リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「サラブレッド高強度運動下における走行フォームを規定する筋の特性に関する電気生理学的研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

サラブレッド高強度運動下における走行フォームを規定する筋の特性に関する電気生理学的研究

高橋, 佑治 東京大学 DOI:10.15083/0002008318

2023.12.27

概要



査 の 結 果 の 要 旨





高橋 佑治

動物と植物を分ける大きな特徴の 1 つは、筋骨格系を動かすことにより身体の重心を目的の位置まで
移動させることが可能なことである。特に動物が全力を出し切るような最大努力下での運動はしばしば
関心の的となるが、その動作は非常に速いためカメラなどの測定機器を用いた客観的な測定解析が必要
となる。ウマはヒトと非常に深い関わりを持つ動物であり、古くから動作解析の対象として高強度運動
下で高いパフォーマンスを発揮する際の詳細な解析がなされてきた。走速度は stride frequency(1 完
歩にかかる時間の逆数)と stride length(1 完歩の長さ)の積であるが、四足歩行動物であるウマでは、
stride length は 4 つの肢間距離の和(hind step length、diagonal step length、fore step length、
airborne step length)から構成され、パフォーマンス発揮時の歩法は左側肢と右側肢の動きが異なる
非対称性歩法である。ヒト以外の動物種における高強度運動を課した際の動作解析は行われておらず、
ウマのように走る動作が非対称性歩法で高強度運動時を課した際の走行フォームの変化やそれに関与
する筋活動に関する研究は見当たらない。本研究は、ウマ、特にサラブレッドの高強度運動に対する走
行フォームの特徴をその変化に関わる筋の電気生理学的特性から明らかにすることを目的としている。
提出された博士論文は6章から構成されている。第1章では、研究の背景および目的を述べている。
第2章では、2016-2019 年の日本ダービーでの 1 周目および 2 周目における出走馬の走行フォームを
ハイスピードカメラで撮影して 1 完歩を構成する解析項目の変化を比較し、サラブレッドの最大努力下
における特徴を検討している。その結果、日本ダービー出走馬という限られた母集団ではあるが、stride
frequency、diagonal step length が低下し、それを補うようにその他の肢間距離を伸ばした走行フォ
ームになっていることが明らかとなった。また、1 周目と 2 周目が一定速度で走行していると仮定して
も走行フォームが異なる可能性のあることが示唆された。
第3章では、トレッドミル上において一定速度で高強度運動をさせた際に、運動後半の stride
parameter が前半に比較してどう変化するかを検討することにより、第2章で走速度調整時に得られた
stride parameter のトレッドミル上における再現性について加齢に伴う影響も含めて検証している。そ
の結果、高強度運動を継続させると走速度が一定であっても、サラブレッドは年齢に関わらず stride
frequency、diagonal step length を減少させ、その他の肢間距離を伸長して適応をしていることが明
らかとなった。これらは、前章で検討した実際のレースにおける適応とほとんど同じであったことから、
レースで高強度運動として疾走している際の変化をトレッドミル上で再現できることが可能であり、ウ
マにおける走行フォームの特徴について詳細な検討を行う上で有用な方法であることを明らかにして
いる。

