リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Comprehensive genomic analysis contrasting primary colorectal cancer and matched liver metastases (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Comprehensive genomic analysis contrasting primary colorectal cancer and matched liver metastases (本文)

塩見, 明生 慶應義塾大学

2021.09.21

概要

Recent studies have revealed that colorectal cancer (CRC) displays intratumor genetic heterogeneity, and that the cancer microenvironment plays an important role in the proliferation, invasion and metastasis of CRC. The present study performed genomic analysis on paired primary CRC and synchronous colorectal liver metastasis (CRLM) tissues collected from 22 patients using whole‑exome sequencing, cancer gene panels and microarray gene expression profiling. In addition, immunohistochemical analysis was used to confirm the protein expression levels of genes identified as highly expressed in CRLM by DNA microarray analysis. The present study identified 10 genes that were highly expressed in CRLM compared with in CRC, from 36,022 probes obtained from primary CRC, CRLM and normal liver tissues by gene expression analysis with DNA microarrays. Of the 10 genes identified, five were classified as encoding ‘matricellular proteins’ [(osteopontin, periostin, thrombospondin‑2, matrix Gla protein (MGP) and glycoprotein nonmetastatic melanoma protein B (GPNMB)] and were selected for immunohisto‑ chemical analysis. Osteopontin was strongly expressed in CRLM (6 of 22 cases: 27.3%), but not in CRC (0 of 22: 0%; P=0.02). Periostin also exhibited strong immunoreactivity in CRLM (17 of 22: 68.2%) compared with in CRC (7 of 22: 31.8%; P=0.006). Thrombospondin‑2 exhibited strong immu‑ noreactivity in both CRC and CRLM (54.5% in CRC, 45.5% in CRLM; P=0.55). GPNMB and MGP were rarely positive for both CRC and CRLM. A comparison of immunoreactive posi‑ tive factors for these five genes revealed the complexities of gene expression in CRLM. Of the cases examined, 16 (72.7%) cases of CRC showed zero or only one positive immunoreactive factor. By contrast, CRLM showed more frequent and multiple immunoreactive factors; for example, 16 cases (72.7%) shared two or more factors, which was statistically more frequent than in CRC (P=0.007). The present study revealed the genomic heterogeneity between paired primary CRC and CRLM, in terms of cancer cell microenvironment. This finding may lead to novel diagnostic and therapeutic targets in the era of genome‑guided personalized cancer treatment.

この論文で使われている画像

参考文献

1. DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, Alteri R, Robbins AS and Jemal A: Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin 64: 252‑271, 2014.

2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68: 394‑424, 2018.

3. Hashiguchi Y, Muro K, Saito Y, Ito Y, Ajioka Y, Hamaguchi T, Hasegawa K, Hotta K, Ishida H, Ishiguro M, et al; Japanese Society for Cancer of the Colon and Rectum: Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2019 for the treatment of colorectal cancer. Int J Clin Oncol 25: 1‑42, 2020.

4. Folprecht G, Gruenberger T, Bechstein WO, Raab HR, Lordick F, Hartmann JT, Lang H, Frilling A, Stoehlmacher J, Weitz J, et al: Tumour response and secondary resectability of colorectal liver metastases following neoadjuvant chemotherapy with cetuximab: The CELIM randomised phase 2 trial. Lancet Oncol 11: 38‑47, 2010.

5. Majeed AW: Surgery for colorectal liver metastases with hepatic lymph node involvement: A systematic review. Br J Surg 87: 1737, 2000.

6. Martin LW and Warren RS: Current management of colorectal liver metastases. Surg Oncol Clin N Am 9: 853‑878, 2000.

7. Penna C and Nordlinger B: Colorectal metastasis (liver and lung). Surg Clin North Am 82: 1075‑1090, x‑xi, 2002.

8. Fidler IJ and Kripke ML: Metastasis results from preexisting variant cells within a malignant tumor. Science 197: 893‑895, 1977.

9. Futakuchi M, Nannuru KC, Varney ML, Sadanandam A, Nakao K, Asai K, Shirai T, Sato SY and Singh RK: Transforming growth factor‑beta signaling at the tumor‑bone interface promotes mammary tumor growth and osteoclast activation. Cancer Sci 100: 71‑81, 2009.

10. Nagashima T, Yamaguchi K, Urakami K, Shimoda Y, Ohnami S, Ohshima K, Tanabe T, Naruoka A, Kamada F, Serizawa M, et al: Japanese version of The Cancer Genome Atlas, JCGA, estab‑ lished using fresh frozen tumors obtained from 5143 cancer patients. Cancer Sci 111: 687‑699, 2020.

