リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「女川湾竹浦のホンダワラ科褐藻群落における葉上動物群集の動態に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

女川湾竹浦のホンダワラ科褐藻群落における葉上動物群集の動態に関する研究

伊藤 浩吉 東北大学

2021.03.25

概要

1.1. 海藻とその付着生物群集との関わり
 海藻と動物との相互関係は藻場生態系を成立させる重要なしくみである。菊池(1976)は,藻場に生息する底生無脊椎動物群集が(1)真の底生動物と(2)葉上付着動物の2つの要素からなるとした。葉上付着動物は固着性および移動性の動物で構成され,葉上の藻類(海藻・藍藻・珪藻など)や微生物(細菌・古細菌・真菌・ウイルスなど)とともに海藻の葉上生物群集を構成している。
 葉上生物群集は基質海藻にさまざまな影響を与える。端脚類は海藻を直接摂食することもあるが(Brawley 1992; Duffy & Hay 2000; 赤池ら2002),多くは葉上の微細藻類を食物にしており,その摂食活動によって海藻の成長が促進される(Brawley & Adey 1981; Orth & Van Montfrans 1984; Duffy 1990; Bracken et al. 2007; Poore et al. 2012)。葉上の藻類は海藻から溶出した有機物を利用したり(Sieburth 1969; Khailov & Burlakova 1969; Mann 1982),着生によって海藻の光合成を阻害したりする(Booth 1987; Rohde et al. 2008)。一方,貧栄養な熱帯海域では葉上の藍藻類が海中溶存窒素を固定し,それを摂食した葉上動物の排泄物を経由して,海藻に窒素が供給されることもある(Mukai & Iijima 1995)。葉上の細菌類には海藻の疾病を引き起こすものもあるが,海藻に二酸化炭素や無機栄養塩類を与えたり,病原体や汚損生物からの防御,形態の形成に関わったりする細菌もある(reviewed by Goecke et al. 2010; Hollants et al. 2013; Egan 2013; Singh & Reddy 2014)(図1-1)。

1.2. ホンダワラ類の葉上動物群集
 ヒバマタ目ホンダワラ科の褐藻類は,沿岸藻場や流れ藻の主要な構成種として知られている(大野1985)。ホンダワラ類は藻体に配された気胞により浮力を得ることで海底から起立し,高さ数メートルにおよぶ海中森林を形成することがある。また,ホンダワラ類の形態は葉状部・茎状部・付着器のように高度に分化しており,複雑な立体構造を呈する。
 このため,コンブ目などの藻場を形成する他の海藻類に比して,ホンダワラ類の藻体表面には多様で高密度な付着動物群集が生息している(Taylor & Cole 1994)。Norton & Benson(1983)はタマハハキモクSargassum muticum葉上から10門以上の分類群が出現したことを,Mukai(1971)はウスバノコギリモクSargassum serratifoliumの葉上動物が1株あたり最大で266,000個体に達したことをそれぞれ報告している。また,葉上動物群集の組成や密度には,ホンダワラ類の藻体内あるいは群落内で垂直的な差異が生じる(Imada et al. 1981; 藤田ら2003; Kodama et al. 2017; Ito et al. 2019)。
 空間的特徴に加えて,温帯性のホンダワラ類は現存量の著しい季節消長を示す。北半球に位置する日本では,一般に10–12月頃に萌出した主枝が1–3月にかけて伸長する。その後,主枝から派生した側枝が発達して肥大し,4–6月には現存量が極大に達するが,繁殖後の夏には現存量の大部分あるいはすべてが流出する(7–9月)。ホンダワラ類のほとんどの種はこのようなフェノロジー(生物季節)を複数年にわたって経験する多年藻であり,そのパターンは種間や地域個体群の間でも異なっている(谷口・山田1978; 丸井ら1981; 高場・溝上1982; Umezaki 1984; 吉田2005; 土屋ら2010, 2011; 八谷ら2011)。
 ホンダワラ類のフェノロジーに応じて葉上動物群集の構造がどのように変化するのかは興味深い。葉上動物は新しく萌出・伸長した藻体に加入し増殖するが,その藻体はやがて流出してしまう。藻体が海底の基質を離れて海面に向かって浮上する際には,多くの付着動物が脱落していく様子がしばしば観察される。海面付近で漂流を開始した藻体にはその後,水塊中から新たに動物が加入し,流れ藻独特の葉上動物群集が形成されることがある(青木2004)。つまり,沿岸の葉上動物がホンダワラ類を生息場所として利用できるのは,藻体が沿岸に生育するわずか半年間程度であると考えられる。この間,葉上動物は藻体にどこから加入し,どのように個体群を成長させるのだろうか。向井(1996)は,藻体流出後は周辺の他地域で個体群が低密度に維持され,それが加入時のソースになるという仮説を提示しているが,このことは未だに仮説の域を出ない。青木(1998)はフクロエビ類の移動可能性について考察した上で,葉上動物の加入プロセスを解明するためにはさらなる検証を要するとしている。また,ホンダワラ類の葉上動物の動態に関するこれまでの研究では,端脚類や巻貝類といった特定分類群の動態や分類群全体の動態が扱われてきたが,そのほとんどは体長が0.5mmより大きなマクロベントスのみを対象としており,0.5mm以下のメイオベントスまで調べた研究はきわめて少ない(第2章で後述)。
 葉上動物の食物となり得るバイオフィルムを構成するミクロベントスについての知見はさらに少ない。たとえば葉上の微細藻類については,日本および朝鮮半島の沿岸を起源とする侵略的外来種として知られるタマハハキモクに関する研究がわずかに報告されている(Withers et al. 1975; Aguilar-Rosas & Galindo 1990; Bjærke & Fredriksen 2003)。葉上細菌叢については,遺伝子解析技術の進展を背景に網羅的な組成解析が行われ始めているが,ホンダワラ類に関するものでは,タマハハキモク(Serebryakovaetal.2018)と,近縁のウガノモク属(Mancuso et al. 2016)の2例しか報告されていない(第3章で後述)。ホンダワラ類の葉上動物群集の動態は,実質的には基質海藻のフェノロジーに伴うマクロベントス群集の変化として論じられてきたのである。

