リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of Unique Switching Systems Based on Multifunctional Hydrocarbons with Dibenzo-Fused Seven-Membered Rings」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of Unique Switching Systems Based on Multifunctional Hydrocarbons with Dibenzo-Fused Seven-Membered Rings

林, 裕貴 北海道大学

2023.03.23

概要

1-1. Well-Designed π-Conjugated Hydrocarbon Scaffolds
Rigid π-conjugated carbon scaffolds are important components that can determine the
fundamental characteristics of organic molecules, such as their geometries and physical properties.
The arrangement of carbon atoms involving π-conjugation and the modification of substituents
and fused-ring structures responsible for localization and/or delocalization of π-electrons can
control properties such as color, luminescence behavior, electrochemical properties, magnetism,
and reactivity of the molecules. ...

この論文で使われている画像

参考文献

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

Martin, R. E.; Diederich, F. Linear Monodisperse π-Conjugated Oligomers: Model

Compounds for Polymers and More. Angew. Chem. Int. Ed. 1999, 38, 1350–1377, DOI:

10.1002/(SICI)1521-3773(19990517)38:10<1350::AID-ANIE1350>3.0.CO;2-6.

Yamaguchi, Y.; Takubo, M.; Ogawa, K.; Nakayama, K.; Koganezawa, T.; Katagiri, H.

Terazulene Isomers: Polarity Change of OFETs through Molecular Orbital Distribution

Contrast. J. Am. Chem. Soc. 2016, 138, 11335–11343, DOI: 10.1021/jacs.6b06877.

Ivanov, M. V.; Thakur, K.; Boddeda, A.; Wang, D.; Rathore, R. Nodal Arrangement of

HOMO Controls the Turning On/Off the Electronic Coupling in Isomeric Polypyrene

Wires. J. Phys. Chem. C 2017, 121, 9202–9208, DOI: 10.1021/acs.jpcc.7b02264.

Ivanov, M. V.; Wang, D.; Rathore, R. From Static to Dynamic: Electron Density of

HOMO at Biaryl Linkage Controls the Mechanism of Hole Delocalization. J. Am. Chem.

Soc. 2018, 140, 4765–4769, DOI: 10.1021/jacs.8b00466.

Matsuno, T.; Ohtomo, Y.; Someya, M.; Isobe, H. Stereoselectivity in Spontaneous

Assembly of Rolled Incommensurate Carbon Bilayers. Nat. Commun. 2021, 12, 1575,

DOI: 10.1038/s41467-021-21889-8.

Liess, P.; Hensel, V.; Schlüter, A.-D. Oligophenylene Rods: A Repetitive Approach.

Liebigs Ann. 1996, 1037–1040, DOI: 10.1002/jlac.199619960703.

Lightowler, S.; Hird, M. Monodisperse Aromatic Oligomers of Defined Structure and

Large Size through Selective and Sequential Suzuki Palladium-Catalyzed CrossCoupling Reactions. Chem. Mater. 2005, 17, 5538–5549, DOI: 10.1021/cm0512068.

Banerjee, M.; Shukla, R.; Rathore, R. Synthesis, Optical, and Electronic Properties of

Soluble Poly-p-Phenylene Oligomers as Models for Molecular Wires. J. Am. Chem.

Soc. 2009, 131, 1780–1786, DOI: 10.1021/ja805102d.

Abdulkarim, A.; Hinkel, F.; Jänsch, D.; Freudenberg, J.; Golling, F. E.; Müllen, K. A

New Solution to an Old Problem: Synthesis of Unsubstituted Poly(Para-Phenylene). J.

Am. Chem. Soc. 2016, 138, 16208–16211, DOI: 10.1021/jacs.6b10254.

Darzi, E. R.; Jasti, R. The Dynamic, Size-Dependent Properties of

[5]–[12]Cycloparaphenylenes. Chem. Soc. Rev. 2015, 44, 6401–6410, DOI:

10.1039/C5CS00143A.

Kayahara, E.; Kouyama, T.; Kato, T.; Yamago, S. Synthesis and Characterization of

[n]CPP (n = 5, 6, 8, 10, and 12) Radical Cation and Dications: Size-Dependent

Absorption, Spin, and Charge Delocalization. J. Am. Chem. Soc. 2016, 138, 338–344,

DOI: 10.1021/jacs.5b10855.