11. Japanese ethical guidelines for human genome/gene analysis research. https://www.mhlw.go.jp/general/seido/kousei/i‑ kenkyu/genome/0504sisin.html. Accessed: March 25, 2021.

12. Ion Reporter Software User Guide: Tumor‑Normal pair workflow. https://tools.thermofisher.com/content/sfs/manuals/ IonReporter_v50_Help.pdf. Accessed: March 25, 2021.

13. Torrent Suite v4.4.3 User and Admin Guide. https://assets. thermofisher.com/TFS‑Assets/LSG/manuals/MAN0019144_ TorrentSuite_5_14_UG.pdf. Accessed: March 25, 2021.

14. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G and Mesirov JP: Integrative genomics viewer. Nat Biotechnol 29: 24‑26, 2011.

15. Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, Flanagan A, Teague J, Futreal PA, Stratton MR, et al: The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer 91: 355‑358, 2004.

16. Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM and Maglott DR: ClinVar: Public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 42: D980‑D985, 2014.

17. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM and Sirotkin K: dbSNP: The NCBI database of genetic variation. Nucleic Acids Res : 308‑311, 2001.

18. UniProt Consortium: UniProt: A hub for protein information. Nucleic Acids Res 43: D204‑D212, 2015.

19. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z and Woolsey J: DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34: D668‑D672, 2006.

20. Nagashima T, Shimoda Y, Tanabe T, Naruoka A, Saito J, Serizawa M, Ohshima K, Urakami K, Ohnami S, Ohnami S, et al: Optimizing an ion semiconductor sequencing data analysis method to identify somatic mutations in the genomes of cancer cells in clinical tissue samples. Biomed Res 37: 359‑366, 2016.

21. Shimoda Y, Nagashima T, Urakami K, Tanabe T, Saito J, Naruoka A, Serizawa M, Mochizuki T, Ohshima K, Ohnami S, et al: Integrated next‑generation sequencing analysis of whole exome and 409 cancer‑related genes. Biomed Res 37: 367‑379, 2016.

22. Urakami K, Shimoda Y, Ohshima K, Nagashima T, Serizawa M, Tanabe T, Saito J, Usui T, Watanabe Y, Naruoka A, et al: Next generation sequencing approach for detecting 491 fusion genes from human cancer. Biomed Res 37: 51‑62, 2016.

23. Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P, et al: The consensus molecular subtypes of colorectal cancer. Nat Med 21: 1350‑1356, 2015.

24. Sadanandam A, Lyssiotis CA, Homicsko K, Collisson EA, Gibb WJ, Wullschleger S, Ostos LC, Lannon WA, Grotzinger C, Del Rio M, et al: A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med 19: 619‑625, 2013.

25. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et al: PD‑1 blockade in tumors with mismatch‑repair deficiency. N Engl J Med 372: 2509‑2520, 2015.

26. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, et al: Mismatch repair deficiency predicts response of solid tumors to PD‑1 blockade. Science 357: 409‑413, 2017.

27. Polanska UM and Orimo A: Carcinoma‑associated fibroblasts: Non‑neoplastic tumour‑promoting mesenchymal cells. J Cell Physiol 228: 1651‑1657, 2013.

28. Ishii G, Ochiai A and Neri S: Phenotypic and functional heterogeneity of cancer‑associated fibroblast within the tumor microenvironment. Adv Drug Deliv Rev 99: 186‑196, 2016.

29. Kyutoku M, Taniyama Y, Katsuragi N, Shimizu H, Kunugiza Y, Iekushi K, Koibuchi N, Sanada F, Oshita Y and Morishita R: Role of periostin in cancer progression and metastasis: Inhibition of breast cancer progression and metastasis by anti‑periostin antibody in a murine model. Int J Mol Med 28: 181‑186, 2011.

30. Erkan M, Kleeff J, Gorbachevski A, Reiser C, Mitkus T, Esposito I, Giese T, Büchler MW, Giese NA and Friess H: Periostin creates a tumor‑supportive microenvironment in the pancreas by sustaining fibrogenic stellate cell activity. Gastroenterology 132: 1447‑1464, 2007.

31. Kudo Y, Ogawa I, Kitajima S, Kitagawa M, Kawai H, Gaffney PM, Miyauchi M and Takata T: Periostin promotes invasion and anchorage‑independent growth in the metastatic process of head and neck cancer. Cancer Res 66: 6928‑6935, 2006.

32. Puglisi F, Puppin C, Pegolo E, Andreetta C, Pascoletti G, D'Aurizio F, Pandolfi M, Fasola G, Piga A, Damante G, et al: Expression of periostin in human breast cancer. J Clin Pathol 61: 494‑498, 2008.

33. Moniuszko T, Wincewicz A, Koda M, Domysławska I and Sulkowski S: Role of periostin in esophageal, gastric and colon cancer. Oncol Lett 12: 783‑787, 2016.