1.3. 研究の目的
 Rohwer et al.(2002)は,造礁サンゴとその共在微生物叢とのさまざまな相互関係から,それらを一つの生物体と考えるホロビオント(holobiont)仮説を提唱した。これを皮切りにサンゴの性質や状態を理解するためには,共在微生物叢を調べる必要があるという認識が広がった(reviewed by Ronsenberg et al. 2007)。Egan et al.(2013)は,海藻とその共在生物群集も微生物との相互関係によって成り立つホロビオントであると提唱し,海藻葉上の微生物群集への注目が高まるきっかけとなった。こうした背景を踏まえれば,ホンダワラ類のフェノロジーと葉上動物群集との関係を理解するためには,マクロベントスだけでなくメイオベントスやそれらの食物となり得る葉上のミクロベントス,とくにバイオフィルムを構成する細菌叢も含めて調べる必要があると考えられる。
 本研究では,ホンダワラ類のフェノロジーに伴う葉上動物群集の季節的な遷移の過程を明らかにすることを目的とした。第2章では,メイオベントスを含む葉上動物群集の動態について4年間の定期採集により得られたデータを解析するとともに,基質海藻を介した調査地周辺の海洋物理化学的環境との関係性を明らかにした。第3章では,葉上細菌叢の組成を細菌メタ16SrRNA遺伝子のアンプリコンシークエンスにより解析し,基質海藻のフェノロジーや海洋環境との関係性を明らかにした。第4章では,動物群集と細菌叢との関係性について論じた上で,葉上動物群集とそれを取り巻く環境の変化の全体を総括し,将来の藻場モニタリングについての展望を提示した。

この論文で使われている画像

参考文献

青木淳一 (1973) 土壌動物学. 北隆館, 東京

青木優和 (1988) ヤツマタモク群落内における葉上ワレカラ個体群の変動要因について(予報). ベントス研究会誌, 32: 42–49

青木優和 (1998) フクロエビ類の移動についての謎. 生物科学, 49: 219–227

青木優和 (2004) 流れ藻葉上動物の生態. 月刊海洋, 36: 469–473

Aguilar-Rosas R, Galindo AM (1990) Ecological aspects of Sargassum muticum (Fucales, Phaeophyta) in Baja California, Mexico: reproductive phenology and epiphytes. Hydrobiologia, 204: 185–190

赤池章一・瀧谷明郎・津田藤典 (2002) 北海道沿岸におけるコンブノネクイムシの出現状況 (短報). 北水試研報, 61: 25–28

Bachelet G (1990) The choice of a sieving mesh size in the quantitative assessment of marine macrobenthos: a necessary compromise between aims and constraints. Mar Environ Res, 30: 21–35

Bakti NS (2018) Comparative phenological studies of two Sargassum species on the western coast of Oshika Peninsula, northeastern Japan. Master thesis, Institute of Agricultural Science, Tohoku University

Bass D, Stentiford GD, Wang HC, Koskella B, Tyler CR (2019) The pathobiome in animal and plant diseases. Trends Ecol Evol, 34: 11

Belattmania Z, Chaouti A, Reani A, Machado M, Engelen AH, Serrão EÁ, Sabour B (2018) Similar epiphytic macrofauna inhabiting the introduced Sargassum muticum and native fucoids on the Atlantic coast of Morocco. Cryptogamie Algol, 39: 269–292

Bell SS, Walters K, Hall MO (1987) Habitat utilization by harpacticoid copepods: a morphometric approach. Mar Ecol Prog Ser, 35: 59–64

Bengtsson MM, Sjøtun K, Øvreås L (2010) Seasonal dynamics of bacterial biofilms on the kelp Laminaria hyperborean. Aquat Microb Ecol, 60: 71–83

Bjærke MR, Fredriksen S (2003) Epiphytic macroalgae on the introduced brown seaweed Sargassum muticum (Yendo) Fensholt (Phaeophyceae) in Norway. Sarsia, 88: 353–364 Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods, 10: 57–59

Booth WE (1987) Contribution by diatoms to marine algal host-epiphyte photosynthesis. Bot Mar, 30: 129–140

ter Braak CJF & Smilauer P (2002) CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5), Microcomputer Power, Ithaca, New York.