Segawa, Y.; Levine, D. R.; Itami, K. Topologically Unique Molecular Nanocarbons. Acc.

Chem. Res. 2019, 52, 2760–2767, DOI: 10.1021/acs.accounts.9b00402.

Li, Y.; Kono, H.; Maekawa, T.; Segawa, Y.; Yagi, A.; Itami, K. Chemical Synthesis of

Carbon Nanorings and Nanobelts. Acc. Mater. Res. 2021, 2, 681–691,

DOI:10.1021/accountsmr.1c00105.

Ikemoto, K.; Akiyoshi, M.; Mio, T.; Nishioka, K.; Sato, S.; Isobe, H. Synthesis of a

Negatively Curved Nanocarbon Molecule with an Octagonal Omphalos via Design‐

of‐Experiments Optimizations Supplemented by Machine Learning. Angew. Chem. Int.

Ed. 2022, 61, e202204035, DOI: 10.1002/anie.202204035.

Ni, Y.; Gordillo-Gámez, F.; Peña Alvarez, M.; Nan, Z.; Li, Z.; Wu, S.; Han, Y.; Casado,

J.; Wu, J. A Chichibabin’s Hydrocarbon-Based Molecular Cage: The Impact of

Structural Rigidity on Dynamics, Stability, and Electronic Properties. J. Am. Chem. Soc.

2020, 142, 12730–12742, DOI: 10.1021/jacs.0c04876.

Tsubaki, K.; Miura, M.; Morikawa, H.; Tanaka, H.; Kawabata, T.; Furuta, T.; Tanaka,

K.; Fuji, K. Synthesis of Optically Active Oligonaphthalenes via Second-Order

147

Chapter 4

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

Asymmetric Transformation. J. Am. Chem. Soc. 2003, 125, 16200–16201, DOI:

10.1021/ja038910e.

Tsubaki, K. Synthesis and Properties of the Chiral Oligonaphthalenes. Org. Biomol.

Chem. 2007, 5, 2179, DOI: 10.1039/b703558f.

Faggi, E.; Sebastián, R. M.; Pleixats, R.; Vallribera, A.; Shafir, A.; Rodríguez-Gimeno,

A.; Ramírez de Arellano, C. Direct Assembly of Polyarenes via C−C Coupling Using

PIFA/BF 3 ·Et 2 O. J. Am. Chem. Soc. 2010, 132, 17980–17982, DOI:

10.1021/ja107467c.

Guo, W.; Faggi, E.; Sebastián, R. M.; Vallribera, A.; Pleixats, R.; Shafir, A. Direct

Arylation of Oligonaphthalenes Using PIFA/BF 3 ·Et 2 O: From Double Arylation to

Larger Oligoarene Products. J. Org. Chem. 2013, 78, 8169–8175, DOI:

10.1021/jo401001k.

Takaishi, K.; Iwachido, K.; Takehana, R.; Uchiyama, M.; Ema, T. Evolving

Fluorophores into Circularly Polarized Luminophores with a Chiral Naphthalene

Tetramer: Proposal of Excimer Chirality Rule for Circularly Polarized Luminescence.

J. Am. Chem. Soc. 2019, 141, 6185–6190, DOI: 10.1021/jacs.9b02582.

Yagi, A.; Segawa, Y.; Itami, K. Synthesis and Properties of [9]Cyclo-1,4-Naphthylene:

A π-Extended Carbon Nanoring. J. Am. Chem. Soc. 2012, 134, 2962–2965, DOI:

10.1021/ja300001g.

Nojima, Y.; Hasegawa, M.; Hara, N.; Imai, Y.; Mazaki, Y. Stereogenic Cyclic

Oligonaphthalenes Displaying Ring Size-Dependent Handedness of Circularly

Polarized Luminescence (CPL). Chem. Commun. 2019, 55, 2749–2752, DOI:

10.1039/C8CC08929A.

Matsuno, T.; Fukunaga, K.; Kobayashi, S.; Sarkar, P.; Sato, S.; Ikeda, T.; Isobe, H.

Crystalline Naphthylene Macrocycles Capturing Gaseous Small Molecules in Chiral

Nanopores. Chem. Asian J. 2020, 15, 3829–3835, DOI: 10.1002/asia.202000876.