第4章では、非対称性歩法の駈歩中における手前および走速度が左側の上腕頭筋、上腕三頭筋長頭、
中殿筋、半腱様筋、長趾伸筋、深趾屈筋の活動に及ぼす影響について、各筋の積分筋電図値と stride
frequency, stride length および stance time を測定することにより電気生理学的に検討している。走
速度の増加とともに stride frequency, stride length および各筋における活動は増加し stance time
が減少していることから、各筋は運動単位数を増加して筋力を発揮していると考えられた。また、stance
time は手前の影響を受けないにも関わらず、筋活動は手前の影響を受け得るため、関節角度を中心とし
たキネマティクスの違いが筋活動の差に関与していると考えられ、筋活動を比較する際は手前と反手前
を区別した解析を行う必要性が明らかとなり、筋活動と走行フォームの関連性が重要であることを示唆
している。
第5章では、サラブレッドに襲歩で高強度運動を継続させた際における筋の活動を検討するために、
5 分程度で疲労困憊に至るまでトレッドミル上を一定速度で走行させた際の表面筋である上腕頭筋、棘
下筋、三角筋、上腕三頭筋長頭、総指伸筋、尺側手根伸筋、中殿筋、大腿筋膜張筋、大腿二頭筋、半腱
様筋、長趾伸筋、外側趾伸筋、および深趾屈筋における積分筋電図値を測定している。第4章の結果か
ら、手前の影響を受ける筋があることが明らかとなったため、手前側、反手前側の筋を区別した解析も
行っている。その結果、一定速度で走行していても運動後半では関節を安定させる機能を持つ筋では運
動単位数の変化は認められなかった。一方、股関節伸展筋群および反手前側の長趾伸筋において運動単
位数が減少していたことから、stride frequency の低下に関与している可能性が考えられた。また、大
きな容積を持ち、仕事量が大きいと考えられる股関節伸展筋群および肩関節伸展筋である上腕頭筋の積
分筋電図値は 20%以上も低下していたことから、stride frequency だけでなく diagonal step length
の低下にも影響が及んでいることを示唆している。
第6章では、得られた知見に関して総合考察をしている。
以上のように、本論文ではサラブレッドは高強度運動時には一定速度で走行していたとしても、股関
節伸展筋群、上腕頭筋および反手前の長趾伸筋といった筋活動を変化させることにより、肢間距離の組
み合わせが異なる走行フォームで走ることを可能にしていることが明らかとなった。つまり、ウマはヒ
トのアスリートとは異なり最大努力下では推進力を発揮する筋に頼ることなく走速度を維持する運動
機構を有しており、最大努力下における運動機構の様式には動物種の多様性が存在することを明らかに
している。また、最大努力下でのウマのコンディショニングについても、これまでに用いられてきた血
中乳酸濃度や心拍数といった生理学的指標に加えて、stride frequency や diagonal step length の変
化を含めてバイオメカニクス的な観点からの指標も客観的な評価に利用できることを示唆している。こ
れらの研究成果は、ウマの運動生理学的特性のみならずヒトのアスリートとの比較研究においても非常
に有用な基礎情報となり、学術上応用上寄与するところが少なくない。よって、本論文は博士(獣医学)
の学位請求論文として合格と認められる。

この論文で使われている画像

参考文献

1.

Horvath G, Farkas E, Boncz I, Blaho M, Kriska G. Cavemen were better at depicting

quadruped walking than modern artists: erroneous walking illustrations in the fine

arts from prehistory to today. PLoS One. 2012;7(12):e49786.

2.

van Weeren PR. History. In: Back W, Clayton HM, editors. Equine locomotion. 2nd

ed. London: Saunders; 2013. p. 1–30.

3.

Hildebrand M. Motions of the running cheetah and horse. J Mammal.

1959;40(4):481–95.

4.

Taylor CR, Schmidt-Nielsen K, Raab JL. Scaling of energetic cost of running to body

size in mammals. Am J Physiol. 1970;219(4):1104–7.

5.

Minetti AE, Ardigo LP , Reinach E, Saibene F. The relationship between mechanical

work and energy expenditure of locomotion in horses. J Exp Biol. 1999;202:2329–38.

6.

Rubenson J, Heliams DB, Maloney SK, Withers PC, Lloyd DG, Fournier PA.

Reappraisal of the comparative cost of human locomotion using gait-specific

allometric analyses. J Exp Biol. 2007;210:3513–24.

7.

Biewener AA, Patek.SN. Energetics of locomotion. In: Biewener AA, Patek SN,

editors. Animal locomotion. 2nd ed. Oxford: Oxford university press; 2018. p. 34–60.

72

8.

Barrey E. Methods, applications and limitations of gait analysis in horses. Vet J.

1999;157(1):7–22.

9.

Clayton HM, Schambardt HC. Measurement techniques for gait analysis. In: Back

W, Clayton HM, editors. Equine locomotion. 2nd ed. London: Saunders; 2013. p. 31–

60.

10. Merkens HW, Schamhardt HC, Hartman W, Kersjes AW. Ground reaction force

patterns of Dutch Warmblood horses at normal walk. Equine Vet J. 1986;18(3):207–

14.

11. Merkens HW, Schamhardt HC, van Osch GJVM, van den Bogert AJ . Ground

reaction force patterns of Dutch Warmblood horses at normal trot. Equine Vet J.

1993;25(2):134–7.

12. Buchner HHF, Savelberg HHCM, Schamhardt HC, Barneveld A. Head and trunk

movement adaptations in horses with experimentally induced fore- or hindlimb

lameness. Equine Vet J. 1996;28(1):71–6.