Bracken MES, Gonzalez-Dorantes CA, Stachowicz JJ (2007) Whole-community mutualism: associated invertebrates facilitate a dominant habitat-forming seaweed. Ecology, 88: 2211– 2219

Brancato MS, Woollacott RM (1982) Effect of microbial films on settlement of bryozoan larvae (Bugula simp lex, B. stolonifera and B. turrita). Mar Biol, 71: 51–56

Brawley SH (1992) Mesoherbivores. In: Plant-animal Interactions in the Marine Benthos, John DM, Hawkins SJ, Price JH (ed.), Clarendon Press, Oxford, pp. 235–263

Brawley SH, Adey WH (1981) Micrograzers may affect macroalgal density. Nature, 292: 177 Brown TJ, Sibert JR (1977) Food of some benthic harpacticoid copepods. J Fish Res Bd Can, 34: 1028–1031

Burke C, Thomas T, Lewis M, Steinberg P, Kjelleberg S (2011) Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. ISME J, 5: 590–600

Buschbaum C, Chapman AS, Saier B (2006) How an introduced seaweed can affect epibiota diversity in different coastal systems. Mar Biol, 148: 743–754

Campbell AH, Marzinelli EM, Gelber J, Steinberg PD (2015) Spatial variability of microbial assemblages associated with a dominant habitat-forming seaweed. Front Microbiol, 6: 230

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughout community sewuencing data. Nat Methods, 7: 335–336

Caposaro JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J, 6: 1621– 1624

Carvalho NF, Grande H, Filho JSR, Jacobucci GB (2018) The structure of gammarid amphipod (Crustacea, Peracarida) assemblages associated with Sargassum (Phaeophyta, Fucales) and their link with the structural complexity of algae. Hydrobiologia, 820: 245–254

Chemello R, Milazzo M (2002) Effect of algal architecture on associated fauna: some evidence from phytal molluscs. Mar Biol, 140: 981–990

Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol, 18: 117–143

Clarke KR, Gorley RN (2006) PRIMMER v6: user manual/tutorial. PRIMER-E Ltd. Plymouth Marine Laboratory, UK

Clements WH, Livington RJ (1984) Prey selectivity of the fringed filefish Monacanthus ciliatum (Pisces: Monacanthidae): role of prey accessibility. Mar Ecol Prog Ser, 16: 291–295

Coen LD, Heck KL, Abele LG (1981) Experiments on competition and predation among shrimps of seagrass meadows. Ecology, 62: 1484–1493

Curvelo RR, Corbisier TN (2000) The meiofauna associated with Sargassum cymosum at Lázaro Beach, Ubatuba, São Paulo. Rev Bras Ocearogr, 48: 119–130

Dahl E (1948) On the smaller Arthropoda of marine algae, especially in the polyhaline waters off the Swedish west coast. In: Undersokninger over Øresund, 35: 1–193

Dahms HU, Harder T, Qian PY (2007) Selective attraction and reproductive performance of a harpacticoid copepod in a response to biofilms. J Exp Mar Biol Ecol, 341: 228–238

Davenport AC, Anderson TW (2007) Positive indirect effects of reef fishes on kelp performance: the importance of mesograzers. Ecology, 88: 1548–1561

Duffy JE (1990) Amphipods on seaweeds: partners or pests? Oecologia, 83: 267–276

Duffy JE, Hay ME (2000) Strong impacts of grazing amphipods on the organization of a benthic community. Ecol Monogr, 70: 237–263

Edgar GJ (1983a) The ecology of south-east Tasmanian phytal animal communities. I. Spatial organization on a local scale. J Exp Mar Biol Ecol, 70: 129–157

Edgar GJ (1983b) The ecology of south-east Tasmanian phytal animal communities. II. Seasonal change in plant and animal populations. J Exp Mar Biol Ecol, 70: 159–179

Edgar GJ (1983c) The ecology of south-east Tasmanian phytal animal communities. IV. Factors affecting the distribution of ampithoid amphipods among algae. J Exp Mar Biol Ecol, 70: 205– 225

Edgar GJ (1990a) Population regulation, population dynamics and competition amongst mobile epifauna associated with seagrass. J Exp Mar Biol Ecol, 144: 205–234

Edgar GJ (1990b) The use of the size structure of benthic macrofaunal communities to estimate faunal biomass and secondary production. J Exp Mar Biol Ecol, 137: 195–214

Edgar GJ (1991) Artificial algae as habitats for mobile epifauna: factors affecting colonization in Japanese Sargassum bed. Hydrobiologia, 226: 111–118

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res, 32: 1792–1797

Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods, 10: 996–998

Edgar RC, Haas BJ, Clemente JC, Quince C, knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27: 2194–2200

Egan S, Gardiner M (2016) Microbial dysbiosis: rethinking disease in marine ecosystems. Front Microbiol, 7: 991

Egan S, Harder T, Burke C, Steinberg P, Kjelleberg S, Thomas T (2013) The seaweed holobiont: understanding seaweed-bacteria interactions. FEMS Microbiol Rev, 37: 462–476

Egan S, Fernandes ND, Kumar V, Gardiner M, Thomas T (2014) Bacterial pathogens, virulence mechanism and host defense in marine macroalgae. Environ Microbiol, 16: 925–938

Fenwick CD (1976) The effect of wave exposure on the amphipod fauna of the alga Caulerpa brownii. J Exp Mar Biol Ecol, 25: 1–18

Fernandes N, Steinberg P, Rusch D, Kjelleberg S, Thomas T (2012) Community structure and functional gene profile of bacteria on healthy and diseased thalli of the red seaweed Delisea pulchra. PLoS One, 7: e50854