Collin, G.; Höke, H.; Talbiersky, J. Anthracene. In Ullmann’s Encyclopedia of Industrial

Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006, DOI:

10.1002/14356007.a02_343.pub2.

Huang, J.; Su, J.-H.; Tian, H. The Development of Anthracene Derivatives for Organic

Light-Emitting Diodes. J. Mater. Chem. 2012, 22, 10977–10989, DOI:

10.1039/c2jm16855c.

Chen, M.; Yan, L.; Zhao, Y.; Murtaza, I.; Meng, H.; Huang, W. Anthracene-Based

Semiconductors for Organic Field-Effect Transistors. J. Mater. Chem. C 2018, 6, 7416–

7444, DOI: 10.1039/C8TC01865K.

Dumur, F. Recent Advances on Anthracene-Based Photoinitiators of Polymerization.

Eur. Polym. J. 2022, 169, 111139, DOI: 10.1016/j.eurpolymj.2022.111139.

Yoshizawa, M.; Klosterman, J. K. Molecular Architectures of Multi-Anthracene

Assemblies. Chem. Soc. Rev. 2014, 43, 1885–1898, DOI: 10.1039/C3CS60315F.

Toyota, S.; Tsurumaki, E. Exploration of Nano-Saturns: A Spectacular Sphere-Ring

Supramolecular System. Chem. Eur. J. 2019, 25, 6878–6890, DOI:

10.1002/chem.201900039.

Nishiuchi, T.; Kisaka, K.; Kubo, T. Synthesis of Anthracene ‐ Based Cyclic Π ‐

Clusters and Elucidation of Their Properties Originating from Congested Aromatic

Planes. Angew. Chem. Int. Ed. 2021, 60, 5400–5406, DOI: 10.1002/anie.202013349.

Weber, E.; Ahrendt, J.; Czugler, M.; Csöregh, I. Selective Inclusion and Separation of

Isomeric and Homologous Hydrocarbons by Hydrocarbon Host Lattices. Angew. Chem.

Int. Ed. Engl. 1986, 25, 746–748, DOI: 10.1002/anie.198607461.

148

Chapter 4

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

Bock, H.; John, A.; Christian, N.; Havlas, Z. Electron Transfer and Ion Pair Formation,

34 [1-3] Single Crystal Structure of the Solvent-Separated Ion Pair [9,9’Bianthryl][Na(DME)3]. Zeitschrift für Naturforsch. B 1994, 49, 1339–1347.

Kyzioł, J. B.; Zaleski, J. 9,9′-Bianthracenyl. Acta Crystallogr. Sect. E Struct. Reports

Online 2007, 63, o1235–o1237, DOI: 10.1107/S160053680700339X.

Manna, B.; Nandi, A.; Chandrakumar, K. R. S. Comparative Study of Exciton Dynamics

in 9,9′-Bianthracene Nanoaggregates and Thin Films: Observation of Singlet–Singlet

Annihilation-Mediated Triplet Exciton Formation. J. Phys. Chem. C 2022, 126, 10762–

10771, DOI: 10.1021/acs.jpcc.2c03356.

Wang, L.; Zhang, L.; Fang, Y.; Zhao, Y.; Tan, G.; Wang, X. Orthogonal Oriented

Bisanthrancene ‐ Bridged Bis(Triarylamine) Diradical Dications: Isolation,

Characterizations and Crystal Structures. Chem. Asian J. 2019, 14, 1708–1711, DOI:

10.1002/asia.201801816.

Pu, Y.-J.; Satake, R.; Koyama, Y.; Otomo, T.; Hayashi, R.; Haruta, N.; Katagiri, H.;

Otsuki, D.; Kim, D.; Sato, T. Absence of Delayed Fluorescence and Triplet–Triplet

Annihilation in Organic Light Emitting Diodes with Spatially Orthogonal Bianthracenes.

J. Mater. Chem. C 2019, 7, 2541–2547, DOI: 10.1039/C8TC05817B.

Jiménez, V. G.; Mayorga-Burrezo, P.; Blanco, V.; Lloveras, V.; Gómez-García, C. J.;

Šolomek, T.; Cuerva, J. M.; Veciana, J.; Campaña, A. G. Dibenzocycloheptatriene as

End-Group of Thiele and Tetrabenzo-Chichibabin Hydrocarbons. Chem. Commun. 2020,

56, 12813–12816, DOI: 10.1039/D0CC04489J.

