リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Neural Isoforms of Agrin Are Generated by Reduced PTBP1−RNA Interaction Network Spanning the Neuron−Specific Splicing Regions in AGRN」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Neural Isoforms of Agrin Are Generated by Reduced PTBP1−RNA Interaction Network Spanning the Neuron−Specific Splicing Regions in AGRN

Samira, Bushra 名古屋大学

2023.10.05

概要

主論文の要旨

Neural Isoforms of Agrin Are Generated by Reduced
PTBP1-RNA Interaction Network Spanning the
Neuron-Specific Splicing Regions in AGRN
AGRN遺伝子の神経特異的スプライシング領域に広がる
PTBP1-RNAネットワークが縮小することで、
Agrinの神経型アイソフォームが生成される

名古屋大学大学院医学系研究科
先端応用医学講座

総合医学専攻

神経遺伝情報学分野

(指導:大野 欽司
Samira Bushra

教授)

Background
Agrin is an extracellular matrix protein, expressed as multiple isoforms in diverse
tissues that play roles various cellular processes. Neuron-spec ific agrin isoforms are
generated through alternative splicing of AGRN pre-mRNA and are exclusively capable
of inducing acetylcholine receptor (AChR) clustering. Neuron-specific isoforms of agrin
are generated by alternative inclusion of three exons, called Y, Z8, and Z11 exons,
although their processing mechanisms remain elusive (Figure 1A). The 12-nt alternative
cassette Y exon encodes four amino acids that confer the interactions with heparin and
dystroglycan. Alternative inclusion and skipping of the Y exon generate the Y4 and Y0
isoforms, respectively (Figure 1A). Inclusion of Z8, Z11, and both Z8 and Z11 exons,
generate the Z8, Z11, and Z19 isoforms, respectively, which are crucial for AChR
clustering. Splicing of Y, Z8, and Z11 exons is coordinately re gulated in rat, resulting
in abundant expression of Y4Z8 and Y4Z19 isoforms and minimal expression of other
isoforms (Y4Z11 and Y0Z0/8/11/19) in neural tissues. In contrast, the Y0Z0 isoform is
widely expressed in non-neural tissues. Despite the essential r ole of the neural isoforms
of agrin in AChR clustering, the splicing regulating mechanism(s) to generate neuronspecific isoforms of agrin remain to be disclosed. In the present study, we dissected the
underlying mechanisms that regulate coordinate regulation of AGRN alternative splicing.
Methods
We employed RT-PCR, siRNA-mediated knockdown, site directed mutagenesis, cDNA
overexpression, tethered function assay, immunoblotting, in vitro binding assay and bioinformatic
analysis of eCLIP-seq and RNA-seq data to dissect the molecular mechanism that regulate
AGRN alternative splicing.
Results
We first analyzed the splicing patterns of Y and Z exons of AGRN in various human tissues
using RT-PCR and found Y and Z exons were included only in the human brain (Figure 1B).
Nested RT-PCR analysis from Y+/Y transcripts demonstrated coordinated splicing of the Y
exon with the Z exons (Figure 1B). Next, we induced neuronal differentiation of the SH-SY5Y
human neuroblastoma cell line and RT-PCR analysis showed that the inclusion of Y and Z
exons was gradually increased with neuronal differentiation (Figure 1C-G). These results
indicate that the Y, Z8, and Z11 exons are coordinately included in differentiated human
neuronal cells and in the human brain.
To identify splicing cis-element/s and cognate splicing trans-factor/s involved in the
alternative splicing of AGRN, we analyzed distribution of all possible di-nucleotide motifs
from exons 30 to 37 in the human AGRN gene, whereby exons 31, 35, and 36 are Y4, Z8, and
Z11 exons, respectively. We observed the enrichment of the CU/UC motif around Y, Z8, and

cis
AGRN

AGRN

AGRN

AGRN

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Burgess, R.W.; Skarnes, W.C.; Sanes, J.R. Agrin isoforms with distinct amino termini: Differential expression, localization, and

function. J. Cell Biol. 2000, 151, 41–52. [CrossRef] [PubMed]

Guarino, S.R.; Canciani, A.; Forneris, F. Dissecting the Extracellular Complexity of Neuromuscular Junction Organizers. Front.

Mol. Biosci. 2020, 6, 156. [CrossRef] [PubMed]

Reist, N.E.; Werle, M.J.; McMahan, U.J. Agrin released by motor neurons induces the aggregation of acetylcholine receptors at

neuromuscular junctions. Neuron 1992, 8, 865–868. [CrossRef] [PubMed]

Ferns, M.J.; Campanelli, J.T.; Hoch, W.; Scheller, R.H.; Hall, Z. The ability of agrin to cluster AChRs depends on alternative

splicing and on cell surface proteoglycans. Neuron 1993, 11, 491–502. [CrossRef] [PubMed]

Ohno, K.; Ohkawara, B.; Shen, X.-M.; Selcen, D.; Engel, A.G. Clinical and Pathologic Features of Congenital Myasthenic

Syndromes Caused by 35 Genes−A Comprehensive Review. Int. J. Mol. Sci. 2023, 24, 3730. [CrossRef]

Ohkawara, B.; Shen, X.-M.; Selcen, D.; Nazim, M.; Bril, V.; Tarnopolsky, A.M.; Brady, L.; Fukami, S.; Amato, A.A.; Yis, U.; et al.