Florez JZ, Camus C, Hengst MB, Buschmann AH (2017) A functional perspective analysis of macroalgae and epiphytic bacterial community interaction. Front Microbiol, 8: 2561

Fujii T, Kaneko K, Murata H, Yonezawa C, Katayama A, Kuraishi M, Nakayama Y, Takahashi D, Gomi Y, Abe H, Kijima A (2019) Spatio-temporal dynamics of benthic macrofaunal communities in relation to the recovery of coastal aquaculture operations following the 2011 Great East Japan Earthquake and Tsunami. Front Mar Sci, 5: 535

藤田大介・新井章吾・村瀬昇・田中次郎・渡辺孝夫・小善圭一・松村航・長谷川和清・千村貴子・佐々木美貴・松井香里 (2003) 氷見市虻が島周辺のガラモ場の垂直分布,生産構造および葉上動物相. 富山水試研報, 14: 43–60

布施慎一郎 (1962) ガラモ場における動物群集. 生理生態, 11: 23–45

Gee JM, Warwick RM (1994a) Metazoan community structure in relation to the fractal dimensions of marine macroalgae. Mar Ecol Prog Ser, 103: 141–150

Gee JM, Warwick RM (1994b) Body-size distribution in a marine metazoan community and the fractal dimensions of macroalgae. J Exp Mar Biol Ecol, 178: 247–259

Gestoso I, Olabarria C, Troncoso JS (2012) Effects of macroalgal identity on epifaunal assemblages: native species versus the invasive species Sargassum muticum. Helgol Mar Res, 66: 159–166

Gunnill FC (1982a) Macroalgae as habitat patch islands for Scutellidium lamellipes (Copepoda: Harpacticoida) and Ampithoe tea (Amphipoda: Gammaridae). Mar Biol, 69: 103–116

Gunnill FC (1982b) Effects of plant size and distribution on the numbers of invertebrate species and individuals inhabiting the brown alga Pelvetia fastigiata. Mar Biol, 69: 263–280

Gunnill FC (1983) Seasonal variations in the invertebrate faunas of Pelvetia fastigiate (Fucaceae): effects of plant size and distribution. Mar Biol, 115–130

Gibbons MJ (1988a) The impact of sediment accumulations, relative habitat complexity and elevation on rocky shore meiofauna. J Exp Mar Biol Ecol, 122: 225–241

Gibbons MJ (1988b) The impact of wave exposure on the meiofauna of Gelidium pristoides (Turner) Kuetzing (Gelidiales: Rhodophyta). Estuar Coast Shelf S, 27: 581–593

Gibbons MJ, Griffiths CL (1986) A comparison of macrofaunal and meiofaunal distribution and standing stock across a rocky shore, with an estimate of their productivities. Mar Biol, 93: 181– 188

Goecke F, Labes A, Wiese J, Imhoff JF (2010) Chemical interactions between marine macroalgae and bacteria. Mar Ecol Prog Ser, 409: 267–300

Gray JS (1966a) Factors controlling the localizations of populations of Protodrilus symbioticus Giard. J Anim Ecol, 35: 435–442

Gray JS (1966b) The attractive factor of intertidal sands to Protodrilus symbioticus Giard. J Mar Biol Assoc UK, 46: 627–645

Gray JS (1967a) Substrate selection by the archiannelid Protodrilus rubropharyngeus Jägersten. Helgoländer Wiss Meeresunters, 15: 253–269

Gray JS (1967b) Substrate selection by the archiannelid Protodrilus hypoleucos Armenante. J Exp Mar Biol Ecol, 1: 47–54

Gray JS (1968) An experimental approach to the ecology of the harpacticid Leptastacus constrictus Lang. J Exp Mar Biol Ecol, 2: 278–292

Gray JS, Johnson RM (1970) The bacteria of a sandy beach as an ecological factor affecting the interstitial gastrotrich Turbanella hyalina Schultze. J Exp Mar Biol Ecol, 4: 119–133

Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methé B, DeSantis TZ, The Human Microbiome Consortium, Petrosino JF, Knight R, Birren BW (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome research, 21: 494–504

Habe T (1960) Egg masses and egg capsules of some Japanese marine prosobranchiate gastropod. Bull Mar Biol Station Asamushi, 10: 121–126

Hagerman L (1966) The macro- and microfauna associated with Fucus serratus L., with some ecological remarks. Ophelia, 3: 1–43

Hayashi K, Mori J, Saito H, Hayashi T (2006) Antiviral targets of a chromene derivative from Sargassum micracanthum in the replication of human cytomegalovirus. Biol Pharm Bull, 29: 1843–1847

Heck KL, Thoman TA (1981) Experiments on predator-prey interactions in vegetated aquatic habitats. J Exp Mar Biol Ecol, 53: 125–134

Hicks GRF (1977a) Observations on substrate preference of marine phytal harpacticoids (Copepoda). Hydrobiologia, 56: 7–9

Hicks GRF (1977b) Species associations and seasonal population densities of marine phytal harpacticoid copepods from Cook Strait. N Z J Mar Freshw Res, 11: 621–643

Hicks GRF (1979) Pattern and strategy in the reproductive cycles of benthic harpacticoid copepods. In: Cyclic Phenomena in Marine Plants and Animals, Naylor E, Hartnoll RG (ed.), Pergamon Press, Oxford, pp. 139–147