Mateo, L. M.; Sun, Q.; Liu, S.; Bergkamp, J. J.; Eimre, K.; Pignedoli, C. A.; Ruffieux,

P.; Decurtins, S.; Bottari, G.; Fasel, R.; Torres, T. On ‐ Surface Synthesis and

Characterization of Triply Fused Porphyrin–Graphene Nanoribbon Hybrids. Angew.

Chem. Int. Ed. 2020, 59, 1334–1339, DOI: 10.1002/anie.201913024.

Okayasu, M.; Kikkawa, S.; Hikawa, H.; Azumaya, I. Co-Crystals of 9,9′-Bianthracene10,10′-Dicarboxylic Acid with Linear Bidentate Basic Ligand Molecules: Synthesis,

Crystal Structure, and Properties Based on the Layer Structure Exfoliated by Water.

CrystEngComm 2020, 22, 497–505, DOI: 10.1039/C9CE01460H.

Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W. Structural Changes Accompanying

Intramolecular Electron Transfer: Focus on Twisted Intramolecular Charge-Transfer

States and Structures. Chem. Rev. 2003, 103, 3899–4032, DOI: 10.1021/cr940745l.

Müllen, K.; Baumgarten, M.; Tyutyulkov, N.; Karabunarliev, S. A Class of NarrowBand High-Spin Organic Polymers I. Polymers with Direct Exchange Interaction

between Orthogonal π-Orbitals. Synth. Met. 1991, 40, 127–135, DOI: 10.1016/03796779(91)91495-V.

Baumgarten, M.; Müller, U.; Bohnen, A.; Müllen, K. Oligo(9,10-Anthrylenes), Organic

Compounds with Stable High-Spin States. Angew. Chem. Int. Ed. Engl. 1992, 31 (4),

448–451, DOI: 10.1002/anie.199204481.

Müller, U.; Adam, M.; Müllen, K. Synthesis and Characterization of Soluble

Oligo(9,10 ‐ anthrylene)S. Chem. Ber. 1994, 127, 437–444, DOI:

10.1002/cber.19941270221.

Fritz, R.; Rettig, W.; Nishiyama, K.; Okada, T.; Müller, U.; Müllen, K. Excitonic and

Charge Transfer States in Oligomeric 9,10-Anthrylene Chains. J. Phys. Chem. A 1997,

101, 2796–2802, DOI: 10.1021/jp9639814.

Nishiyama, K.; Honda, T.; Reis, H.; Müller, U.; Müllen, K.; Baumann, W.; Okada, T.

Electronic Structures of 9,10-Anthrylene Dimers and Trimers in Solution: Formation of

Charge Separation States Depending on Alkyl Substituent Groups. J. Phys. Chem. A

1998, 102, 2934–2943, DOI: 10.1021/jp973251b.

149

Chapter 4

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

Mueller, U.; Baumgarten, M. Novel Oligo(9,10-Anthrylene)s: Models for Electron

Transfer and High-Spin Formation. J. Am. Chem. Soc. 1995, 117 (21), 5840–5850, DOI:

10.1021/ja00126a024.

Adeloye, A. O.; Ajibade, P. A. Synthesis and Characterization of a Heteroleptic Ru(II)

Complex of Phenanthroline Containing Oligo-Anthracenyl Carboxylic Acid Moieties.

Int. J. Mol. Sci. 2010, 11, 3158–3176, DOI: 10.3390/ijms11093158.

Adeloye, A. O.; Ajibade, P. A. Synthesis, Characterization and Preliminary Investigation

of the Electro Redox Properties of Anthracenyl-Functionalized Terpyridyl Ligands.

Tetrahedron Lett. 2011, 52, 274–277, DOI: 10.1016/j.tetlet.2010.11.022.

Lim, Z.; Zheng, B.; Huang, K.-W.; Liu, Y.; Wu, J. Quinoidal Oligo(9,10-Anthryl)s with

Chain-Length-Dependent Ground States: A Balance between Aromatic Stabilization

and Steric Strain Release. Chem. Eur. J. 2015, 21, 18724–18729, DOI:

10.1002/chem.201503033.

Hirao, Y.; Konishi, A.; Kubo, T. Anthroxyl-Based Biradical: Toward the Construction

of Highly Stable Multi-Spin Systems. Org. Chem. Front. 2017, 4, 828–833, DOI:

10.1039/C7QO00130D.

