リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Anomaly and superconnection」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Anomaly and superconnection

Kanno, Hayato Sugimoto, Shigeki 京都大学 DOI:10.1093/ptep/ptab131

2022.01

概要

We study anomalies of fermions with spacetime-dependent mass. Using Fujikawa’s method, it is found that the anomalies associated with the U(N)+ × U(N)− chiral symmetry and U(N) flavor symmetry for even and odd dimensions, respectively, can be written in terms of superconnections. In particular, the anomaly for a vector-like U(1) symmetry is given by the Chern character of the superconnection in both even- and odd-dimensional cases. It is also argued that the non-Abelian anomaly for a system in D-dimensional spacetime is characterized by a (D + 2)-form part of the Chern character of the superconnection which generalizes the usual anomaly polynomial for the massless case. These results enable us to analyze anomalies in the systems with interfaces and spacetime boundaries in a unified way. Applications to index theorems, including the Atiyah–Patodi–Singer index theorem and a Callias-type index theorem, are also discussed. In addition, we give a natural string theory interpretation of these results.

この論文で使われている画像

参考文献

[1] K. Fujikawa, Phys. Rev. D 29, 285 (1984).

[2] S.-K. Hu, B. L. Young, and D. W. McKay, Phys. Rev. D 30, 836 (1984).

[3] K. Fujikawa and H. Suzuki, Path Integrals and Quantum Anomalies (Oxford University Press,

Oxford, 2014).

[4] C. Córdova, D. S. Freed, H. T. Lam, and N. Seiberg, SciPost Phys. 8, 001 (2020) [arXiv:1905.09315

[hep-th]] [Search inSPIRE].

[5] C. Córdova, D. S. Freed, H. T. Lam, and N. Seiberg, SciPost Phys. 8, 002 (2020) [arXiv:1905.13361

[hep-th]] [Search inSPIRE].

[6] D. Quillen, Topology 24, 89 (1985).

[7] C. Kennedy and A. Wilkins, Phys. Lett. B 464, 206 (1999) [arXiv:hep-th/9905195] [Search inSPIR

E].

[8] P. Kraus and F. Larsen, Phys. Rev. D 63, 106004 (2001) [arXiv:hep-th/0012198] [Search inSPIRE].

[9] T. Takayanagi, S. Terashima, and T. Uesugi, J. High Energy Phys. 0103, 019 (2001) [arXiv:hepth/0012210] [Search inSPIRE].

[10] M. Alishahiha, H. Ita, and Y. Oz, Phys. Lett. B 503, 181 (2001) [arXiv:hep-th/0012222] [Search in

SPIRE].

[11] N. Berline, E. Getzler, and M. Vergne, Heat Kernels and Dirac Operators (Springer, Berlin, 1992).

[12] R. A. Bertlmann, Anomalies in Quantum Field Theory (Oxford University Press, Oxford, 2000).

[13] J. A. Harvey, arXiv:hep-th/0509097 [Search inSPIRE].

[14] A. Bilal, arXiv:0802.0634 [hep-th] [Search inSPIRE].

[15] K. Fujikawa, Phys. Rev. Lett. 42, 1195 (1979).

 dependence in Eq. (3.22) drops out

In this local expression without integration over spacetime, the m

in the → ∞ limit with fixed m.

39

33/35

Downloaded from https://academic.oup.com/ptep/article/2022/1/013B02/6406522 by KYOTO UNIVERSITY Medical Library user on 04 January 2023

and the anomaly equation, obtained as the functional derivative of Eq. (B.1) with respect to

v(x), becomes

δG(v)

∗(DJ )a = −

(B.28)

δva

which shows that the consistent anomaly G(v) represents the anomalous violation of the current

conservation law. For example, for the axial U(1) symmetry (with v+ = −v− = −iα1N ) in four

dimensions, the left-hand side of Eq. (B.28) becomes

∗(DJ )U (1)A = ∂μ ψγ μ γ 5 ψ + 2im ψγ 5 ψ

(B.29)

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

PTEP 2022, 013B02

H. Kanno and S. Sugimoto

34/35

Downloaded from https://academic.oup.com/ptep/article/2022/1/013B02/6406522 by KYOTO UNIVERSITY Medical Library user on 04 January 2023

[16] K. Fujikawa, Phys. Rev. D 21, 2848 (1980); 2848 [erratum: Phys. Rev. D 22, 1499 (1980) 1499

[erratum].