13. Barrey E. Gaits and interlimb coordination. In: Back W, Clayton HM, editors.

Equine locomotion. 2nd ed. London: Saunders; 2013. p. 85–97.

14. Hoyt DF, Taylor CR. Gait and the energetics of locomotion in horses. Nature.

1981;292(5820):239–40.

73

15. Witte TH, Hirst CV, Wilson AM. Effect of speed on stride parameters in racehorses

at gallop in field conditions. J Exp Biol. 2006;209:4389–97.

16. Merkens HW, Schamhardt HC, van Osch GJVM, Hartman W. Ground reaction force

patterns of Dutch Warmbloods at the canter. Am J Vet Res. 1993;54(5):670–4.

17. Back W, Schamhardt HC, Barneveld A. Kinematic comparison of the leading and

trailing fore‐and hindlimbs at the canter. Equine Vet J. 1997;(S23):80–3.

18. Witte TH, Knill K, Wilson AM. Determination of peak vertical ground reaction force

from duty factor in the horse (Equus caballus). J Exp Biol. 2004;207:3639–48.

19. Morrice-West AV, Hitchens PL, Walmsley EA, Stevenson MA, Wong ASM, Whitton

RC. Variation in GPS and accelerometer recorded velocity and stride parameters of

galloping Thoroughbred horses. Equine Vet J. 2021;53(5):1063–74.

20. Parsons KJ, Pfau T, Wilson AM. High-speed gallop locomotion in the thoroughbred

racehorse. I. The effect of incline on stride parameters. J Exp Biol. 2008;211:935–44.

21. Parkes RSV, Weller R, Pfau T, Witte TH. The effect of training on stride duration in

a cohort of two-year-old and three-year-old Thoroughbred racehorses. Animals.

2019;9(7):466.

22. Mero A, Komi PV. Force-, EMG-, and elasticity-velocity relationships at submaximal,

maximal and supramaximal running speeds in sprinters. Eur J Appl Physiol.

74

1986;55(5):553–61.

23. Yamanobe A, Hiraga A, Kubo K. Relationships between stride frequency, stride

length, step length and velocity with asymmetric gaits in the Thoroughbred horse.

Jpn. J Equine Sci. 1993;3(2):143–8.

24. Pratt GW, Jr., O'Connor JT, Jr. A relationship between gait and breakdown in the

horse. Am J Vet Res. 1978;39(2):249–53.

25. Takahashi T, Aoki O, Hiraga A. Running Form Characteristics of the Triple Crown

Winner in Japan. J Equine Sci. 2007;18(2):47–53.

26. Rabita G, Couturier A, Dorel S, Hausswirth C, Meur YL. Changes in spring-mass

behavior and muscle activity during an exhaustive run at VO2max. J Biomech.

2013;46(12):2011–7.

27. Dutto DJ, Smith GA. Changes in spring-mass characteristics during treadmill

running to exhaustion. Med Sci Sports Exerc. 2002;34(8):1324–31.

28. Rabita G, Slawinski J, Girard O, Bignet F, Hausswirth C. Spring-mass behavior

during exhaustive run at constant velocity in elite triathletes. Med Sci Sports Exerc.

2011;43(4):685–92.

29. Fourchet F, Girard O, Kelly L, Horobeanu C, Millet GP. Changes in leg spring

behaviour, plantar loading and foot mobility magnitude induced by an exhaustive

75

treadmill run in adolescent middle-distance runners. J Sci Med Sport.

2015;18(2):199–203.

30. Hudson PE, Corr SA, Wilson AM. High speed galloping in the cheetah (Acinonyx

jubatus) and the racing greyhound (Canis familiaris): spatio-temporal and kinetic

characteristics. J Exp Biol. 2012;215:2425–34.

31. Cohen AH, Gans C. Muscle activity in rat locomotion: movement analysis and

electromyography of the flexors and extensors of the elbow. J Morphol.

1975;146(2):177–96.

32. Pugliese BR, Carballo CT, Connolly KM, Mazan MR, Kirker-Head CA. Effect of

fatigue on equine metacarpophalangeal joint kinematics-A single horse pilot study.

J Equine Vet Sci. 2020;86:102849.

33. Colborne GR, Birtles DM, Cacchione IC. Electromyographic and kinematic

indicators of fatigue in horses: a pilot study. Equine Vet J. 2001(S33):89–93.