Sun, Q.; Yao, X.; Gröning, O.; Eimre, K.; Pignedoli, C. A.; Müllen, K.; Narita, A.; Fasel,

R.; Ruffieux, P. Coupled Spin States in Armchair Graphene Nanoribbons with

Asymmetric Zigzag Edge Extensions. Nano Lett. 2020, 20, 6429–6436, DOI:

10.1021/acs.nanolett.0c02077.

Mishra, S.; Yao, X.; Chen, Q.; Eimre, K.; Gröning, O.; Ortiz, R.; Di Giovannantonio,

M.; Sancho-García, J. C.; Fernández-Rossier, J.; Pignedoli, C. A.; Müllen, K.; Ruffieux,

P.; Narita, A.; Fasel, R. Large Magnetic Exchange Coupling in Rhombus-Shaped

Nanographenes with Zigzag Periphery. Nat. Chem. 2021, 13, 581–586, DOI:

10.1038/s41557-021-00678-2.

Konishi, A.; Hirao, Y.; Nakano, M.; Shimizu, A.; Botek, E.; Champagne, B.; Shiomi,

D.; Sato, K.; Takui, T.; Matsumoto, K.; Kurata, H.; Kubo, T. Synthesis and

Characterization of Teranthene: A Singlet Biradical Polycyclic Aromatic Hydrocarbon

Having Kekulé Structures. J. Am. Chem. Soc. 2010, 132, 11021–11023, DOI:

10.1021/ja1049737.

Konishi, A.; Hirao, Y.; Kurata, H.; Kubo, T.; Nakano, M.; Kamada, K. Anthenes: Model

Systems for Understanding the Edge State of Graphene Nanoribbons. Pure Appl. Chem.

2014, 86, 497–505, DOI: 10.1515/pac-2013-0811.

Hayashi, H.; Yamaguchi, J.; Jippo, H.; Hayashi, R.; Aratani, N.; Ohfuchi, M.; Sato, S.;

Yamada, H. Experimental and Theoretical Investigations of Surface-Assisted Graphene

Nanoribbon Synthesis Featuring Carbon–Fluorine Bond Cleavage. ACS Nano 2017, 11,

6204–6210, DOI: 10.1021/acsnano.7b02316.

Kolmer, M.; Steiner, A.-K.; Izydorczyk, I.; Ko, W.; Engelund, M.; Szymonski, M.; Li,

A.-P.; Amsharov, K. Rational Synthesis of Atomically Precise Graphene Nanoribbons

Directly on Metal Oxide Surfaces. Science 2020, 369 (6503), 571–575, DOI:

10.1126/science.abb8880.

Mallory, F. B.; Regan, C. K.; Bohen, J. M.; Mallory, C. W.; Bohen, A. A.; Carroll, P. J.

Discovery of Deep-Seated Skeletal Rearrangements in the Photocyclizations of Some

tert-Butyl-Substituted 1,2-Diarylethylenes. J. Org. Chem. 2015, 80, 8–17, DOI:

10.1021/jo501965y

Raasch, M. S. Monothioanthraquinones. J. Org. Chem. 1979, 44 (4), 632–633, DIO:

10.1021/jo01318a034.

Ishigaki, Y.; Harimoto, T.; Sugawara, K.; Suzuki, T. Hysteretic Three-State Redox

Interconversion among Zigzag Bisquinodimethanes with Non-Fused Benzene Rings

and Twisted Tetra-/Dications with [5]/[3]Acenes Exhibiting Near-Infrared Absorptions.

J. Am. Chem. Soc. 2021, 143, 3306–3311, DOI: 10.1021/jacs.1c00189.

150

Chapter 4

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

Krapp, A.; Bickelhaupt, F. M.; Frenking, G. Orbital Overlap and Chemical Bonding.

Chem. Eur. J. 2006, 12, 9196–9216, DOI: 10.1002/chem.200600564.

Murray, J. S.; Politzer, P. The Electrostatic Potential: An Overview. WIREs Comput. Mol.

Sci. 2011, 1, 153–163, DOI:10.1002/wcms.19.

Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.;

Seitsonen, A. P.; Saleh, M.; Feng, X.; Müllen, K.; Fasel, R. Atomically Precise Bottomup Fabrication of Graphene Nanoribbons. Nature 2010, 466, 470–473, DOI:

10.1038/nature09211.

Mishra, S.; Beyer, D.; Berger, R.; Liu, J.; Gröning, O.; Urgel, J. I.; Müllen, K.; Ruffieux,

P.; Feng, X.; Fasel, R. Topological Defect-Induced Magnetism in a Nanographene. J.

Am. Chem. Soc. 2020, 142, 1147–1152, DOI: 10.1021/jacs.9b09212.

Shimajiri, T.; Suzuki, T.; Ishigaki, Y. Flexible C−C Bonds: Reversible Expansion,

Contraction, Formation, and Scission of Extremely Elongated Single Bonds. Angew.

Chem. Int. Ed. 2020, 59, 22252–22257, DOI: 10.1002/anie.202010615.

Ishigaki, Y.; Hashimoto, T.; Sugawara, K.; Suzuki, S.; Suzuki, T. Switching of Redox

Properties Triggered by a Thermal Equilibrium between Closed‐Shell Folded and

Open‐Shell Twisted Species. Angew. Chem. Int. Ed. 2020, 59, 6581–6584, DOI:

10.1002/anie.201916089.

Zeng, Z.; Sung, Y. M.; Bao, N.; Tan, D.; Lee, R.; Zafra, J. L.; Lee, B. S.; Ishida, M.;

Ding, J.; López Navarrete, J. T.; Li, Y.; Zeng, W.; Kim, D.; Huang, K.-W.; Webster, R.

D.; Casado, J.; Wu, J. Stable Tetrabenzo- Chichibabin’s Hydrocarbons: Tunable Ground

State and Unusual Transition between Their Closed-Shell and Open-Shell Resonance

Forms. J. Am. Chem. Soc. 2012, 134, 14513–14525, DOI: 10.1021/ja3050579.

Yin, X.; Low, J. Z.; Fallon, K. J.; Paley, D. W.; Campos, L. M. The Butterfly Effect in

Bisfluorenylidene-Based Dihydroacenes: Aggregation Induced Emission and Spin

Switching. Chem. Sci. 2019, 10, 10733–10739, DOI: 10.1039/C9SC04096J.

Nishiuchi, T.; Ito, R.; Stratmann, E.; Kubo, T. Switchable Conformational Isomerization

of an Overcrowded Tristricyclic Aromatic Ene. J. Org. Chem. 2020, 85, 179–186, DOI:

10.1021/acs.joc.9b02432.

Wonink, M. B. S.; Corbet, B. P.; Kulago, A. A.; Boursalian, G. B.; de Bruin, B.; Otten,

E.; Browne, W. R.; Feringa, B. L. Three-State Switching of an Anthracene Extended

Bis-Thiaxanthylidene with a Highly Stable Diradical State. J. Am. Chem. Soc. 2021, 143,

18020–18028, DOI: 10.1021/jacs.1c05938.

Li, K.; Xu, Z.; Xu, J.; Weng, T.; Chen, X.; Sato, S.; Wu, J.; Sun, Z. Overcrowded

Ethylene-Bridged Nanohoop Dimers: Regioselective Synthesis, Multiconfigurational

Electronic States, and Global Hückel/Möbius Aromaticity. J. Am. Chem. Soc. 2021, 143,

20419–20430, DOI: 10.1021/jacs.1c10170.

Nishiuchi, T.; Aibara, S.; Sato, H.; Kubo, T. Synthesis of π-Extended Thiele’s and

Chichibabin’s Hydrocarbons and Effect of the π-Congestion on Conformations and

Electronic States. J. Am. Chem. Soc. 2022, 144, 7479–7488, DOI: 10.1021/jacs.2c02318.

Suzuki, K.; Kobayashi, A.; Kaneko, S.; Takehira, K.; Yoshihara, T.; Ishida, H.; Shiina,

Y.; Oishi, S.; Tobita, S. Reevaluation of Absolute Luminescence Quantum Yields of

Standard Solutions Using a Spectrometer with an Integrating Sphere and a BackThinned CCD Detector. Phys. Chem. Chem. Phys. 2009, 11 (42), 9850, DIO:

10.1039/b912178a.

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman,

J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.;

Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H.