[17] W. A. Bardeen and B. Zumino, Nucl. Phys. B 244, 421 (1984).

[18] D. B. Kaplan, Phys. Lett. B 288, 342 (1992) [arXiv:hep-lat/9206013] [Search inSPIRE].

[19] B. Zumino, Y. S. Wu, and A. Zee, Nucl. Phys. B 239, 477 (1984).

[20] L. Alvarez-Gaume and P. H. Ginsparg, Nucl. Phys. B 243, 449 (1984).

[21] E. Getzler, The Bargmann representation, generalized Dirac operators and the index of pseudodifferential operators on R4 , in Symplectic Geometry and Quantization, eds. Y. Maeda Maeda,

H. Omori Omori, and A. Weinstein Weinstein (American Mathematical Society, Providence, RI,

1994), p. 61.

[22] A. Kahle, J. Geom. Phys. 61, 1601 (2011) [arXiv:0810.0820 [math.DG]] [Search inSPIRE].

[23] P. S. Hsin, A. Kapustin, and R. Thorngren, Phys. Rev. B 102, 245113 (2020) [arXiv:2004.10758

[cond-mat.str-el]] [Search inSPIRE].

[24] R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 (1976).

[25] C. G. Callan, Jr. and J. A. Harvey, Nucl. Phys. B 250, 427 (1985).

[26] R. Jackiw and P. Rossi, Nucl. Phys. B 190, 681 (1981).

[27] E. Witten, Nucl. Phys. B 249, 557 (1985).

[28] E. Witten and K. Yonekura, arXiv:1909.08775 [hep-th] [Search inSPIRE].

[29] A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf, Phys. Rev. D 9, 3471 (1974).

[30] A. Chodos, R. L. Jaffe, K. Johnson, and C. B. Thorn, Phys. Rev. D 10, 2599 (1974). 2599.

[31] M. Kurkov and D. Vassilevich, Phys. Rev. D 96, 025011 (2017) [arXiv:1704.06736 [hep-th]] [Sear

ch inSPIRE].

[32] M. Kurkov and D. Vassilevich, J. High Energy Phys. 03, 072 (2018) [arXiv:1801.02049 [hep-th]]

[Search inSPIRE].

[33] I. Fialkovsky, M. Kurkov, and D. Vassilevich, Phys. Rev. D 100, 045026 (2019) [arXiv:1906.06704

[hep-th]] [Search inSPIRE].

[34] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Math. Proc. Camb. Phil. Soc. 77, 43 (1975).

[35] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Math. Proc. Camb. Phil. Soc. 78, 405 (1976).

[36] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Math. Proc. Camb. Phil. Soc. 79, 71 (1976).

[37] H. Fukaya, T. Onogi, and S. Yamaguchi, Phys. Rev. D 96, 125004 (2017) [arXiv:1710.03379 [hepth]] [Search inSPIRE].

[38] H. Fukaya, T. Onogi, and S. Yamaguchi, EPJ Web Conf. 175, 11009 (2018)

11009 [arXiv:1712.03679 [hep-lat]] [Search inSPIRE].

[39] H. Fukaya, M. Furuta, S. Matsuo, T. Onogi, S. Yamaguchi, and M. Yamashita, Commun. Math.

Phys. 380, 1295 (2020) [arXiv:1910.01987 [math.DG]] [Search inSPIRE].

[40] H. Fukaya, N. Kawai, Y. Matsuki, M. Mori, K. Nakayama, T. Onogi, and S. Yamaguchi, Prog.

Theor. Exp. Phys. 2020, 043B04 (2020) [arXiv:1910.09675 [hep-lat]] [Search inSPIRE].

[41] H. Fukaya, M. Furuta, S. Matsuo, T. Onogi, S. Yamaguchi, and M. Yamashita, PoS LATTICE2019, 061 (2019) 061 [arXiv:2001.01428 [hep-lat]] [Search inSPIRE].

[42] H. Fukaya, M. Furuta, Y. Matsuki, S. Matsuo, T. Onogi, S. Yamaguchi, and M. Yamashita,

arXiv:2012.03543 [hep-th] [Search inSPIRE].

[43] D. Vassilevich, J. High Energy Phys. 07, 108 (2018) 108 [arXiv:1805.09974 [hep-th]] [Search inSP

IRE].