34. Sharp NCC. Timed running speed of a cheetah (Acinonyx jubatus). J Zool.

1997;241(3):493–4.

35. Usherwood JR, Wilson AM. No force limit on greyhound sprint speed. Nature.

2005;438(7069):753–4.

36. Buchner HHF, Savelberg HC, Schamhardt HW, Merkens HW, Barneveld A.

76

Habituation of horses to treadmill locomotion. Equine Vet J. 1994;(S17):13–5.

37. Bächi B, Wiestner T, Stoll A, Waldern NM, Imboden I, Weishaupt MA. Changes of

ground reaction force and timing variables in the course of habituation of horses to

the treadmill. J Equine Vet Sci. 2018;63:13–23.

38. Fredricson I, Drevemo S, Dalin G, Hjertén G, Björne K, Rynde R, et al. Treadmill for

equine locomotion analysis. Equine Vet J. 1983;15(2):111–5.

39. Barrey E, Galloux P, Valette JP, Auvinet B, Wolter R. Stride characteristics of

overground versus treadmill locomotion in the saddle horse. Acta Anat (Basel).

1993;146(2–3):90–4.

40. Buchner HHF, Savelberg HHCM, Schamhardt HC, Merkens HW, Barneveld A.

Kinematics of treadmill versus overground locomotion in horses. Vet Q. 1994;16

S2:S87–90.

41. Clayton HM, Chateau H, Back W. Forelimb function. In: Back W, Clayton H, editors.

Equine locomotion. 2nd ed. London: Saunders; 2013. p. 99–125.

42. Clayton HM, Back W. Hind limb function. In: Back W, Clayton H, editors. Equine

locomotion. 2nd ed. London: Saunders; 2013. p. 127–45.

43. Kamen G. Electromyographic kinesiology. In: Robertson DGE, Caldwell GE, Hamill

J, Kamen G, Whittlesey SN, editors. Research Methods in Biomechanics. 2nd ed.

77

Champaign: Human kinetics; 2014. p. 179–201.

44. Wentink GH. Biokinetical analysis of the movements of the pelvic limb of the horse

and the role of the muscles in the walk and the trot. Anat Embryol. 1978;152(3):261–

72.

45. Aoki O, Tokuriki M, Kurakawa Y, Hataya M, Kita T. Electromyographic studies on

supraspinatus and infraspinatus muscles of the horse with or without a rider in

walk, trot and canter. Bull. Equine Res. Inst. 1984;21:100–4.

46. Tokuriki M, Aoki O, Niki Y, Kurakawa Y, Hataya M, Kita T. Electromyographic

activity of cubital joint muscles in horses during locomotion. Am J Vet Res.

1989;50(6):950–7.

47. Kadaba MP, Wootten ME, Gainey J, Cochran GV. Repeatability of phasic muscle

activity: performance of surface and intramuscular wire electrodes in gait analysis.

J Orthop Res. 1985;3(3):350–9.

48. López-Rivero JL, Serrano AL, Diz AM, Galisteo AM. Variability of muscle fibre

composition and fibre size in the horse gluteus medius: an enzyme-histochemical

and morphometric study. J Anat. 1992;181:1–10.

49. Jansen MO, van Raaij JAGM, van den Bogert AJ, Schamhardt HC, Hartman W.

Quantitative analysis of computer-averaged electromyographic profiles of intrinsic

78

limb muscles in ponies at the walk. Am J Vet Res. 1992;53(12):2343–9.

50. Hoyt DF, Wickler SJ, Biewener AA, Cogger EA, De La Paz KL. In vivo muscle

function vs speed. I. Muscle strain in relation to length change of the muscle-tendon

unit. J Exp Biol. 2005;208:1175–90.

51. Robert C, Valette JP, Denoix JM. The effects of treadmill inclination and speed on

the activity of two hindlimb muscles in the trotting horse. Equine Vet J.

2000;32(4):312–7.

52. Wickler SJ, Hoyt DF, Biewener AA, Cogger EA, De La Paz KL. In vivo muscle

function vs speed. II. Muscle function trotting up an incline. J Exp Biol.

2005;208:1191–200.

53. Hodson-Tole E. Effects of treadmill inclination and speed on forelimb muscle activity

and kinematics in the horse. Equine Compar Exerc Physiol. 2006;3(2):61–72.