Congenital myasthenic syndrome−associated agrin variants affect clustering of acetylcholine receptors in a domain−specific

manner. J. Clin. Investig. 2020, 5, e132023. [CrossRef]

Zhang, Z.; Pinto, A.; Wan, L.; Wang, W.; Berg, M.; Oliva, I.; Singh, L.; Dengler, C.; Wei, Z.; Dreyfuss, G. Dysregulation of

synaptogenesis genes antecedes motor neuron pathology in spinal muscular atrophy. Proc. Natl. Acad. Sci. USA 2013, 110,

19348–19353. [CrossRef]

Boido, M.; Amicis, E.; Valsecchi, V.; Trevisan, M.; Ala, U.; Ruegg, M.A.; Hettwer, S.; Vercelli, A. Increasing agrin function

antagonizes muscle atrophy and motor impairment in spinal muscular atrophy. Front. Cell. Neurosci. 2018, 12, 17. [CrossRef]

Kim, J.-K.; Caine, C.; Awano, T.; Herbst, R.; Monani, U.R. Motor neuronal repletion of the NMJ organizer, Agrin, modulates the

severity of the spinal muscular atrophy disease phenotype in model mice. Hum. Mol. Genet. 2017, 26, 2377–2385. [CrossRef]

Hoch, W.; Ferns, M.; Campanelli, J.T.; Hall, Z.W.; Scheller, R.H. Developmental regulation of highly active alternatively spliced

forms of agrin. Neuron 1993, 11, 479–490. [CrossRef]

Ohno, K.; Rahman, M.A.; Nazim, M.; Nasrin, F.; Lin, Y.; Takeda, J.I.; Masuda, A. Splicing regulation and dysregulation of

cholinergic genes expressed at the neuromuscular junction. J. Neurochem. 2017, 142, 64–72. [CrossRef] [PubMed]

Ruggiu, M.; Herbst, R.; Kim, N.; Jevesk, M.; Fak, J.J.; Mann, M.; Fischbach, G.; Burden, S.; Darnell, R. Rescuing Z+ agrin splicing

in Nova null mice restores synapse formation and unmasks a physiologic defect in motor neuron firing. Proc. Natl. Acad. Sci.

USA 2009, 106, 3513–3518. [CrossRef] [PubMed]

Burgess, R.W.; Nguyen, Q.T.; Son, Y.-J.; Lichtman, J.W.; Sanes, J.R. Alternatively Spliced Isoforms of Nerve− and Muscle−Derived

Agrin. Neuron 1999, 23, 33–44. [CrossRef] [PubMed]

Ma, E.; Morgan, R.; Godfrey, E. Distribution of agrin mRNAs in the chick embryo nervous system. J. Neurosci. 1994, 14, 2943–2952.

[CrossRef]

Nikolaou, N.; Gordon, P.M.; Hamid, F.; Taylor, R.; Lloyd, J.-J.; Makeyev, E.V.; Houart, C. Cytoplasmic pool of U1 spliceosome

protein SNRNP70 shapes the axonal transcriptome and regulates motor connectivity. Curr. Biol. 2022, 32, 5099–5115. [CrossRef]

Gesemann, M.; Denzer, A.J.; Ruegg, M.A. Acetylcholine receptor−aggregating activity of agrin isoforms and mapping of the

active site. J. Cell Biol. 1995, 128, 625–636. [CrossRef]

Wei, N.; Lin, C.Q.; Modafferi, E.F.; Gomes, W.A.; Black, D.L. A unique intronic splicing enhancer controls the inclusion of the

agrin Y exon. RNA 1997, 3, 1275–1288.

Saulière, J.; Sureau, A.; Expert−Bezançon, A.; Marie, J. The polypyrimidine tract binding protein (PTB) represses splicing of exon

6B from the beta−tropomyosin pre−mRNA by directly interfering with the binding of the U2AF65 subunit. J. Cell Biol. 2006, 26,

8755–8769. [CrossRef]

Int. J. Mol. Sci. 2023, 24, 7420

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

16 of 17

Lamichhane, R.; Daubner, G.M.; Thomas−Crusells, J.; Auweter, S.D.; Manatschal, C.; Austin, K.S.; Valniuk, O.; Allain, F.H.-T.;

Rueda, D. RNA looping by PTB: Evidence using FRET and NMR spectroscopy for a role in splicing repression. Proc. Natl. Acad.