Hicks GRF (1980) Structure of phytal harpacticoid copepod assemblages and the influence of habitat complexity and turbidity. J Exp Mar Biol Ecol, 44: 157–192

Hicks GRF (1985) Meiofauna associated with rocky shore algae. In: The Ecology of Rocky Coasts, Moore PG, Seed R (ed.), Hodder and Stoughton, London, pp. 36–56

Hicks GRF, Coull BC (1983) The ecology of marine meiobenthic harpacticoid copepods. Oceanogr Mar Biol, 21: 67–175

Hirst AJ (2007) Vertical stratification of mobile epiphytal arthropod assemblages between the canopy and understorey of subtidal macroalgae. Mar Biol, 150: 427–441

Hollants J, Leliaert F, Clerck OD, Willems A (2012) What we can learn from sushi: a review on seaweed-bacterial associations. FEMS Microbiol Ecol, 83: 1–16

Imada K, Hirayama A, Nojima S, Kikuchi T (1981) The microdistribution of phytal amphipods on Sargassum seaweeds. Res Crust, 11: 124–137

Imada K, Kikuchi T (1984) Studies on some reproductive traits of three caprellids (Crustacea: Amphipoda) and their seasonal fluctuations in the Sargassum bed. Pub Amakusa Mar Biol Lab, 7: 151-172

Ishida A, Sasaki K, Omori M, Taniguchi K (2002) Distribution patterns of the herbivorous gastropods Chlorostoma lischkei and Omphalius pfeifferi pfeifferi (Trochidae) in relation to the algal community on a rocky shore of the Oshika Peninsula, northeastern Japan. Benthos Res, 57: 1–10

Ishimaru S (1996) Taxonomic review of the family Biancolinidae (Amphipoda: Gammaridea), with description of a new species from Japan. J Crustac Biol, 16: 395–405

Ito K, Hamaguchi M, Inomata E, Agatsuma Y, Aoki MN (2019) Vertical distribution of epifauna on Sargassum horneri, with special reference to the occurrence of bivalve spat. Plankton Benthos Res, 14: 114–123

岩崎望 (2005) 海底でソコミジンコ類はどのように分布しているのか. カイアシ類学入門, 東海大学出版会, 神奈川県, pp. 219–242

Jacobucci GB, Tanaka MO, Leite FPP (2009) Temporal variation of amphipod assemblages associated with Sargassum filipendula (Phaeophyta) and its epiphytes in a subtropical shore. Aquat Ecol, 43: 1031–1040

Jacobucci GB, Vieira EA, Leite FPP (2019) influence of a narrow depth gradient on the spatial structure of Sargassum peracarid assemblages in Southeastern Brazil. Mar Biol, 49: 1001–1011

Jarvis SC, Seed R (1996) The meiofauna of Ascophyllum nodosum (L.) Le Jolis: characterization of the assemblages associated with two common epiphytes. J Exp Mar Biol Ecol, 199: 249–267

Jones DJ (1973) Variation in the trophic structure and species composition of some invertebrate communities in polluted kelp forests in the North Sea. Mar Biol, 20: 351–365

Johnson SC, Scheibling RE (1987) Structure and dynamics of epifaunal assemblages on intertidal macroalgae Ascophyllum nodosum and Fucus vesiculosus in Nova Scotia, Canada. Mar Ecol Prog Ser, 37: 209–227

環境省(2008)第7回自然環境保全基礎調査浅海域生態系調査(藻場調査)報告書.環境省自然環境局生物多様性センター

環境省(2013)平成24年度東北地方太平洋沿岸地域自然環境調査等業務,報告書.環境省自然環境局生物多様性センター

環境省(2014)平成25年度東北地方太平洋沿岸地域生態系監視調査,調査報告書.環境省自然環境局生物多様性センター

環境省(2015a)平成26年度東北地方太平洋沿岸地域生態系監視調査,調査報告書.環境省自然環境局生物多様性センター

環境省(2015b)平成26年度東北地方太平洋沿岸地域植生・海域等調査調査報告書.環境省自然環境局生物多様性センター

環境省(2016a)平成27年度東北地方太平洋沿岸地域生態系監視調査,調査報告書.環境省自然環境局生物多様性センター

環境省(2016b)平成27年度東北地方太平洋沿岸地域植生・海域等調査調査報告書.環境省自然環境局生物多様性センター

環境省(2017)平成28年度東北地方太平洋沿岸地域生態系監視調査,調査報告書.環境省自然環境局生物多様性センター

環境省(2018)平成29年度東北地方太平洋沿岸地域生態系監視調査,調査報告書.環境省自然環境局生物多様性センター

環境省(2019)平成30年度東北地方太平洋沿岸地域重点地区調査業務,調査報告書.環境省自然環境局生物多様性センター

Khailov KM, Burlakova ZP (1969) Release of dissolved organic matter by marine seaweeds and distribution of their total organic production to inshore communities. Limnol Oceanogr, 14: 521–527

菊池泰二 (1976) 藻場のベントス群集. 海藻・ベントス, 海洋科学基礎講座5, 東海大出版会, 東京, pp. 308–325

Kito K (1975) Preliminary Report on the Phytal Animals in the Sargassum confusum Region in Oshoro Bay, Hokkaido. Jour Fac Sci Hokkaido Univ Ser VI Zool, 20: 141–158