54. Milner-Brown HS, Stein RB. The relation between the surface electromyogram and

muscular force. J Physiol. 1975;246(3):549–69.

55. Mann RA, Hagy J. Biomechanics of walking, running, and sprinting. Am J Sports

Med. 1980;8(5):345–50.

56. Harrison SM, Whitton RC, King M, Haussler KK, Kawcak CE, Stover SM, et al.

Forelimb muscle activity during equine locomotion. J Exp Biol. 2012;215:2980–91.

79

57. St George L, Hobbs SJ, Richards J, Sinclair J, Holt D, Roy SH. The effect of cut-off

frequency when high-pass filtering equine sEMG signals during locomotion. J

Electromyogr Kinesiol. 2018;43:28–40.

58. Takahashi T. The effect of age on the racing speed of Thoroughbred racehorses. J

Equine Sci. 2015;26(2):43–8.

59. Hiraga A, Yamanobe A, Kubo K. Relationships between stride length, stride

frequency, step length and velocity at the start dash in a racehorse. J Equine Sci.

1994;5(4):127–30.

60. Hanon C, Gajer B. Velocity and stride parameters of world-class 400-meter athletes

compared with less experienced runners. J Strength Cond Res. 2009;23(2):524–31.

61. Hobara H, Inoue K, Gomi K, Sakamoto M, Muraoka T, Iso S, et al. Continuous

change in spring-mass characteristics during a 400 m sprint. J Sci Med Sport.

2010;13(2):256–61.

62. Self ZT, Spence AJ, Wilson AM. Speed and incline during thoroughbred horse racing:

racehorse speed supports a metabolic power constraint to incline running but not to

decline running. J Appl Physiol. 2012;113(4):602–7.

63. Deuel NR, Lawrence LM. Laterality in the gallop gait of horses. J Biomech.

1987;20(6):645–9.

80

64. Gerard MP, de Graaf-Roelfsema E, Hodgson DR, van der Kolk JH. Metabolic

enetetics. In: Back W, Clayton HM, editors. Equine locomotion. 2nd ed. London:

Saunders; 2013. p. 419–41.

65. Girard O, Brocherie F, Tomazin K, Farooq A, Morin JB. Changes in running

mechanics over 100-m, 200-m and 400-m treadmill sprints. J Biomech.

2016;49(9):1490–7.

66. Wickler SJ, Greene HM, Egan K, Astudillo A, Dutto DJ, Hoyt DF. Stride parameters

and hindlimb length in horses fatigued on a treadmill and at an endurance ride.

Equine Vet J. 2006(S36):60–4.

67. Leach DH, Springings E. Gait fatigue in the racing Thoroughbred. J Equine Med

Surg. 1979;3:436–43.

68. Barrey E, Evans SE, Evans DL, Curtis RA, Quinton R, Rose RJ. Locomotion

evaluation for racing in thoroughbreds. Equine Veterinary Jouranl. 2001(S33):99–

103.

69. Pfau T, Witte TH, Wilson AM. Centre of mass movement and mechanical energy

fluctuation during gallop locomotion in the Thoroughbred racehorse. J Exp Biol.

2006;209:3742–57.

70. Thomas DP, Fregin GF. Cardiorespiratory and metabolic responses to treadmill

81

exercise in the horse. J Appl Physiol Respir Environ Exerc Physiol. 1981;50(4):864–

8.

71. Rose RJ, Allen JR, Hodgson DR, Stewart JH, Chan W. Responses to submaximal

treadmill exercise and training in the horse: changes in haematology, arterial blood

gas and acid base measurements, plasma biochemical values and heart rate. Vet Rec.

1983;113(26–27):612–8.

72. Langsetmo I, Weigle GE, Fedde MR, Erickson HH, Barstow TJ, Poole DC. VO2

kinetics in the horse during moderate and heavy exercise. J Appl Physiol (1985).

1997;83(4):1235–41.

73. Jones JH, Taylor CR, Lindholm A, Straub R, Longworth KE, Karas RH. Blood gas

measurements during exercise: errors due to temperature correction. J Appl Physiol

(1985). 1989;67(2):879–84.

74. Kai M, Hiraga A, Kubo K, Tokurik M. Comparison of stride characteristics in a

cantering horse on a flat and inclined treadmill. Equine Vet J. 1997(S23):76–9.

