on the structure of the carboxylate containing

metal–organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66. Journal of

Materials Chemistry A, 2013. 1(38): p. 11922-11932.

116. Loera-Serna S, Oliver-Tolentino M A, de Lourdes López-Núñez M, Santana-Cruz

A, Guzmán-Vargas A, Cabrera-Sierra R, et al. Electrochemical behavior of

[Cu3(BTC)2] metal–organic framework: the effect of the method of synthesis.

Journal of Alloys and Compounds, 2012. 540: p. 113-120.

117. Al-Janabi N, Hill P, Torrente-Murciano L, Garforth A, Gorgojo P, Siperstein F.

Mapping the Cu-BTC metal–organic framework (HKUST-1) stability envelope in

the presence of water vapour for CO2 adsorption from flue gases. Chemical

Engineering Journal, 2015. 281: p. 669-677.

118. Álvarez J R, Sánchez-González E, Pérez E, Schneider-Revueltas E, Martínez A,

et al. Structure stability of HKUST-1 towards water and ethanol and their effect on

its CO2 capture properties. Dalton Transactions, 2017. 46(28): p. 9192-9200.

119. Ma S, Zhang M, Nie J, Yang B, Song S, Lu P. Multifunctional cellulose-based air

filters with high loadings of metal–organic frameworks prepared by in situ growth

method for gas adsorption and antibacterial applications. Cellulose, 2018. 25(10):

p. 5999-6010.

95

120. Gholampour A, Ozbakkaloglu T. A review of natural fiber composites: properties,

modification and processing techniques, characterization, applications. Journal of

Materials Science, 2020. 55: p. 829-892.

121. Gui Z, Zhu H, Gillette E, Han X, Rubloff G W, Hu L, Lee S B. Natural cellulose

fiber as substrate for supercapacitor. ACS nano, 2013. 7(7): p. 6037-6046.

122. Zhang Y Z, Wang Y, Cheng T, Lai W Y, Pang H, Huang W. Flexible

supercapacitors based on paper substrates: a new paradigm for low-cost energy

storage. Chemical Society Reviews, 2015. 44(15): p. 5181-5199.

123. He J, Kunitake T, Nakao A. Facile in situ synthesis of noble metal nanoparticles

in porous cellulose fibers. Chemistry of Materials, 2003. 15(23): p. 4401-4406.

124.Van Rie J, Thielemans W. Cellulose-gold nanoparticle hybrid materials. Nanoscale,

2017. 9(25): p. 8525-8554.

125. Aarne N, Kontturi E, Laine J. Carboxymethyl cellulose on a fiber substrate: the

interactions with cationic polyelectrolytes. Cellulose, 2012. 19(6): p. 2217-2231.

126. Richardson J J, Tardy B L, Guo J, Liang K, Rojas O J, Ejima H. Continuous metal–

organic framework biomineralization on cellulose nanocrystals: extrusion of

functional composite filaments. ACS Sustainable Chemistry & Engineering, 2019.

7(6): p. 6287-6294.

127. Li Z, Hori N, and Takemura A. Synthesis and characterization of Cu-BTC metal–

organic frameworks onto lignocellulosic fibers by layer-by-layer method in

aqueous solution. Cellulose, 2020. 27(3): p. 1733-1744.

128. Liu Y, Hu H. X-ray diffraction study of bamboo fibers treated with NaOH. Fibers

96

and Polymers, 2008. 9(6): p. 735-739.

129. Kim K J, Li Y J, Kreider P B, Chang C H, Wannenmacher N, et al. High-rate

synthesis of Cu–BTC metal–organic frameworks. Chemical Communications,

2013. 49(98): p. 11518-11520.

97

Research Achievement

Journal Articles

(1) Zhiqiang Li, Naruhito Hori, Akio Takemura. Synthesis and characterization of CuBTC metal–organic frameworks onto lignocellulosic fibers by layer-by-layer

method in aqueous solution[J]. Cellulose, 2020, 27(3): 1733-1744.

(2) Zhiqiang Li, Naruhito Hori, Akio Takemura. A comparative study of depositing CuBTC metal–organic framework onto cellulosic filter paper via different

procedures[J]. Cellulose, 2020, 27(11): 6537-6547.

Conference

Zhiqiang Li, Naruhito Hori, Akio Takemura. Synthesis and characterization of Cu-BTC

metal-organic frameworks onto lignocellulosic fibers by layer-by-layer method in

aqueous solution [C] 20th International Symposium on Wood, Fiber and Pulping

Chemistry (ISWFPC), 2019, Sep. 09-11th, Tokyo, Japan (Oral)

98

Acknowledgement

First and foremost, I would like to thank my supervisor, Professor Akio Takemura,

who provided me a precious opportunity to pursue a doctorate in the world-famous

university, The University of Tokyo. Prof. Takemura gave me considerate instruction

and guidance during my PhD, and acted as a role model to me not only academically

but also in daily life. As a foreign student, I deeply felt the kindness, patience, toleration,

and careful consideration of Prof. Takemura for supporting my research and preparing

the thesis. I hereby would like to express my sincere thanks and high respect to Prof.

Takemura.

I am grateful to Associate Professor Satoshi Kimura and Assistant Professor

Naruhito Hori for their kindly helps of a lot of experiment techniques. Their rich

knowledge and patience left a deep impression on me.

I would like to express my thanks to Professor Yuji Matsumoto for his introduction

before I came to The University of Tokyo.

I would like to thank Professor Tetsuo Kondo, Associate Professor Tomoya

Yokoyama, Associate Professor Tsuguyuki Saito, and Associate Professor Yukiko

Enomoto for their contribution to review and improve this thesis.

I am grateful to Dr. Ismawati Palle, Dr. Jingmiao Zhang, Dr. Sikai Chen, and other

former and present members of the adhesive science and bio-composites laboratory for

their friendly cooperation, good suggestions, and kindly support of my research and life.

Of course, I must say thank you to my parents. My parents have no idea about

99

scientific research, but they always try their best to support and encourage me to do

what I like. Without their constant support, I would never have had the opportunity to

start and complete a PhD in Japan.

I am thankful to all the people mentioned above. With their kind support and help,

I could have a good time during my doctoral period. Sincerely wish them the best health

and success.

Finally, I would like to thank the University of Tokyo Fellowship for financial

support of my study life.

100

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る