Kito K (1977) Phytal Animals in the Sargassum confusum Region in Oshoro Bay, Hokkaido: Phenology of Harpacticoid Copepods. Jour Fac Sci Hokkaido Univ Ser VI Zool, 20: 691–696

Kito K (1982) Phytal marine nematode assemblage on Sargassum confusum Agardh, with reference to the structure and seasonal fluctuations. Jour Fac Sci Hokkaido Univ Ser VI Zool, 23: 143– 161

Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing- based diversity studies. Nucleic Acids Res, 41: e1

Kodama M, Kawamura T, Nakamoto K, Hayakawa J, Kitagawa T, Watanabe Y (2017) A comparison of amphipod assemblages between canopy and understory strata in seaweed and seagrass beds off the coast of Otsuchi Bay, Japan. Biodiv Jour, 8: 471–473

Korpinen S, Jormalainen V, Honkanen T (2007) Bottom-up and cascading top-down control of macroalgae along a depth gradient. J Exp Mar Biol Ecol, 343: 52–63

倉持卓司 (2005) 相模湾におけるチグサガイの成長と個体数の季節変化. Jap Jour Malac, 63: 159–162

Lachnit T, Blümel M, Imhoff JF, Wahl M (2009) Specific epibacterial communities on macroalgae: phylogeny matters more than habitat. Aquat Biol, 5: 181–186

Lachnit T, Meske D, Wahl M, Harder T, Schmitz R (2011) Epibacterial community patterns on marine macroalgae are host-specific but temporally variable. Environ Microbiol, 13: 655–665

Lepš J, Šmilauer P (2003) Multivariate Analysis of Ecological Data using CANOCO. Cambridge University Press, Cambridge.

Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27: 2957–2963

Maki JS, Rittschof D, Costlow JD, Mitchell R (1988) Inhibition of attachment of larval barnacles, Balanus amphitrite, by bacterial surface films. Mar Biol, 97: 199–206

Maki JS, Rittschof D, Mitchell R (1992) Inhibition of larval barnacle attachment to bacterial films: an investigation of physical properties. Microbial Ecol, 23: 97–106

Mancuso FP, D’Hondt S, Willems A, Airoldi L, Clerck OD (2016) Diversity and Temporal Dynamics of the Epiphytic Bacterial Communities Associated with the Canopy-Forming Seaweed Cystoseira compressa (Esper) Gerloff and Nizamuddin. Front Microbiol, 7: 1–11

Mann KH (1982) Ecology of coastal waters: a systems approach. Blackwell Scientific Publications, Oxford, pp. 322

Martin-Smith KM (1993) Abundance of mobile epifauna: the role of habitat complexity and predation by fishes. J Exp Mar Biol Ecol, 174: 243–260

丸井満・稲井宏臣・吉田忠生 (1981) 北海道忍路湾におけるホンダワラ類の生長と成熟について. 藻類, 29: 277–281

Marzinelli EM, Campbell AH, Valdes EZ, Vergés A, Nielsen S, Wernberg T, Bettignies T, Bennett S, Caporaso JG, Thomas T, Steinberg PD (2015) Continental-scale variation in seaweed host- associated bacterial communities is a function of host condition, not geography. Environ Microbiol, 17: 4078–4088

McKenzie JD, Moore PG (1981) The microdistribution of animals associated with the bulbous holdfasts of Saccorhiza polyschides (Phaeophyta). Ophelia, 20: 201–213

Michelou VK, Caporaso JG, Knight R, Palumbi SR (2013) The ecology of microbial communities associated with Macrocystis pyrifera. PLoS One, 8: e67480

Miranda LN, Hutchison K, Grossman AR, Brawley SH (2013) Diversity and abundance of the bacterial community of the red macroalga Porphyra umbilicalis: did bacterial farmers produce macroalgae? PLoS One, 8: e58269

宮城県・東北電力 (株) (2020) 女川原子力発電所温排水調査結果,平成 30 年度. pp. 214–218

Moens T, Verbeeck L, De Maeyer A, Swings J, Vincx M (1999) Selective attraction of marine bacterivorous nematodes to their bacterial food. Mar Ecol Prog Ser, 176: 165–178

Montagna PA (1995) Rates of metazoan meiofaunal microbivory: a review. Vie Milieu, 45: 1–9 Moore PG (1973) The kelp fauna of north-east Britain. II. Multivariate classification; turbidity as an ecological factor. J Exp Mar Biol Ecol, 13: 127–163

Mukai H (1971) The phytal animals on the thalli of Sargassum serratifolium in the Sargassum region, with reference to their seasonal fluctuations. Mar Biol, 8: 170–182

向井宏(1976)ガラモ葉上の貝類について.貝類学雑誌,35:119–133

向井宏(1978)藻場における生物群集の理解―すみ場所をめぐる種間関係から―.ベントス研連誌,15/16:87–93

向井宏(1990)アマモ葉上性モエビ類のかくれがをめぐる競争と捕食者の役割.日本ベントス学会誌,39:9–14

向井宏(1994a)藻場(海中植物群落)の生物群集(3)―葉上生物群集のオーガニゼイション―.海洋と生物,16:99–102

向井宏(1994b)藻場(海中植物群落)の生物群集(5)―藻場構成植物と葉上性動物の相互作用―.海洋と生物,16:276–281

向井宏(1996)藻場(海中植物群落)の生物群集(8)―葉上動物の個体群動態―.海洋と生物,18:44–46

Mukai H, Ijima A (1995) Grazing effects of a gammaridean Amphipodam Amphitoe sp., on the seagrass Syringodium isoetifolium, and epiphytes in a tropical seagrass bed of Fiji. Ecol Res, 10: 243–257