75. Takahashi Y, Takahashi T. Seasonal fluctuations in body weight during growth of

Thoroughbred racehorses during their athletic career. BMC Vet Res. 2017;13(1):257.

76. Gramm M, Marksteiner R. The effect of age on thoroughbred racing performance. J

Equine Sci. 2010;21(4):73–8.

82

77. Mukai K, Takahashi T, Eto D, Ohmura H, Tsubone H, Hiraga A. Heart rates and

blood lactate response in Thoroughbred horses during a race. J Equine Sci.

2007;18(4):153–60.

78. Ratel S, Duché P, Williams CA. Muscle fatigue during high-intensity exercise in

children. Sports Med. 2006;36(12):1031–65.

79. Komi PV, Tesch P. EMG frequency spectrum, muscle structure, and fatigue during

dynamic contractions in man. Eur J Appl Physiol. 1979;42(1):41–50.

80. Korhonen MT, Cristea A, Alén M, Häkkinen K, Sipilä S, Mero A, et al. Aging, muscle

fiber type, and contractile function in sprint-trained athletes. J Appl Physiol (1985).

2006;101(3):906–17.

81. Barstow TJ, Jones AM, Nguyen PH, Casaburi R. Influence of muscle fiber type and

pedal frequency on oxygen uptake kinetics of heavy exercise. J Appl Physiol (1985).

1996;81(4):1642–50.

82. Miyata H, Itoh R, Sato F, Takebe N, Hada T, Tozaki T. Effect of Myostatin SNP on

muscle fiber properties in male Thoroughbred horses during training period. J

Physiol Sci. 2018;68(5):639–46.

83. Kawai M, Minami Y, Sayama Y, Kuwano A, Hiraga A, Miyata H. Muscle fiber

population and biochemical properties of whole body muscles in Thoroughbred

83

horses. Anat Rec (Hoboken). 2009;292(10):1663–9.

84. Attenburrow DP. Time relationship between the respiratory cycle and limb cycle in

the horse. Equine Vet J. 1982;14(1):69–72.

85. Young IS, Alexander RM, Woakes AJ, Butler PJ, Anderson L. The synchronization

of ventilation and locomotion in horses (Equus caballus). J Exp Biol. 1992;166:19–

31.

86. Tokuriki M, Ohtsuki R, Kai M, Hiraga A, Oki H, Miyahara Y, et al. EMG activity of

the muscles of the neck and forelimbs during different forms of locomotion. Equine

Vet J. 1999(S30):231–4.

87. Takahashi T, Matsui A, Mukai K, Ohmura H, Hiraga A, Aida H. The effects of

inclination (up and down) of the treadmill on the electromyogram activities of the

forelimb and hind limb muscles at a walk and a trot in Thoroughbred horses. J

Equine Sci. 2014;25(4):73–7.

88. Niki Y, Ueda Y, Masumitsu H. A Force Plate Study in Equine Biomechanics 3. The

vertical and fore-aft components of floor reaction forces and motion of equine limbs

at canter. Bull Equine Res Inst. 1984;(21):8–18.

89. Crevier-Denoix N, Falala S, Holden-Douilly L, Camus M, Martino J, RavaryPlumioen B, et al. Comparative kinematic analysis of the leading and trailing

84

forelimbs of horses cantering on a turf and a synthetic surface. Equine Vet J.

2013(S45):54–61.

90. Self Davies ZT, Spence AJ, Wilson AM. Ground reaction forces of overground

galloping in ridden Thoroughbred racehorses. J Exp Biol. 2019;222(16) jeb204107.

91. McGuigan MP, Wilson AM. The effect of gait and digital flexor muscle activation on

limb compliance in the forelimb of the horse Equus caballus. J Exp Biol.

2003;206:1325–36.

92. Gillis GB, Biewener AA. Hindlimb muscle function in relation to speed and gait: in

vivo patterns of strain and activation in a hip and knee extensor of the rat (Rattus

norvegicus). J Exp Biol. 2001;204:2717–31.

93. Nukaga H, Takeda T, Nakajima K, Narimatsu K, Ozawa T, Ishigami K, et al.

Masseter muscle activity in track and field athletes: A pilot study. Open Dent J.

2016;10:474–85.

94. Okudaira M, Willwacher S, Kuki S, Yoshida T, Maemura H, Tanigawa S. Effect of

incline on lower extremity muscle activity during sprinting. J Phys Fitness Sports

Med. 2021;10(2):67–74.