34. Sodek J, Ganss B and McKee MD: Osteopontin. Crit Rev Oral Biol Med 11: 279‑303, 2000.

35. Zhang J, Takahashi K, Takahashi F, Shimizu K, Ohshita F, Kameda Y, Maeda K, Nishio K and Fukuchi Y: Differential osteo‑ pontin expression in lung cancer. Cancer Lett 171: 215‑222, 2001.

36. Song G, Cai QF, Mao YB, Ming YL, Bao SD and Ouyang GL: Osteopontin promotes ovarian cancer progression and cell survival and increases HIF‑1alpha expression through the PI3‑K/Akt pathway. Cancer Sci 99: 1901‑1907, 2008.

37. Kim JY, Bae BN, Kim KS, Shin E and Park K: Osteopontin, CD44, and NFkappaB expression in gastric adenocarcinoma. Cancer Res Treat 41: 29‑35, 2009.

38. Likui W, Hong W and Shuwen Z: Clinical significance of the upregulated osteopontin mRNA expression in human colorectal cancer. J Gastrointest Surg 14: 74‑81, 2010.

39. Bramwell VH, Tuck AB, Chapman JA, Anborgh PH, Postenka CO, Al‑Katib W, Shepherd LE, Han L, Wilson CF, Pritchard KI, et al: Assessment of osteopontin in early breast cancer: Correlative study in a randomised clinical trial. Breast Cancer Res 16: R8, 2014.

40. Zhao M, Liang F, Zhang B, Yan W and Zhang J: The impact of osteopontin on prognosis and clinicopathology of colorectal cancer patients: A systematic meta‑analysis. Sci Rep 5: 12713, 2015.

41. Tokunaga T, Nakamura M, Oshika Y, Abe Y, Ozeki Y, Fukushima Y, Hatanaka H, Sadahiro S, Kijima H, Tsuchida T, et al: Thrombospondin 2 expression is correlated with inhibition of angiogenesis and metastasis of colon cancer. Br J Cancer 79: 354‑359, 1999.

42. de Fraipont F, Nicholson AC, Feige JJ and Van Meir EG: Thrombospondins and tumor angiogenesis. Trends Mol Med 7: 401‑407, 2001.

43. Kim H, Watkinson J, Varadan V and Anastassiou D: Multi‑cancer computational analysis reveals invasion‑associated variant of desmoplastic reaction involving INHBA, THBS2 and COL11A1. BMC Med Genomics 3: 51, 2010.

44. Tian Q, Liu Y, Zhang Y, Song Z, Yang J, Zhang J, Guo T, Gao W, Dai F and He C: THBS2 is a biomarker for AJCC stages and a strong prognostic indicator in colorectal cancer. J BUON 23: 1331‑1336, 2018.

45. Rich JN, Shi Q, Hjelmeland M, Cummings TJ, Kuan CT, Bigner DD, Counter CM and Wang XF: Bone‑related genes expressed in advanced malignancies induce invasion and metastasis in a genetically defined human cancer model. J Biol Chem 278: 15951‑15957, 2003.

46. Kuan CT, Wakiya K, Dowell JM, Herndon JE II, Reardon DA, Graner MW, Riggins GJ, Wikstrand CJ and Bigner DD: Glycoprotein nonmetastatic melanoma protein B, a potential molecular therapeutic target in patients with glioblastoma multiforme. Clin Cancer Res 12: 1970‑1982, 2006.

47. Rose AA, Pepin F, Russo C, Abou Khalil JE, Hallett M and Siegel PM: Osteoactivin promotes breast cancer metastasis to bone. Mol Cancer Res 5: 1001‑1014, 2007.

48. Rose AA, Annis MG, Dong Z, Pepin F, Hallett M, Park M and Siegel PM: ADAM10 releases a soluble form of the GPNMB/Osteoactivin extracellular domain with angiogenic properties. PLoS One 5: e12093, 2010.

49. Rose AA, Grosset AA, Dong Z, Russo C, Macdonald PA, Bertos NR, St‑Pierre Y, Simantov R, Hallett M, Park M, et al: Glycoprotein nonmetastatic B is an independent prognostic indicator of recurrence and a novel therapeutic target in breast cancer. Clin Cancer Res 16: 2147‑2156, 2010.

50. Taya M and Hammes SR: Glycoprotein non‑metastatic melanoma protein B (GPNMB) and cancer: A novel potential therapeutic target. Steroids 133: 102‑107, 2018.

51. Zhou LT, Liu FY, Li Y, Peng YM, Liu YH and Li J: Gpnmb/ osteoactivin, an attractive target in cancer immunotherapy. Neoplasma 59: 1‑5, 2012.