Sci. USA 2010, 107, 4105–4110. [CrossRef]

Wagner, E.J.; Garcia−Blanco, M.A. Polypyrimidine tract binding protein antagonizes exon definition. Mol. Cell. Biol. 2001, 21,

3281–3288. [CrossRef]

Ashiya, M.; Grabowski, P.J. A neuron−specific splicing switch mediated by an array of pre−mRNA repressor sites: Evidence of

a regulatory role for the polypyrimidine tract binding protein and a brain−specific PTB counterpart. RNA 1997, 3, 996–1015.

[PubMed]

Boutz, P.L.; Stoilov, P.; Li, Q.; Lin, C.; Chawla, G.; Ostrow, K.; Shiue, L.; Ares, M.; Black, D.L. A post−transcriptional regulatory

switch in polypyrimidine tract−binding proteins reprograms alternative splicing in developing neurons. Genes Dev. 2007, 21,

1636–1652. [CrossRef] [PubMed]

Coutinho−Mansfield, G.C.; Xue, Y.; Zhang, Y.; Fu, X.-D. PTB/nPTB switch: A post−transcriptional mechanism for programming

neuronal differentiation. Genes Dev. 2007, 21, 1573–1577. [CrossRef] [PubMed]

Lonsdale, J.; Thomas, J.; Salvatore, M.; Phillips, R.; Lo, E.; Shad, S. The Genotype−Tissue Expression (GTEx) project. Nat. Genet.

2013, 45, 580–585. [CrossRef] [PubMed]

Mallet, J.; Houhou, L.; Pajak, F.; Oda, Y.; Cervini, R.; Bejanin, S.; Berrard, S. The cholinergic locus: ChAT and VAChT genes.

J. Physiol. 1998, 92, 145–147. [CrossRef] [PubMed]

Takase, K.; Mitsushima, D.; Funabashi, T.; Kimura, F. Sex difference in the 24−h acetylcholine release profile in the premotor/supplementary motor area of behaving rats. Brain Res. 2007, 1154, 105–115. [CrossRef] [PubMed]

Amir−Ahmady, B.; Boutz, P.L.; Markovtsov, V.; Phillips, M.L.; Black, D.L. Exon repression by polypyrimidine tract binding

protein. RNA 2005, 11, 699–716. [CrossRef]

Luo, Y.; Hitz, B.C.; Gabdank, I.; A Hilton, J.; Kagda, M.S.; Lam, B.; Myers, Z.; Sud, P.; Jou, J.; Lin, K.; et al. New developments on

the Encyclopedia of DNA Elements (ENCODE) data portal. Nucleic Acids Res. 2019, 48, D882–D889. [CrossRef]

Robinson, J.T.; Thorvaldsdóttir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative genomics viewer.

Nat. Biotechnol. 2011, 29, 24–26. [CrossRef]

Van Nostrand, E.L.; Freese, P.; Pratt, G.A.; Wang, X.; Wei, X.; Xiao, R.; Blue, S.M.; Chen, J.-Y.; Cody, N.A.L.; Dominguez, D.; et al.

A large−scale binding and functional map of human RNA−binding proteins. Nature 2020, 583, 711–719. [CrossRef]

Piva, F.; Giulietti, M.; Burini, A.B.; Principato, G. SpliceAid 2: A database of human splicing factors expression data and RNA

target motifs. Hum. Mutat. 2011, 33, 81–85. [CrossRef] [PubMed]

Spellman, R.; Llorian, M.; Smith, C.W.J. Crossregulation and Functional Redundancy between the Splicing Regulator PTB and Its

Paralogs nPTB and ROD1. Mol. Cell 2007, 27, 420–434. [CrossRef] [PubMed]

Oberstrass, F.C.; Auweter, S.D.; Erat, M.; Hargous, Y.; Henning, A.; Wenter, P.; Reymond, L.; Amir−Ahmady, B.; Pitsch, S.; Black,

D.L.; et al. Structure of PTB bound to RNA: Specific binding and implications for splicing regulation. Science 2005, 309, 2054–2057.