95. Mero A, Komi PV. Electromyographic activity in sprinting at speeds ranging from

sub-maximal to supra-maximal. Med Sci Sports Exerc. 1987;19(3):266–74.

85

96. Dorn TW, Schache AG, Pandy MG. Muscular strategy shift in human running:

dependence of running speed on hip and ankle muscle performance. J Exp Biol.

2012;215:1944–56.

97. Kyröläinen H, Avela J, Komi PV. Changes in muscle activity with increasing running

speed. J Sports Sci. 2005;23(10):1101–9.

98. Walmsley B, Hodgson JA, Burke RE. Forces produced by medial gastrocnemius and

soleus muscles during locomotion in freely moving cats. J Neurophysiol.

1978;41(5):1203–16.

99. Hill AV. The heat of shortening and the dynamic constants of muscle. Proc R Soc B

Biol Sci. 1938;126(843):136–95.

100. Abbott BC, Aubert XM. The force exerted by active striated muscle during and after

change of length. J Physiol. 1952;117(1):77–86.

101. Arampatzis A, Brüggemann GP, Metzler V. The effect of speed on leg stiffness and

joint kinetics in human running. J Biomech. 1999;32(12):1349–53.

102. Weyand PG, Sternlight DB, Bellizzi MJ, Wright S. Faster top running speeds are

achieved with greater ground forces not more rapid leg movements. J Appl Physiol

(1985). 2000;89(5):1991–9.

103. Weyand PG, Sandell RF, Prime DNL, Bundle MW. The biological limits to running

86

speed are imposed from the ground up. J Appl Physiol (1985). 2010;108(4):950–61.

104. Lai A, Schache AG, Lin YC, Pandy MG. Tendon elastic strain energy in the human

ankle plantar-flexors and its role with increased running speed. J Exp Biol.

2014;217:3159–68.

105. Dutto DJ, Hoyt DF, Cogger EA, Wickler SJ. Ground reaction forces in horses trotting

up an incline and on the level over a range of speeds. J Exp Biol. 2004;207:3507–14.

106. Robert C, Valette JP, Degueurce C, Denoix JM. Correlation between surface

electromyography and kinematics of the hindlimb of horses at trot on a treadmill.

Cells Tissues Organs. 1999;165(2):113–22.

107. Crevier-Denoix N, Pourcelot P, Robin D, Holden L, Falala S, Ravary B, et al. Ground

reaction force, acceleration and high-speed kinematics of hoof contact in the fore and

hind limbs of horses at the canter under training conditions. Proc XXIII Int Society

Biomech (ISB); 2011.

108. Ryan JM, Cobb MA, Hermanson JW. Elbow extensor muscles of the horse: postural

and dynamic implications. Cells Tissues Organs. 1992;144(1):71–9.

109. Hanon C, Thépaut-Mathieu C, Vandewalle H. Determination of muscular fatigue in

elite runners. Eur J Appl Physiol. 2005;94(1–2):118–25.

110. Chumanov ES, Wille CM, Michalski MP, Heiderscheit BC. Changes in muscle

87

activation patterns when running step rate is increased. Gait Posture.

2012;36(2):231–5.

111. Farley CT, González O. Leg stiffness and stride frequency in human running. J

Biomech. 1996;29(2):181–6.

112. Wilson AM, Watson JC, Lichtwark GA. Biomechanics: A catapult action for rapid

limb protraction. Nature. 2003;421(6918):35–6.

113. Payne RC, Veenman P, Wilson AM. The role of the extrinsic thoracic limb muscles

in equine locomotion. J Anat. 2005;206(2):193–204.

114. Dutto DJ, Hoyt DF, Clayton HM, Cogger EA, Wickler SJ. Joint work and power for

both the forelimb and hindlimb during trotting in the horse. J Exp Biol.

2006;209:3990–9.

115. Brown NAT, Kawcak CE, McIlwraith CW, Pandy MG. Architectural properties of

distal forelimb muscles in horses, Equus caballus. J Morphol. 2003;258(1):106–14.

116. Tokuriki M, Aoki O. Electromyographic activity of the hindlimb muscles during the

walk, trot and canter. Equine Vet J. 1995;27(S18):152–5.