[44] A. V. Ivanov and D. V. Vassilevich, J. Phys. A 53, 305201 (2020) 305201 [arXiv:2003.06674 [mathph]] [Search inSPIRE].

[45] S. K. Kobayashi and K. Yonekura, arXiv:2103.10654 [hep-th] [Search inSPIRE].

[46] L. Alvarez-Gaume, S. Della Pietra, and G. W. Moore, Ann. Phys. 163, 288 (1985).

[47] C. Callias, Commun. Math. Phys. 62, 213 (1978).

[48] K. Hashimoto, S. Sugishita, and S. Terashima, J. High Energy Phys. 03, 077 (2015)

[arXiv:1501.00995 [hep-th]] [Search inSPIRE].

[49] S. Sugimoto and K. Takahashi, J. High Energy Phys. 04, 051 (2004) [arXiv:hep-th/0403247] [Sear

ch inSPIRE].

[50] T. Sakai and S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005) [arXiv:hep-th/0412141] [Search inSP

IRE].

[51] M. B. Green, J. A. Harvey, and G. W. Moore, Class. Quant. Grav. 14, 47 (1997) [arXiv:hepth/9605033] [Search inSPIRE].

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

PTEP 2022, 013B02

H. Kanno and S. Sugimoto

35/35

Downloaded from https://academic.oup.com/ptep/article/2022/1/013B02/6406522 by KYOTO UNIVERSITY Medical Library user on 04 January 2023

[52] Y. K. E. Cheung and Z. Yin, Nucl. Phys. B 517, 69 (1998) [arXiv:hep-th/9710206] [Search inSPIRE].

[53] R. Minasian and G. W. Moore, J. High Energy Phys. 9711, 002 (1997) [arXiv:hep-th/9710230] [Se

arch inSPIRE].

[54] J. F. Morales, C. A. Scrucca, and M. Serone, Nucl. Phys. B 552, 291 (1999) [arXiv:hep-th/9812071]

[Search inSPIRE].

[55] C. A. Scrucca and M. Serone, Nucl. Phys. B 556, 197 (1999) [arXiv:hep-th/9903145] [Search inSP

IRE].

[56] R. J. Szabo, J. Geom. Phys. 43, 241 (2002) [arXiv:hep-th/0108043] [Search inSPIRE].

[57] A. Sen, J. High Energy Phys. 9806, 007 (1998) [arXiv:hep-th/9803194] [Search inSPIRE].

[58] A. Sen, J. High Energy Phys. 9808, 010 (1998) [arXiv:hep-th/9805019] [Search inSPIRE].

[59] A. Sen, J. High Energy Phys. 9808, 012 (1998) [arXiv:hep-th/9805170] [Search inSPIRE].

[60] E. Witten, J. High Energy Phys. 9812, 019 (1998) [arXiv:hep-th/9810188] [Search inSPIRE].

[61] P. Horava, Adv. Theor. Math. Phys. 2, 1371 (1999) [arXiv:hep-th/9812135] [Search inSPIRE].

[62] A. Sen, arXiv:hep-th/9904207 [Search inSPIRE].

[63] K. Olsen and R. J. Szabo, Adv. Theor. Math. Phys. 3, 889 (1999) [arXiv:hep-th/9907140] [Search

inSPIRE].

[64] M. F. Atiyah, R. Bott, and A. Shapiro, Topology 3, S3 (1964).

[65] T. Asakawa, S. Sugimoto, and S. Terashima, J. High Energy Phys. 0302, 011 (2003) [arXiv:hepth/0212188] [Search inSPIRE].

[66] A. Schwimmer, Nucl. Phys. B 198, 269 (1982).

[67] J. Thierry-Mieg, J. High Energy Phys. 10, 167 (2020) 167 [arXiv:2005.04754 [hep-th]] [Search inSP

IRE].

[68] J. Thierry-Mieg and P. Jarvis, J. High Energy Phys. 04, 001 (2021) 001 [arXiv:2012.12320 [hep-th]]

[Search inSPIRE].

[69] C. G. Callan, Jr., R. F. Dashen, and D. J. Gross, Phys. Rev. D 17, 2717 (1978).

[70] J. E. Kiskis, Phys. Rev. D 18, 3690 (1978).

[71] E. Witten, Phys. Lett. B 117, 324 (1982).

[72] J. Wess and B. Zumino, Phys. Lett. B 37, 95 (1971).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る