52. Selim AA: Osteoactivin bioinformatic analysis: Prediction of novel functions, structural features, and modes of action. Med Sci Monit 15: MT19‑MT33, 2009.

53. Singh M, Del Carpio‑Cano F, Belcher JY, Crawford K, Frara N, Owen TA, Popoff SN and Safadi FF: Functional roles of osteo‑ activin in normal and disease processes. Crit Rev Eukaryot Gene Expr 20: 341‑357, 2010.

54. Mertsch S, Schurgers LJ, Weber K, Paulus W and Senner V: Matrix gla protein (MGP): An overexpressed and migration‑promoting mesenchymal component in glioblastoma. BMC Cancer 9: 302, 2009.

55. Kuzontkoski PM, Mulligan‑Kehoe MJ, Harris BT and Israel MA: Inhibitor of DNA binding‑4 promotes angiogenesis and growth of glioblastoma multiforme by elevating matrix GLA levels. Oncogene 29: 3793‑3802, 2010.

56. Gheorghe SR and Crăciun AM: Matrix Gla protein in tumoral pathology. Clujul Med 89: 319‑321, 2016.

57. Caiado H, Conceição N, Tiago D, Marreiros A, Vicente S, Enriquez JL, Vaz AM, Antunes A, Guerreiro H, Caldeira P, et al: Evaluation of MGP gene expression in colorectal cancer. Gene 723: 144120, 2020.

58. Hope NR and Murray GI: The expression profile of RNA‑binding proteins in primary and metastatic colorectal cancer: Relationship of heterogeneous nuclear ribonucleoproteins with prognosis. Hum Pathol 42: 393‑402, 2011.

59. Vakiani E, Janakiraman M, Shen R, Sinha R, Zeng Z, Shia J, Cercek A, Kemeny N, D'Angelica M, Viale A, et al: Comparative genomic analysis of primary versus metastatic colorectal carcinomas. J Clin Oncol 30: 2956‑2962, 2012.

60. Schrijver WAME, Selenica P, Lee JY, Ng CKY, Burke KA, Piscuoglio S, Berman SH, Reis‑Filho JS, Weigelt B, van Diest PJ, etal: Mutation profiling of key cancer genes in primary breast cancers and their distant metastases. Cancer Res 78: 3112‑3121, 2018.

61. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, Ritchey JK, Young MA, Lamprecht T, McLellan MD, et al: Clonal evolution in relapsed acute myeloid leukaemia revealed by whole‑genome sequencing. Nature 481: 506‑510, 2012.

62. Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY, Fouse SD, Yamamoto S, Ueda H, Tatsuno K, et al: Mutational analysis reveals the origin and therapy‑driven evolution of recurrent glioma. Science 343: 189‑193, 2014.

63. Harada K, Okamoto W, Mimaki S, Kawamoto Y, Bando H, Yamashita R, Yuki S, Yoshino T, Komatsu Y, Ohtsu A, et al: Comparative sequence analysis of patient‑matched primary colorectal cancer, metastatic, and recurrent metastatic tumors after adjuvant FOLFOX chemotherapy. BMC Cancer 19: 255, 2019.

64. Gagnière J, Dupré A, Gholami SS, Pezet D, Boerner T, Gönen M, Kingham TP, Allen PJ, Balachandran VP, De Matteo RP, et al: Is hepatectomy justified for BRAF mutant colorectal liver metastases?: A multi‑institutional analysis of 1497 patients. Ann Surg 271: 147‑154, 2020.

65. Wu Y, Denhardt DT and Rittling SR: Osteopontin is required for full expression of the transformed phenotype by the ras oncogene. Br J Cancer 83: 156‑163, 2000.

66. Nemoto H, Rittling SR, Yoshitake H, Furuya K, Amagasa T, Tsuji K, Nifuji A, Denhardt DT and Noda M: Osteopontin defi‑ ciency reduces experimental tumor cell metastasis to bone and soft tissues. J Bone Miner Res 16: 652‑659, 2001.

67. Wu XL, Lin KJ, Bai AP, Wang WX, Meng XK, Su XL, Hou MX, Dong PD, Zhang JJ, Wang ZY, et al: Osteopontin knockdown suppresses the growth and angiogenesis of colon cancer cells. World J Gastroenterol 20: 10440‑10448, 2014.

68. Wei R, Wong JPC and Kwok HF: Osteopontin ‑ a promising biomarker for cancer therapy. J Cancer 8: 2173‑2183, 2017.

69. Rose AAN, Biondini M, Curiel R and Siegel PM: Targeting GPNMB with glembatumumab vedotin: Current developments and future opportunities for the treatment of cancer. Pharmacol Ther 179: 127‑141, 2017.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る