117. Lichtwark GA, Watson JC, Mavrommatis S, Wilson AM. Intensity of activation and

timing of deactivation modulate elastic energy storage and release in a pennate

muscle and account for gait-specific initiation of limb protraction in the horse. J Exp

88

Biol. 2009;212:2454–63.

118. Johnston C, Gottlieb-Vedi M, Drevemo S, Roepstorff L. The kinematics of loading

and fatigue in the Standardbred trotter. Equine Vet J. 1999;(S30):249–53.

119. Takahashi T, Kasashima Y, Ueno Y. Association between race history and risk of

superficial digital flexor tendon injury in Thoroughbred racehorses. J Am Vet Med

Assoc. 2004;225(1):90–3.

120. Payne RC, Hutchinson JR, Robilliard JJ, Smith NC, Wilson AM. Functional

specialisation of pelvic limb anatomy in horses (Equus caballus). J Anat.

2005;206(6):557–74.

121. Eto D, Yamano S, Hiraga A, Miyata H. Recruitment pattern of muscle fibre type

during flat and sloped treadmill running in thoroughbred horses. Equine Vet J.

2006;(S36):349–53.

122. Eaton MD, Evans DL, Hodgson DR, Rose RJ. Effect of treadmill incline and speed

on metabolic rate during exercise in thoroughbred horses. J Appl Physiol (1985).

1995;79(3):951–7.

123. Stover SM, Pool RR, Martin RB, Morgan JP. Histological features of the dorsal cortex

of the third metacarpal bone mid-diaphysis during postnatal growth in

Thoroughbred horses. J Anat. 1992;181:455–69.

89

124. Butcher MT, Ashley-Ross MA. Fetlock joint kinematics differ with age in

Thoroughbred racehorses. J Biomech. 2002;35(5):563–71.

125. Morrice-West AV, Hitchens PL, Walmsley EA, Stevenson MA, Whitton RC. Training

practices, speed and distances undertaken by Thoroughbred racehorses in Victoria,

Australia. Equine Vet J. 2020;52(2):273–80.

126. Stewart D, Macaluso A, De Vito G. The effect of an active warm-up on surface EMG

and muscle performance in healthy humans. Eur J Appl Physiol. 2003;89(6):509–13.

127. Hodgson DR. Thermoregulation. In: Hodgson DR, McGowan C, McKeever K, editors.

2nd ed. St Louis: Saunders-Elsevier; 2014. p. 108–24.

128.Hicks AL, Kent-Braun J, Ditor DS. Sex differences in human skeletal muscle fatigue.

Exerc Sport Sci Rev. 2001;29(3):109–12.

129. Wüst RC, Morse CI, de Haan A, Jones DA, Degens H. Sex differences in contractile

properties and fatigue resistance of human skeletal muscle. Exp Physiol.

2008;93(7):843–50.

130. Ansdell P, Brownstein CG, Škarabot J, Hicks KM, Howatson G, Thomas K, et al. Sex

differences in fatigability and recovery relative to the intensity-duration

relationship. J Physiol. 2019;597(23):5577–95.

131. Ansdell P, Brownstein CG, Škarabot J, Hicks KM, Simoes DCM, Thomas K, et al.

90

Menstrual cycle-associated modulations in neuromuscular function and fatigability

of the knee extensors in eumenorrheic women. J Appl Physiol (1985).

2019;126(6):1701–12.

132. Takahashi Y, Akai M, Murase H, Nambo Y. Seasonal changes in serum progesterone

levels in Thoroughbred racehorses in training. J Equine Sci. 2015;26(4):135–9.

133. Cully P, Nielsen B, Lancaster B, Martin J, McGreevy P. The laterality of the gallop

gait in Thoroughbred racehorses. PLoS One. 2018;13(6):e0198545.

134. Kai M, Aoki O, Hiraga A, Oki H, Tokuriki M. Use of an instrument sandwiched

between the hoof and shoe to measure vertical ground reaction forces and threedimensional acceleration at the walk, trot, and canter in horses. Am J Vet Res.

2000;61(8):979–85.

135. Chateau H, Camus M, Holden-Douilly L, Falala S, Ravary B, Vergari C, et al.

Kinetics of the forelimb in horses circling on different ground surfaces at the trot.

Vet J. 2013;198 (S1):e20–6.

136. Self Davies ZT, Spence AJ, Wilson AM. External mechanical work in the galloping

racehorse. Biol Lett. 2019;15(2):20180709.

91

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る