P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.;

Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe,

151

Chapter 4

(74)

(75)

(76)

(77)

D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.;

Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.;

Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A. J.; Peralta, J. E.; Ogliaro, F.;

Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T.

A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar,

S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski,

J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian

16, Revision B.01; Gaussian, Inc., Wallingford CT, 2016.

Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H.

OLEX2 : A Complete Structure Solution, Refinement and Analysis Program. J. Appl.

Crystallogr. 2009, 42 (2), 339–341, DIO: 10.1107/S0021889808042726.

Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal-Structure

Determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71 (1), 3–8, DIO:

10.1107/S2053273314026370.

Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect.

C Struct. Chem. 2015, 71 (1), 3–8, DIO: 10.1107/S2053229614024218.

Ribar, P.; Šolomek, T.; Le Pleux, L.; Häussinger, D.; Prescimone, A.; Neuburger, M.;

Juríček, M. Donor–Acceptor Molecular Triangles. Synthesis (Stuttg). 2017, 49, 899–

909, DOI: 10.1055/s-0036-1588685.

152

Acknowledgements

This study was carried out under the direction of Associate Professor Dr. Yusuke Ishigaki

(Department of Chemistry, Faculty of Science, Hokkaido University). The author would like to

express his sincere gratitude to Associate Professor Dr. Yusuke Ishigaki for his consistent

guidance, suggestion, valuable discussions, encouragement, and so much help through the course

of his work. He taught the author the basics of the way to study.

The author would like to express the deepest appreciation to Professor Dr. Takanori Suzuki

(Department of Chemistry, Faculty of Science, Hokkaido University) for his kind guidance,

valuable discussion, encouragement, and so much help throughout the course of his work. The

author has grown as a researcher under his guidance and is sincerely glad to be one of the members

in his laboratory.

The author expresses deeply grateful to Assistant Professor Dr. Ryo Katoono (Department of

Chemistry, Faculty of Science, Hokkaido University) for his helpful guidance, valuable

discussion, encouragement and so much help throughout the course of this work.

The author would like to thank Professor Dr. Masaya Sawamura, Professor Dr. Takeshi

Ohkuma and Professor Dr. Aiichiro Nagaki for their valuable suggestion and discussion.

The author would like to be really thankful to Dr. Wataru Nojo for his helpful guidance,

valuable discussion, encouragement and so much help throughout the course of this work.

The author would like to give a special thanks to Assistant Professor Dr. Takuya Shimajiri

(Department of Chemistry, Faculty of Science, Hokkaido University) for his helpful guidance,

valuable discussion, encouragement and so much help throughout the course of this work.

The author expresses deeply grateful to Associate Professor Dr. Shuichi Suzuki (Graduate

School of Engineering Science, Osaka University) for the measurements of electron spin

resonance for the contents of Chapter 4.

The author is special grateful for Program for Leading Graduate Schools (Hokkaido University

“Ambitious Leader’s Program”) from the Ministry of Education, Culture, Sports, Science, and

Technology (MEXT), Japan for financial support and for giving him the opportunity to experience

various valuable programs to develop the skills necessary for active on the global stage.

153

The author is really thankful to Dr. Eri and Mr. Yusuke Takada (GC-MS & NMR Laboratory,

Graduate School of Agriculture, Hokkaido University) for the mass spectrometric analyses.

The author is deeply grateful to CNRS Research Director Dr. Maurice Médebielle and Assistant

Professor Dr. Jérémy Merad (Institute for Molecular and Supramolecular Chemistry and

Biochemistry (ICBMS), Université Claude Bernard Lyon 1) for their hospitable support, heartfelt

guidance, valuable discussion, and so much encouragement during my stay in Lyon, France.

The author gives a special thanks to Mr. Keisuke Sugimoto, Dr. Sugawara, Mr. Hironori Aoki,

Mr. Masataka Saito and other members in Suzuki Laboratory for their valuable discussion and

giving his invaluable time.

The author is in acknowledgment of Research Fellowship of the Japan Society for the

Promotion of Science (JSPS) for Young Scientists for Financial Support.

Finally, the author would like to express his deep and sincere gratitude to his family, Hiroko

Hayashi, Akihiro Hayashi, Masayoshi Hayashi and Masako Hayashi for their continuous financial

help and encouragement.

Yuki Hayashi

Graduate School of Chemical Science and Engineering

Hokkaido University

2023

154

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る