[CrossRef] [PubMed]

Liu, H.; Zhang, W.; Reed, R.B.; Liu, W.; Grabowski, P.J. Mutations in RRM4 uncouple the splicing repression and RNA−binding

activities of polypyrimidine tract binding protein. RNA 2002, 8, 137–149. [CrossRef]

Zhang, H.; Sathyamurthy, A.; Liu, F.; Li, L.; Zhang, L.; Dong, Z.; Cui, W.; Sun, X.; Zhao, K.; Wang, H.; et al. Agrin−Lrp4−Ror2

signaling regulates adult hippocampal neurogenesis in mice. Elife 2019, 8, e45303. [CrossRef]

Kim, M.J.; Liu, I.; Song, Y.; Lee, J.; Halfter, W.; Balice−Gordon, R.J.; Linney, E.; Cole, G.J. Agrin is required for posterior

development and motor axon outgrowth and branching in embryonic zebrafish. Glycobiology 2006, 17, 231–247. [CrossRef]

Irimia, M.; Weatheritt, R.J.; Ellis, J.D.; Parikshak, N.N.; Gonatopoulos−Pournatzis, T.; Babor, M.; Quesnel−Vallières, M.; Tapial, J.;

Raj, B.; O’hanlon, D.; et al. A Highly Conserved Program of Neuronal Microexons Is Misregulated in Autistic Brains. Cell 2014,

159, 1511–1523. [CrossRef] [PubMed]

Porter, R.S.; Jaamour, F.; Iwase, S. Neuron−specific alternative splicing of transcriptional machineries: Implications for neurodevelopmental disorders. Mol. Cell. Neurosci. 2018, 87, 35–45. [CrossRef]

Li, Y.I.; Sanchez−Pulido, L.; Haerty, W.; Ponting, C.P. RBFOX and PTBP1 proteins regulate the alternative splicing of micro−exons

in human brain transcripts. Genome Res. 2014, 25, 1–13. [CrossRef]

Cereda, M.; Pozzoli, U.; Rot, G.; Juvan, P.; Schweitzer, A.; Clark, T.; Ule, J. RNAmotifs: Prediction of multivalent RNA motifs that

control alternative splicing. Genome Biol. 2014, 15, R20. [CrossRef]

Pina, J.M.; Hernandez, L.A.; Keppetipola, N.M. Polypyrimidine tract binding proteins PTBP1 and PTBP2 interact with distinct

proteins under splicing conditions. PLoS ONE 2022, 17, e0263287. [CrossRef] [PubMed]

Hamid, F.M.; Makeyev, E.V. A mechanism underlying position−specific regulation of alternative splicing. Nucleic Acids Res. 2017,

45, 12455–12468. [CrossRef] [PubMed]

Ye, R.; Hu, N.; Cao, C.; Su, R.; Xu, S.; Yang, C.; Zhou, X.; Xue, Y. Capture RIC−seq reveals positional rules of PTBP1−associated

RNA loops in splicing regulation. Mol. Cell 2023, 83, 1–17. [CrossRef] [PubMed]

Beusch, I.; Barraud, P.; Moursy, A.; Cléry, A.; Allain, F.H.-T. Tandem hnRNP A1 RNA recognition motifs act in concert to repress

the splicing of survival motor neuron exon 7. Elife 2017, 6, e25736. [CrossRef] [PubMed]

Int. J. Mol. Sci. 2023, 24, 7420

45.

46.

47.

48.

49.

50.

17 of 17

Spendiff, S.; Howarth, R.; McMacken, G.; Davey, T.; Quinlan, K.; O’Connor, E.; Slater, C.; Hettwer, S.; Mäder, A.; Roos, A.; et al.

Modulation of the Acetylcholine Receptor Clustering Pathway Improves Neuromuscular Junction Structure and Muscle Strength

in a Mouse Model of Congenital Myasthenic Syndrome. Front. Mol. Neurosci. 2020, 13, 594220. [CrossRef]

Li, Z.; Li, M.; Wood, K.; Hettwer, S.; Muley, S.; Shi, F.; Liu, Q.; Ladha, S. Engineered agrin attenuates the severity of experimental

autoimmune myasthenia gravis. Muscle Nerve 2017, 57, 814–820. [CrossRef]

Havens, M.A.; Hastings, M.L. Splice−switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res. 2016, 44,

6549–6563. [CrossRef]

Masuda, A.; Shen, X.-M.; Ito, M.; Matsuura, T.; Engel, A.G.; Ohno, K. hnRNP H enhances skipping of a nonfunctional exon P3A

in CHRNA1 and a mutation disrupting its binding causes congenital myasthenic syndrome. Hum. Mol. Genet. 2008, 17, 4022–4035.

[CrossRef]

Rahman, M.A.; Masuda, A.; Ohe, K.; Ito, M.; Hutchinson, D.O.; Mayeda, A.; Engel, A.G.; Ohno, K. HnRNP L and hnRNP LL

antagonistically modulate PTB−mediated splicing suppression of CHRNA1 pre−Mrna. Sci. Rep. 2013, 3, srep02931. [CrossRef]

Rahman, M.A.; Azuma, Y.; Nasrin, F.; Takeda, J.I.; Nazim, M.; Ahsan, K.B.; Masuda, A.; Engel, A.G.; Ohno, K. SRSF1 and hnRNP

H antagonistically regulate splicing of COLQ exon 16 in a congenital myasthenic syndrome. Sci. Rep. 2015, 5, 13208. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る