Newcombe EM, Taylor RB (2010) Trophic cascade in a seaweed-epifauna-fish food chain. Mar Ecol Prog Ser, 408: 161–167

Nishihira M (1968) Dynamics of natural populations of epiphytic Hydrozoa with special reference to Sertularella miurensis Stechow. Bull Mar Biol Stn Asamushi, 13: 103–124

Noodt W (1971) Ecology of the Copepoda. Smithsonian Contributions to Zoology, 76: 97–102 Norderhaug KM, Fredriksen S, Nygaard K (2003) Trophic importance of Laminaria hyperborean to kelp forest consumers and the importance of bacterial degradation to food quality. Mar Ecol Prog Ser, 255: 135–144

Norton TA (1971) An ecological study of the fauna inhabiting the sublittoral marine alga Saccorhina polyschides (Lightf.) Bott. Hydrobiologia, 37: 215–231

Norton TA & Benson MR (1983) Ecological interactions between the brown seaweed Sargassum muticum and its associated fauna. Mar Biol, 75: 169–177

大野正夫(1985)概論:ガラモ場―その環境と水産資源的効用.月刊海洋科学,17:4–10

Orth RJ, van Montfrans J (1984) Epiphyte-seagrass relationship with an emphasis on the role of micrograzing: a review. Aquat Bot, 18: 43–69

Poore AGB, Watson MJ, de Nys R, Lowry JK, Steinberg PD (2000) Patterns of host use in alga- and sponge-associated amphipods. Mar Ecol Prog Ser, 208: 183–196

Poore AGB, Campbell AH, Coleman RA, Edgar GJ, Jormalainen V, Reynolds PL, Sotka EE, Stachowicz JJ, Taylor RB, Vanderklift MA, Duffy JE (2012) Global patterns in the impact of marine herbivores on benthic primary producers. Ecol Lett, 15: 912–922

Qian PY (1999) Larval settlement of polychaetes. Hydrobiologia, 402: 239–253

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res, 41: 590–596

Raffaelli DG, Mason CF (1981) Pollution monitoring with meiofauna, using the ratio of nematodes to copepods. Mar Pollut Bull, 12: 158–163

Rieper M (1978) Bacteria as food for marine harpacticoid copepods. Mar Biol, 45: 337–345 Rieper M (1982) Feeding preferences of marine harpacticoid copepods for various species of bacteria. Mar Ecol Prog Ser, 7: 303–307

Rohde S, Hiebenthal C, Wahl M, Karez R, Bischof K (2008) Decreased depth distribution of Fucus vesiculosus (Phaeophyceae) in the Western Baltic: effects of light deficiency and epibionts on growth and photosynthesis. Eur J Phycol, 43: 143–150

Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser, 243: 1–10

Ronsenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol, 5: 355–362

Sarma ALN (1974) The phytal fauna of Sargassum off Visakhapatnam coast. J Exp Mar Biol Ecol, 16: 741–755

Sánchez-Moyano JE, García-Adiego EM, Estacio FJ, García-Gómez JC (2000) Effect of environmental factors on the spatial distribution of the epifauna of the alga Halopteris scoparia in Algeciras Bay, southern Spain. Aquat Ecol, 34: 355–367

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Appl Environ Microbiol, 75: 7537–7541

Serebryakova A, Aires T, Viard F, Serrão EA, Engelen AH (2018) Summer shifts of bacterial communities associated with the invasive brown seaweed Sargassum muticum are location and tissue dependent. PLoS One, 13: 1–18

Shelyakin PV, Garushyants SK, Nikitin MA, Mudrova SV, Berumen M, Speksnijder AGCL, Hoeksema BW, Fontaneto D, Gelfand MS, Ivanenko VN (2018) Microbiomes of gall-inducing copepod crustaceans from the corals Stylophora pistillata (Scleractinia) and Gorgonia ventalina (Alcyonacea). Sci Rep, 8: 11563

Sheppard CRC, Bellamy DJ, Sheppard AL (1980) Study of the fauna inhabiting the holdfasts of Laminaria hyperborea (Gunn.) Fosl. along some environmental and geographical gradients. Mar Envir Res, 4: 25–51

Sieburth JMN (1969) Studies on algal substances in the sea. III. The production of extracellular organic matter by littoral marine algae. J Exp Mar Biol Ecol, 3: 290–309

島袋寛盛 (2018) 日本産温帯性ホンダワラ属,ヨレモクとアキヨレモク. 海洋と生物, 40: 566–573

Singh RP, Reddy CRK (2014) Seaweed-microbial interactions: key functions of seaweed-associated bacteria. FEMS Microbiol Ecol, 88: 213–230

Staufenberger T, Thiel V, Wiese J, Imhoff JF (2008) Phylogenic analysis of bacteria associated with Laminaria saccharina. FEMS Microbiol Ecol, 64: 65–77

Stoner AW (1979) Species-specific predation on amphipod Crustacea by the pinfish Lagodon rhomboides: mediation by macrophyte standing crop. Mar Biol, 55: 201–207

