リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Synthesis of infrared Stokes spectra in an evolving solar chromospheric jet」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Synthesis of infrared Stokes spectra in an evolving solar chromospheric jet

Matsumoto, T Kawabata, Y Katsukawa, Y Iijima, H Quintero Noda, C 名古屋大学

2023.07

概要

Chromospheric jets are plausible agents of energy and mass transport in the solar chromosphere, although their driving
mechanisms have not yet been elucidated. Magnetic field measurements are key for distinguishing the driving mechanisms of
chromospheric jets. We performed a full Stokes synthesis in the infrared range with a realistic radiative magnetohydrodynamics
simulation that generated a chromospheric jet to predict spectropolarimetric observations from the Sunrise Chromospheric
Infrared spectro-Polarimeter (SCIP) onboard the SUNRISE III balloon telescope. The jet was launched by the collision between
the transition region and an upflow driven by the ascending motion of the twisted magnetic field at the envelope of the flux tube.
This motion is consistent with upwardly propagating non-linear Alfve´ nic waves. The upflow could be detected as continuous
Doppler signals in the Ca II 849.8 nm line at the envelope where the dark line core intensity and strong linear polarization
coexist. The axis of the flux tube was bright in both Fe I 846.8 nm and Ca II 849.8 nm lines with downflowing plasma inside
it. The structure, time evolution, and Stokes signals predicted in our study will improve the physical interpretation of future
spectropolarimetric observations with SUNRISE III/SCIP.
Key words: MHD – radiative transfer – Sun: chromosphere – Sun: infrared – Sun: magnetic fields – Sun: photosphere. ...

この論文で使われている画像

参考文献

Barthol P., et al., 2011, Sol. Phys., 268, 1

Beckers J. M., 1968, Sol. Phys., 3, 367

Bonet J. A., Ma´ rquez I., Sa´ nchez Almeida J., Cabello I., Domingo V., 2008,

ApJ, 687, L131

Brandt P. N., Scharmer G. B., Ferguson S., Shine R. A., Tarbell T. D., 1988,

Nature, 335, 238

Hollweg J. V., Jackson S., Galloway D., 1982, Sol. Phys., 75, 35

Iijima H., 2016, PhD thesis, University of Tokyo, Department of Earth and

Planetary Environmental Science

Iijima H., Yokoyama T., 2015, ApJ, 812, L30

Iijima H., Yokoyama T., 2017, ApJ, 848, 38

Joshi J., de la Cruz Rodr´ıguez J., 2018, A&A, 619, A63

Kato Y., Steiner O., Steffen M., Suematsu Y., 2011, ApJ, 730, L24

Kato Y., Steiner O., Hansteen V., Gudiksen B., Wedemeyer S., Carlsson M.,

2016, ApJ, 827, 7

Katsukawa Y. et al., 2020, in Evans C. J., Bryant J. J., Motohara K., eds, Proc.

SPIE Conf. Ser. 11447, Ground-based and Airborne Instrumentation for

Astronomy VIII. SPIE, Bellingham, p. 114470Y

Kitiashvili I. N., Kosovichev A. G., Lele S. K., Mansour N. N., Wray A. A.,

2013, ApJ, 770, 37

Kudoh T., Shibata K., 1999, ApJ, 514, 493

Landi Degl’Innocenti E., Landolfi M., 2004, Polarization in Spectral Lines,

Vol. 307, Kluwer Academic Publishers, Dordrecht

Leenaarts J., Carlsson M., Hansteen V., Rouppe van der Voort L., 2009, ApJ,

694, L128

Morosin R., de la Cruz Rodr´ıguez J., D´ıaz Baso C. J., Leenaarts J., 2022,

A&A, 664, A8

Nelson C. J., Freij N., Bennett S., Erde´ lyi R., Mathioudakis M., 2019, ApJ,

883, 115

Osterbrock D. E., 1961, ApJ, 134, 347

Parker E. N., 1978, ApJ, 221, 368

Quintero Noda C. et al., 2017, MNRAS, 472, 727

Quintero Noda C. et al., 2019, MNRAS, 486, 4203

Quintero Noda C., et al., 2022, A&A, 666, A21

Rimmele T. R., et al., 2020, Sol. Phys., 295, 172

Robustini C., Leenaarts J., de la Cruz Rodr´ıguez J., 2018, A&A, 609, A14

Roy J. R., 1973, Sol. Phys., 28, 95

Shibata K., Nishikawa T., Kitai R., Suematsu Y., 1982, Sol. Phys., 77, 121

Shibata K. et al., 2007, Science, 318, 1591

Siu-Tapia A. L., Bellot Rubio L. R., Orozco Sua´ rez D., Gafeira R., 2020,

A&A, 642, A128

Spruit H. C., 1979, Sol. Phys., 61, 363

Sterling A. C., Hollweg J. V., 1988, ApJ, 327, 950

Tziotziou K., Tsiropoula G., Kontogiannis I., 2020, A&A, 643, A166

Uitenbroek H., 2001, ApJ, 557, 389

Wedemeyer-Bo¨ hm S., Rouppe van der Voort L., 2009, A&A, 507, L9

Wedemeyer-Bo¨ hm S., Scullion E., Steiner O., Rouppe van der Voort L., de

La Cruz Rodriguez J., Fedun V., Erde´ lyi R., 2012, Nature, 486, 505

Yokoyama T., Shibata K., 1996, PASJ, 48, 353

This paper has been typeset from a TEX/LATEX file prepared by the author.

© 2023 The Author(s)

Published by Oxford University Press on behalf of Royal Astronomical Society

MNRAS 523, 974–981 (2023)

Downloaded from https://academic.oup.com/mnras/article/523/1/974/7172881 by Nagoya University user on 18 October 2023

the RMHD simulation. These properties are the manifestation of

the transition process from the ambient twisted field to the axial

field, which is consistent with the upwardly propagating non-linear

Alfve´ nic waves. The triggering process is still under investigation,

although we considered that the key mechanisms would the flux

merger, downflow along the core, or magnetic reconnection above

the twisted field.

Our prediction will be a useful tool for distinguishing the driving

mechanisms of chromospheric jets when combined with future

observations, such as SUNRISE III, DKIST, or EST. An appropriate

time cadence, integration time, and field of view should be selected

to fully capture the characteristic magnetic field associated with the

chromospheric jets.

981

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る