Suzuki H, Aoki T, Kubo Y, Endo H, Agatsuma Y, Aoki MN (2017) Distributional changes of the kelp community at a subtidal reef after the subsidence caused by the 2011 Tohoku Earthquake. Reg Stud Mar Sci 14: 73–83

Suzuki H, Aoki T, Inomata E, Agatsuma Y, Aoki MN (2021) Effect of breakwater restoration work following the subsidence caused by the 2011 Tohoku Earthquake on the subtidal kelp population. Phycol Res, 69: 3-11

鈴木由香莉・青木優和・島袋寛盛・堀越彩香・遠藤光・吾妻行雄(2015)ホンダワラ類葉上動物の群集特性についての解析―震災後女川湾調査からの検討―. 月刊海洋, 47:210–219

高場稔・溝上昭男 (1982) 安芸灘西部黒島におけるガラモ藻場の季節的消長と垂直分布. 広島水試研報, 12: 33–44

Tanaka MO, Leite FPP (1998) The effect of sieve mesh size on the abundance and composition of macrophyte-associated macrofaunal assemblages. Hydrobiologia, 389: 21–28

Tanaka MO, Leite FPP (2003) Spatial scaling in the distribution of macrofauna associated with Sargassum stenophyllum (Mertens) Martius: analyses of faunal groups, gammarid life habits, and assemblage structure. J Exp Mar Biol Ecol, 293: 1–22

谷口和也・山田悦正 (1978) 能登飯田湾の漸深帯における褐藻ヤツマタモクとノコギリモクの生態. 日水研報告, 29: 239–253

Taylor RB, Cole RG (1994) Mobile epifauna on subtidal brown seaweeds in northeastern New Zealand. Mar Ecol Prog Ser, 115: 271–282

Todd CD, Keough MJ (1994) Larval settlement in hard substratum epifaunal assemblages: a manipulative field study of the effects of substratum filming and the presence of incumbents. J Exp Mar Biol Ecol, 181: 159–187

富田恭司・水島敏博 (1984) 野付湾におけるアマモ葉上の貝類―I. 出現種と主要 3 種の成長―. Jap Jour Malac, 43: 331–338

Trotter DB, Webster JM (1984) Feeding preferences and seasonality of free-living marine nematodes inhabiting the kelp Macrocystis integrifolia. Mar Ecol Prog Ser, 14: 151–157

土屋勇太郎・Nishihara GN・寺田竜太 (2010) 鹿児島県桜島におけるホンダワラ属 4 種の季節変化と生長特性. 藻類, 58: 63

土屋勇太郎・坂口欣也・寺田竜太 (2011) 鹿児島湾桜島におけるホンダワラ属 (ヒバマタ目) 藻類 4 種,マメタワラ,ヤツマタモク,コブクロモク,キレバモクの季節的消長と生育環境. 藻類, 59: 1–8

Tsujimoto R, Terauchi G, Sasaki H, Sakamoto SX, Sawayama S, Sasa S, Yagi H, Komatsu T (2016) Damage to seagrass and seaweed beds in Matsushima Bay, Japan, caused by the huge tsunami of the Great East Japan Earthquake on 11 March 11. Int J Remote Sens, 37: 5843–5863

Tujula NA, Crocetti GR, Burke C, Thomas T, Holmström C, Kjellleberg S (2010) Variability and abundance of the epiphytic bacterial community associated with a green marine Ulvacean alga. ISME J, 4: 301–311

Umezaki I (1984) Ecological studies of Sargassum horneri (TURNER) C. Agardh in Obama Bay, Japan Sea. Nippon Suisan Gakk, 50: 1193–1200.

Ustach JF (1982) Algae, bacteria and detritus as food for the harpacticoid copepod, Heteropsyllus pseudonunni Coull and Palmer. J Exp Mar Biol Ecol, 64: 203–214

Viejo RM (1999) Mobile epifauna inhabiting the invasive Sargassum muticum and two local seaweeds in northern Spain. Aquat Bot, 64: 131–149

Warwick RM (1981) The nematode/copepod ratio and its use in pollution ecology. Mar Pollut Bull, 12: 329–333

Warwick RM (1984) Species size distributions in marine benthic communities. Oecologia, 61: 32– 41

Warwick RM (1986) A new method for detecting pollution effects on marine microbenthic communities. Mar Biol, 92: 557–562

Wernberg T, Thomsen MS, Staehr PA, Pedersen MF (2004) Epibiota communities of the introduced and indigenous macroalgal relatives Sargassum muticum and Halidrys siliquosa in Limfijorden (Denmark). Helgol Mar Res, 58: 154–161

Withers RG, Farnham WF, Lewey S, Jephson NA, Haythorn JM, Gray PWG (1975) The epibionts of Sargassum muticum in British waters. Mar Biol, 31: 79–86

山本智子・濱口昌巳・吉川浩二・寺脇利信 (1999) 植生の異なる実験藻場における生物群集の決定要因. 水産工学, 36: 1–10

八谷光介・清本節夫・吉村拓 (2011) 長崎県西彼杵半島西岸におけるホンダワラ属 3 種の季節的消長. 藻類, 59: 139–144

吉田吾郎 (2005) 広島湾における褐藻アカモクのフェノロジーとその個体群間分化に関する研究. 水研センター研報, 15: 27–126

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る